COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13,NO. 4, 471-483
http://dx.doi.org/10.1080/16864360.2015.1131540

{amputoi- F!:jcﬂe\jgn Taylor &Francis
pr—— — Taylor & Francis Group

Multi-CAD approach for knowledge-based design methods

Markus Salchner! ©, Severin Stadler! ©, Mario Hirz'

, Johannes Mayr? and Jonathan Ameye?

'Graz University of Technology, Austria; 2MAGNA STEYR Engineering AG & Co KG, Austria

ABSTRACT

The CAD-based design phase is characterized by a cooperation of manufacturer and supplier, which
often use CAD software with different versions or even different vendors. In this context, the paper
focusses on the development and application of knowledge-based engineering (KBE) within multi-

KEYWORDS
Knowledge-Based Design;
Design Automation;
Multi-CAD

CAD environment. Usually, knowledge-based design (KBD) methods are developed within and for
specific CAD systems, respectively specific software configurations or releases. Engineering and com-
ponent supplier companies are faced with the problem that car manufacturers (OEM) work with
different CAD software solutions. A multi-CAD strategy is able to support the handling and orga-
nization of different CAD-related project environments, especially in view of knowledge-based and
automated design applications, as well as data management. The presented approach provides a
platform for the efficient development of KBD applications for multi-CAD environments.

1. Introduction

During the past decades, the development period of a
new car has been reduced from five years and more to
about two years. These considerable time savings can be
attributed to a continuous optimization and improve-
ment of development processes. In this context, vir-
tual development methods play a prominent role. Prod-
uct Lifecycle Management (PLM) solutions are used for
data organization, distribution and storage within dif-
ferent computer-aided design and simulation applica-
tions. This comprises computer-aided design (CAD),
styling (CAS), manufacturing (CAM), as well as com-
putational toolkits, e.g. multi-body simulation (MBS),
computational fluid dynamics (CFD) or finite element
method simulation (FEM). Furthermore, lifecycle anal-
yses (LCA) can also be implemented in modern PLM
systems. The broad field of computational design and
engineering disciplines within automotive development
requires a strong interaction in view of efficient software
applications. Especially the CAD-based design phase is
characterized by a cooperation of manufacturer and sup-
plier, which often operate on various CAD systems with
different versions or even different vendors. In this con-
text, the paper focusses on the development and appli-
cation of knowledge-based engineering (KBE) within
multi-CAD environment. KBE deals with the storage and
reuse of knowledge in product development processes
[16]. A design-oriented specialization of KBE is known
as knowledge-based design (KBD) [6], [8].

Usually, KBD methods are developed within and
for specific CAD systems, respectively specific software
configurations or releases [3], [12]. Especially in case
of problem-oriented knowledge-based applications, the
compatibility to a variety of CAD software is restricted
due to a high level of programmed customized fea-
tures. Engineering and component supplier companies
are faced with the problem that car manufacturers (OEM)
apply different design methods based on different CAD
software solutions as can be seen in Figure 1. In this
example, an automotive supplier has to support dif-
ferent CAD systems, including numerous OEM-related
methodical requirements. This results in a need of high
sophisticated levels of knowledge in different CAD-
systems including a complex application of knowledge-
based design tools. A multi-CAD strategy, as introduced
in the present paper, is able to support the handling and
organization of different CAD-related project environ-
ments, especially in view of knowledge-based and auto-
mated design applications, as well as data management.

2. Knowledge-based design methods

The first paragraphs give an outline on the KBE research
area and the state of the art methodology. KBD meth-
ods are a specialization of KBE with focus on the design
process. An overview on of KBE evolution, approaches,
methodologies and future trends including the notion
of KBE is treated in Reddy et al. [16], who presented

CONTACT Markus Salchner @ markus.salchner@tugraz.at

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/[0000-0001-6379-0562]
http://orcid.org/[0000-0001-9867-0552]
http://orcid.org/[0000-0002-4502-4255]
mailto:markus.salchner@tugraz.at
http://www.cadanda.com

472 M. SALCHNER ET AL.

""‘\‘-“-
OEM 1
CSIEMENS ©
- OEM 2 : NX O
a
-
3] Requiremen
"E OEM 3 | _ﬁeq:r,tf/
c;r; = Automotive
= Supplier
E "y Requiremients—_ |
z v |
OEM 5 L :)
CATIA
OEM 6
/’-.

Figure 1. Automotive supplier challenge: OEMs with different
CAD environments.

an approach “to carrying out the research to develop a
web-oriented function based parametric modeling sys-
tem using KBE” and pointed the high future potential of
Case-based KBE application [9].

There is no specific definition of KBE, in general,
knowledge-based methods are used to capture and
reuse engineering knowledge. The slightly more detailed
notion from Stokes “use of advanced software technolo-
gies to capture and reuse product and process knowl-
edge in an integrated way” is often cited [20]. The enor-
mous potential of KBD regarding cost and time reduction
and the simultaneous quality and efficiency improvement
leads to a continuous development and research in this
area [16], [10], [11], [23].

Some shortcomings because of considerable effort for
maintenance and management of several KBD appli-
cations within CAD environment or platform inde-
pendent has been also been treaded in several litera-
ture. Sanya and Shehaba [17] identified the need “to
standardize the internal knowledge representation of
KBE applications and interfaces with product develop-
ment solutions (i.e. PLM, CAx)”. Therefore, an ontology
framework for the aerospace sector was presented. The
main idea was to decouple the knowledge model from
the operating CAD system using standardized interfaces
like Extensible Markup Language (XML), Unified Mod-
elling Language (UML) and Ontology Web Language
(OWL). The OWL does not allow the implementation of

rule-based functionalities, which requires the application
of another language; the Semantic Web Rule Language
(SWRL). Further mentioned languages and interfaces
are Common Logic Interchange Format (CLIF), Opera-
tional Conceptual Modelling Language (OCML) and Java
Expert System Shell (JESS). To couple this knowledge sys-
tem with suitable user interfaces and visualization tools,
further APIs are required. In that approach, the transfer
to an IDE Platform - Eclipse [5] - is carried out by the
Jena API and OWL-API. Finally, the geometrical visual-
ization is performed by a standardized 3D API, which is
based on Java. The implementation of CAD related func-
tionalities is not explicit mention in this work. Further-
more, the mix of different programming and modeling
languages is quite challenging. Nevertheless, this paper
presents a full platform independent approach [17].

A new, different approach, presented in this paper,
uses a single programming — and modeling language and
supports various IT solutions including CAD systems by
different satellites (Figure 5). In contrast to Sanya and
Shehaba [17] this proposed system is limited to Microsoft
Windows platform [13], which does not constitute a sig-
nificant disadvantage in the automotive sector.

Figure 2 illustrates a principle chart of the differ-
ent KBD levels. The implementation and development
of design methods can only be efficient and successful,
if group-wide directives are clearly defined. This com-
prises a project independent overall process, design and
automation directive. The workflow process including
the release, change and quality management is in com-
mon regulated and handled by a product data manage-
ment system, like Teamcenter [18]. The definition of part,
respectively assembly design within a CAD system is dif-
ferent due to numerous design possibilities and working
methods of the engineers. In addition, the inescapable
verification is quite challenging. The definition and han-
dling of required global directives for one single CAD
system is state of the art and mostly supported by dif-
ferent integrated design-related checkers, like Q-Checker
[22] for CATIA [4] or Check Mate in NX [18]. A list
of necessary automation guidelines for the management
of KBD is mentioned in Figure 2. This includes for
example the definition of the development environment,
programming language, structure, rollout method and
further framework conditions.

The nethermost KBD methods, shown on the left side
in Figure 2, are non-parametric models. This implies, that
the engineer creates for example a specific CAD model
with given dimensions, whereby a geometrical variation
is not possible afterwards. In such a case, the complete
model has to be built up all over again.

The next level is based on parametric-associative
design methods, which correspond to the current state of

COMPUTER-AIDED DESIGN & APPLICATIONS 473

AN
) o5°
LA §
b]
Cross-system
multi CAD
CAD based automa;it{m
knowledge-based methods
design
qf.OL CAD integrated a::g:;ztéc:n
‘~ automation
Relational methods
models
Non Parametric
parametric maodels
dels i
Complexit
P Y .

Figure 2. Knowledge-based design levels, according to [8].

the art in automotive engineering processes. In this case,
the exemplary CAD model is designed with variable val-
ues. These values can either be directly integrated in the
geometry definition, like a length constraint in a sketch,
or they can be stored in a feature definition itself. Another
possibility is the definition of separate parameters, decou-
pled from the geometry, which are stored in the desired
CAD component. This allows an efficient design adap-
tion by changing the parameter values in the CAD system
or within an external file. Parameters can also be used
for the definition of characteristics such as materials,
textures, tolerances and other relevant information [8].

Relational models define the third level in Figure 2,
which are based on parametric models and include fur-
ther functionalities. In common, an interaction between
CAD elements, like sketches, features, bodies or even
parts and assemblies, is carried out by use of rules,
checks or loops. This method corresponds to the next
higher level, the CAD integrated automation methods. In
CATIA, relational design can be carried out without the
use of any internal scripting or programming language.
In NX, a definition of feature based rules requires the use
of an integrated knowledge application, called Knowl-
edge Fusion (KF), which requires basic scripting know-
how. The different levels and functionalities of integrated
methods are explained in the following subsections.

CAD based automation methods mainly differ from
integrated methods due to the use of external “integrated
development environment” (IDE), like Visual Studio [14]
or Eclipse [5]. This allows the development of external
automation tools with

e customized graphical user interfaces (GUI),
e use or implementation of external applications (e.g.
Excel, Word, etc.),

e development of programming library based on the
object oriented programming (OOP) principle,
CAD independent scripting language,

e consistent development environment and
simultaneous application development.

Furthermore, development-related know-how is no
longer stored in the CAD system itself, but in specific
applications or even coupled databases and therefore
improved accessible for other engineering disciplines and
employees.

Commercial KBE software packages like KF [18],
CATIA Knowledgeware [4], CADEC Works [1], KBE-
Works [9] or TactonWorks Engineer [21] can be assigned
to the category of CAD integrated automation methods.
Therefore, these tools does not meet the requirements,
and are not explained in detail.

The highest level of KBD methods is represented
in cross-over methods and tools, which support differ-
ent CAD solutions within the company. Process related
know-how is completely decoupled from the CAD sys-
tem and made for anyone to disposal. The initial devel-
opment effort for such automation tools is quite high.
Especially the definition of a comprehensive multi-CAD
environment requires a detailed consideration of differ-
ent aspects. One main problem to face is the data trans-
fer via inconsistent application programming interfaces
of the different CAD systems. It is a big challenge to
serve all systems concerning design, knowledge-based
methods and automation strategies. In this context, the
present paper introduces a new approach for the efficient
development of a multi-CAD KBD environment under
consideration of the prior problem statements.

The presented approach is viewed from three dif-
ferent developer perspectives. The topmost developer,

474 M. SALCHNER ET AL.

called KBD-Expert, is responsible for the design, main-
tenance and enhancement of the abstract multi-CAD-
framework. This working range considers the mentioned
overall directives and the principle layout of the KBD
environment — see section 3. The next development level
concentrates on the KBD-Engineer, who is responsible
for the development of selected applications supporting
design. The implemented functionalities strongly depend
on the specific task and do not consequently require a
multi-CAD realization in the early phase. Nevertheless,
the KBD-Engineer is assisted by a superordinate frame-
work - see section 4. The last but not least level, the
CAD-User is supported by the different KBD tools in
his work to raise productivity and quality of the entire
design process. The KBD-User simultaneously is the per-
son which consolidates tasks of daily design work for
potentially new KBD-applications to be developed.

Figure 3 shows the different knowledge-based automa-
tion levels regarding complexity and functionality. The
required experience for the common development of
KBD tools is schematically illustrated, by line num-
ber one. Due to the implementation of the multi-CAD
approach, the required programming effort of the KBD-
Engineer can be dropped to a lower level - line two.
Another advantage of the presented high level KBD
approach can be seen in line three. Due to the use of appli-
cation programming interfaces, process or application
related know-how is no longer stored in the CAD system,
but rather in the application or a centralized database
itself. Thereby, a crossover knowledge distribution and
management can be reached.

The group on the left side in Figure 3, called basic KBD
tools, uses internal tools and functionalities of a CAD sys-
tem. This includes parameters, formulas, spreadsheets,
rules, checks, loops, templates and user defined features.
Other tools of this group are CAD based recorders and

=

Complexity

based methods programming

languages Ap]

integrated programming languages. The provided func-
tionalities of these internal tools strongly depend on the
CAD solution and the available license package. The next
higher level uses the CAD based and integrated devel-
opment environment. This group uses the CAD API
and allows a partially decoupled KBD development —
depending on the CAD system. Therefore, an effective
multi-CAD strategy cannot be reached out with the men-
tioned tools. The development of an efficient overarching
strategy can only be achieved by the highestlevel - a CAD
independent development environment.

3. Multi-CAD approach

In contrast to the general understanding of a multi-CAD
environment, the present strategy represents an unre-
stricted method. Functionalities in commercial available
CAD systems are restricted to the provision of neu-
tral geometry data interfaces for the exchange of CAD
models, e.g. STEP, IGES, STL. These converters allow
an exchange of geometry between different CAD for-
mats, but there is no possibility to handle intelligent
knowledge-based software modules, e.g. templates for
automated geometry creation. The presented approach
provides a smart development and implementation of
multi-CAD capable knowledge-based design methods
[4], [15], [18].

3.1. Development process

Figure 4 illustrates the developed process model for the
layout of the novel strategy. The process is divided into
three main layers. The iterative process covers both the
horizontal - layer internal -, and vertical — across layers
- interactions.

(2]

Know-how @ CAD
recorder integrate clopment
ic k ol n environmen
Basic knowledge cap jntegrated - Visual Basic Editor - 3]

- Journal Editor

Figure 3. Levels of KBD automation.

Functionality

COMPUTER-AIDED DESIGN & APPLICATIONS 475

Multi-CAD
environment

Reuse and Testing
protection and ;:m
strategy implementation
Testi
Mggmn . 5 c:lrtl,cept s ' e:n:g Concept
' en proved
strategy SRS implementation i

Figure 4. Development process of multi-CAD environment.

The first step includes the conceptual layout of a multi-
CAD automation strategy, illustrated at the bottom line
in Figure 4. By an exemplary application, the strategy
has been used to integrate the CAD software packages
CATIA V5 and Siemens NX; but the general approach
may be suitable for other CAD software, too. This appli-
cation states the basis for the subsequent development,
implementation and testing procedure. Therefore, the
exemplary application is designed to cover a wide range
of automation methods, taking into account various
namespaces, classes and functions of the provided pro-
gramming interfaces. In case of Siemens NX, there are
four main libraries available, whereby the CATIA API is
structured more widespread (more than eighty libraries).
After the validation of this concept, the next development
step focuses on a multi-CAD release strategy — layer two.
This treats the application compatibility for one CAD sys-
tem including its chronological releases. After the testing
and implementation cycle of this layer, both, the multi-
CAD - and the multi-Release concept are transferred
to the final development layer. This development level
considers a strategy for the reuse and protection of the
overall method. This entire development process results
in a final multi-CAD environment, as illustrated in the
top layer.

3.2. Overview of the Multi-CAD-framework

The iterative development process, explained in the
previous section, consequently leads to a multi-CAD-
Framework. This subsection explains the developed
framework and the programming libraries in view of
a KBD-Expert. The framework is based on the IDE of
Visual Studio and uses the programming language Visual
Basic [14]. The decision criteria for this development

environment was mentioned in the previous section and
the criteria for the language-related decision can be found
in section 4.

Figure 5 illustrates the environment of the present
approach including the internal main modules and their
docked satellites. The abstract methods, which cover
universal functions, are stored inside the framework.
This includes “CAD base”, “Utilities”, “Infrastructure”
and “Settings” classes. These base classes are managed
by the KBD-Expert and define fundamental function-
alities of the docked satellites. The development and
implementation of these objects are not explained in
detail in this paper, except the “CAD base” class. This
superordinate functional definition allows docking of dif-
ferent applications in an efficient way and grants the
consequent enhancement of the framework. The KBD-
Engineer implements the framework in the development
process of a new KBD-Tool. The developer can access
- on require — all implemented methods via the novel
framework. The final KBD-Tool has to be analyzed by
the KBD-Expert regarding their implemented function-
alities. In the next step, the KBD-Expert performs an
abstraction of the functionalities and defines the ade-
quate implementation of new base functions. Thus, the
base functionality rises with each single application and
expands the predefined functions for future projects.

The CAD related assemblies are illustrated at the bot-
tom of Figure 5, by Siemens’ NX, Dassaults CATIA V5
and any additional CAD system - like PTC Creo Ele-
ments [15]. Furthermore, third party applications like
Excel, Acrobat or Matlab are also supported by the inter-
face. Different PDM systems, databases and finally sin-
gle specialized KBD tools are optional satellites, which
can be implemented in the multi-CAD-Framework. The
predefined overall structure grants the integrity and the

476 M. SALCHNER ET AL.

Figure 5. Multi-CAD-Framework.

intuitive working principle for all KBD-Engineers. Fur-
thermore, the environment includes a defined strategy
for serviceability, reuse, as well as protection and licens-
ing aspects.

The database interface gives the developer the abil-
ity to use different database functionalities. This includes
the ease creation of user defined local or server databases
and allows quick storage and reuse of application related
information. Furthermore, database-applications pro-
vide useful functionalities for listing, sorting, or search-
ing of data and enable a dynamic application layout.

The overall implementation expands the function
scope enormously and enables an efficient interaction
between CAD and third party tools. Exemplary, inter-
disciplinary KBD tools are geometry-based analysis and
optimization routines, e.g. specific suspension optimiza-
tion. For example, this enables a transfer of main sus-
pension points, which are defined and stored in the
CAD system, to a Matlab optimization routine. The rou-
tine performs an optimization with regard to occurring
forces, the maximum possible steering angle or dive
angle. The results are displayed in the CAD system and
the engineer can adapt the design model. This appli-
cation is exemplary illustrated as KBD-Tool 1, whereby
the KBD-Tool 2 represents a separate exemplary applica-
tion, shown in Figure 5. Each implemented application
expands the framework and enables a continuous and
efficient enhancement.

3.3. Realization of Multi-CAD-framework

Figure 6 gives a more detailed overview of the devel-
oped environment, concentrating on the multi-CAD

patabases

Mysql Access

Firebird

environment. In contrast to Figure 5, this representation
contains no global assignment, but allows a more detailed
explanation of the developed environment.

At the bottom of Figure 6, CAD systems like CATIA
[4] and NX [18] are exemplarily illustrated with differ-
ent releases. The developed multi-CAD interface imple-
ments the inconsistent application programming inter-
faces of the diversified CAD systems, see sub section
4.3. The interface definition is stored in the multi-CAD-
Framework and contains abstract methods for the imple-
mentation of CAD systems, called “CAD base”. There-
fore, each CAD system and release fulfills the same basic
functionalities like create part, create picture, get prop-
erties or close CAD application. The interface allows a
simultaneous, sequential or single execution of the devel-
oped KBD tool within the different CAD systems. In
addition, different project and release settings are sup-
ported.

The “Infrastructure” area covers basic functions and
methods of the operating system Microsoft Windows
[13]. Exemplary elements are folder and data manage-
ment. Furthermore, it offers functionalities that allow
the handling of all Windows based applications. This
includes maximize, minimize or hide functions, etc.,
and an integrated docking class. This method allows
the implementation / docking of any application into
the developed graphical user interface. The user inter-
face covers all required information, and the KBD-
User is not forced to switch between different win-
dows. The standardized layout of the GUI and the
mentioned functionality is also implemented in this
library and supports the KBD-User and KBD-Engineer
equally.

COMPUTER-AIDED DESIGN & APPLICATIONS 477

Multi-CAD-Framework

Utilities CAD base
CAD system independent
functions
t CATIA NX

Infrastructure functions fsnctons

e e 5 e B 4§

E - E—

- — -

I — “—"-F; T

Dot viter ———
Project Defined data CAD Release
settings transfer handling settings

)

Interface

)

b i

=

4

- | AP

N = =

' User
Interface

55

V5R19

V5R21

Ko B RSPV LESS ° o i

ELE]

= —————
g ——

v NX 8.5
CATIA | R ¢
V5R24 #
3] User NX9.0
2 AP BERE T4 AL NS EE @ ﬂ Interface
= -3 TL IR iis (e (BN -1 e FL

Figure 6. Multi-CAD automation environment.

The “CAD base” class initializes all CAD related devel-
oped functions and methods. This library does not imple-
ment the functionality itself, but it defines them. Each
single implemented CAD system is a derived class and
is forced to implement the defined functions. Relatively
simple CAD basic functions, like the creation of a point,
a line or a feature, are not implemented in this level,
because these CAD related functions are supported by
the API and it is not useful to reproduce all of them.
In contrast, it includes a collection of commonly used
and know-how based functions. On basis of an object
oriented programming technique, it is possible to force
the developer to implement the designed function for
all required CAD solutions. One example of application

is a function for capturing of images. The code for the
image creation is not challenging, but to adjust a whole
environment to the defined settings can be very com-
plex. The implemented function performs the following
actions in addition to the passed parameters: Perspec-
tive, position, zoom, visibility of constraints, annotations,
treeview, components, change the color of parts, surfaces
or even the entire assembly.

The explained framework can be implemented and
used as references by each KBD-Engineer in the develop-
ment environment of Visual Studio. The depicted satel-
lites in Figure 5 are standalone libraries, whereby an
individual implementation is enabled. Some applications
do not need a database - or the CATIA interface, and

478 M. SALCHNER ET AL.

therefore an implementation of these libraries is not effec-
tive. The current framework comprises the following
main libraries:

Multi-CAD-Framework

Dassault CATIAV5

Siemens NX

Third party application - e.g. Excel
Firebird databases 7]

Additional functionalities with numerous overload-
ing methods are stored in a separate snippet library.
They provide a large amount of different input param-
eters regarding to their use. An exemplary CAD related
function is the “CreatePoint” method. The design of a
point can be done in various ways - by coordinates,
on a line, a surface, a body or as a center point of a
circle. Twenty overloading methods in NX are avail-
able, whereby each of them uses different NX related
objects, which in turn are overloaded. Other exemplary
methods are folder selection, file selection — or save
methods, which strongly depend on the current require-
ments. The snippets are implemented in the graphical
interface of Visual Studio and can be easily accessed.
The snippets are based on XML and copy the stored
source code elements into the current project. The KBD-
Engineer can customize the scripting lines to the current
requirements. The developed snippet library uses the
same structure as the framework library and grants an
intuitive use.

4. Multi-CAD developer

The previous section explained the entire framework of
the multi-CAD approach. With the target of an effec-
tive use, the framework design was made with focus on
an intuitive usage and nomenclature. To ensure stabil-
ity and quality of the framework, some programming
rules have to be considered. Furthermore, the imple-
mentation effort for the KBD-Expert, mentioned in sub
section 3.2, can be reduced to a minimum. This section
treats the defined development steps for the design of new
multi-CAD-Framework applications.

4.1. Programming directives

This subsection focuses on programming fundamentals,
which are required for the understanding and imple-
mentation of the multi-CAD approach. Common KBD
automation tools are developed for one unique task by
one single developer [3], [10-12], [16]. To keep it sim-
ple, these tools are often coded in the so-called “Spaghetti
code”. This means, that the code is unstructured and the

application of user defined objects, classes or instances is
limited. Furthermore, access modifiers, e.g. public, pri-
vate, protected are not used consequently and the code
flow cannot be traced - it is like a bowl of spaghetti.
This way of coding seems to be the easiest way of pro-
gramming, but with increasing complexity and multiple
developers, it causes a lot of problems. Consequently, an
implementation in the explained framework is impossi-
ble, which requires the application of the so-called object
oriented programming (OOP) approach [14].

The principle of OOP bases on the definition of
user defined objects and a structured code flow. The
objects contain different fields, methods and properties,
as shown in Figure 7. The field group contains user
defined variables, which should be only used internal.
The properties provide external functionalities, which
can be accessed from outside. The mentioned access
modifiers are indicated as small symbols beside the illus-
trated elements. These modifiers are important for a
structured code flow and allow the protection of selected
attributes.

This means, that specific attributes can only be
changed under certain conditions in contrast to public
attributes. The main principle structure is explained by a
CAD based example. The base class — “CADApplication”
has two derived classes, “CADNX” and “CADCATIAV5”,
as shown in Figure 7. The base class defines all common
functionalities, where the program code does not differ.
The modifier “MustInherit” defines, that the creation of
a direct instance from this class is restricted. The illus-
trated “CADApplication” class contains two fields, two
properties and five methods.

The “SetCADApplicationToForeground” and the con-
structor sub “New” are base methods, which are not
related to a specific CAD system. The source code of
these functions is implemented directly in the “CADAp-
plication” class. The two remaining methods “CADAp-
plicationReady” and “OpenPart” are CAD system related
functions and separately coded in the derived classes.
They bear the modifier “MustOverride”, which means
that all derived classes have to implement them. Of
course, derived classes can contain additional properties
and methods, like the “CADNX?” class.

The “CADInfos” class is a user defined class with CAD
related attributes like “Version”, “StartUpPath” or “Type”,
depicted on the right in Figure 7. The attributes are
declared as public elements; there is no sufficient pro-
tection and secure access management. Under consid-
eration that each “CADApplication” instance comprises
the private variable “m_CADInfos”, which represents an
instance of the “CADInfos” class, the related information
cannot be accessed. The “CADInfos” property is declared
as “ReadOnly”, and so the relevant “CADInfos” can only

COMPUTER-AIDED DESIGN & APPLICATIONS 479

»

| CADInfos

© Mustinherit Class Class
| 7|
- = Fields : = Fields
! 4% m_CADinfos @ CADltems
i @ m_ProcessName @ ProcessiD
| = properties @ ProcessName
® CaDinos @ Relesse
: _‘S CADSession w StartUpPath
- ¢ T
| & Methods ype)
% CADApplicationReady
2¥ New i CADType 2
=¥ SetCADApplicationToForeground | Erum
T | NX
| CATIAVS
‘ CATIAVE
| SolidWorks
_ | ProE
| CADNX 3 | -
Class (=
D CADCATIAVS 2
+
CADApplication r Class
| g -+ licath
= Fields S ;
¥ m_theSession = Fields
_fl m_theUl g® m_Catia
‘f' theSession :5' m UID
= Properties = Properties
g CADSession % CADSassion
23 TheUf =
g = Method
& Twit v CAI;A plicationRe
= pplicationReady
EM i
' s i ¥ CatiaSession
@ CADApplicationReady 29 New
@¥ New ¥ OpenPart
@ OpenPart \ y
Figure 7. Exemplary structure of the “CADApplication” class.
be adapted inside the “CADApplication” class. The initial " <summary>
definition of these variables is done by the initialization . f'}iﬁgm:iythe CAD application is ready.

process of a new “CADCATIAV5” or “CADNX” object.

Considering the multi-CAD-Framework structure,
explained in section 3, the “CADApplication” class is
stored in the framework itself, whereby the derived
classes are located in the selected CAD satellites. To grant,
that each KBD-Engineer receives the required informa-
tion, XML comments for the documentation of each sin-
gle property, function or sub, as shown in the Figure 8 are
mandatory.

' <returns>True or False</returns>
''" <remarks>None</remarks>
Public MustOverride Function CADApplicationReady() As Boolean

Figure 8. Exemplary XML comment.

4.2. Structured programming

Based on the mentioned programming fundamentals,
this section concentrates on the developed structural

480 M. SALCHNER ET AL.

programming guideline, which is an essential part of
the multi-CAD strategy. Each multi-CAD automation
application should follow the main rules to grant:

Comprehensibility for other developers
Simplified adaption and enhancement
Release handling

Enable the multi-CAD approach
Handle API changes

Figure 9 illustrates the principle structure of a multi-
CAD application. The application consists of at least two
different projects, the Main - and the Application Project,
whereby the Application Project is referenced to the Main
Project. The latter can access the defined methods and
properties of the Application Project. Additional feasible
projects could be databases or third party projects. The
assembly class in the Main Project is responsible for all
GUI related calls, events and also for the separation of
different CAD systems.

This distinction is carried out by the instantiation of
different application assemblies. For example to support
CATIA and NX within this application there has to be

one “NXAssembly” and one “CATIA Assembly” instance.
These derived classes inherit the base class “Applica-
tionAssembly” and follow the “CADApplication” - prin-
ciple, shown in the previous section. The required multi-
CAD initialization functions are called from this class.
The graphical user interfaces often change due to the
development process or in case of different customers.
Therefore, a codding in GUI elements should be avoided.
It is much more efficient to utilize user defined events and
handle them in the assembly class. Last but not least, the
Main Project handles the exception events, the custom
help file and optional license functions. This structure
allows an eased adaption and enhancement of main func-
tionalities of the program by any KBD-Engineer. Differ-
ent application releases for various customers with differ-
ent functionalities can be compiled in an efficient way.

The main development rules for a multi-CAD appli-
cation are:

(1) At least two separate projects — Main and Applica-
tion

(2) No CAD or know-how related source code in the
Main Project

Multi CAD application

Main Project Application Project
GUI Application Assembly
Forms
Controls
Help Catia NX
CAD related classes
Multi CAD CATIA Base classes NX
Main Assembly
GUlI initialization
GUI handling
Multi CAD initialization
CAD System seperation
Application initialization
Error handling

Figure 9. Structured programming layout for multi-CAD applications.

No code elements in the GUI

CAD system separation in the Main Project

All calls from the project related assembly class
CAD release separation in Application Assembly
class

3)
(4)
(5)
(6)

The Application Project contains all required func-
tions for the developed application itself. This includes
universal base classes and derived CAD related classes,
as shown in Figure 9. Of course, this project can also
include CAD independent classes for general functional-
ities, like the creation of folders, files or other third party
applications.

It is up to the developer to decide when a separate
project (e.g. third party project) is created or not. In gen-
eral, it is advisable to create a new project as soon as
an additional API is used (e.g. Excel). The code separa-
tion for different CAD releases, caused by API changes,
should be handled in the concerning CAD assembly, as
illustrated in 10.

The Figure 10 shows the three different classes
-“NXAssembly”, “BOMNX” and “CADItemNX"- includ-
ing some general code elements. The “GetTree” prop-
erty of the “NXAssembly” is the starting point, where
a separation of NX releases is carried out - NX 7.5
and NX 8.5. The optimum source code on the left side
would call the release dependent methods from here,
and also release independent functions, like “ListCA-
DItems”. Unfortunately, this represents a major effort in

COMPUTER-AIDED DESIGN & APPLICATIONS 481

the practical development. The application is in common
developed for one single release, and therefore the code
structure is defined in a logical way - as shown on
the right side. The implementation of further releases
is added as needed later. From this stage of develop-
ment, the KBD-Engineer is confronted with possible API
differences within the CAD releases. In the example in
Figure 10, the code differs in a deep layer of the pro-
gram structure. The release separation is required in the
“m_GetltemAttributes” sub within the “CADItemNX”
class — at the bottom. The developer has to change the
entire structure and methods to perform a release dis-
tinction in the “NXAssembly”. Therefore, identical basic
code elements have to be duplicated for small differ-
ences within some code lines. This is not purposeful,
produces unnecessary code and the effort increases in
maintenance, modifications and handling of program-
ming errors. Experienced developers can estimate the
differences already in the run and thus implement an
appropriate structure.

To avoid the mentioned structural changes in case of
small API differences, but to allow later code tracking,
a keyword, e.g. “CADRelease”, is defined. This keyword
is used as function or property argument for each single
method, which requires a separation of CAD releases.

4.3. CAD Automation interfaces

APIs are based on core algorithms of the CAD system and
allow the definition and development of KBD automation

Practice

1
' e
: Dimm_Bom = New S00NK(m_CADNX)

: Dim m_CADItems as Hew List{Of CADItem)

H Select Case m_CADNX.CADInfos.Release

] Case 7.5

L m_CADItems = m_Bom.ListCADItems{)

] m_Bom.GetItenProperties(m CADItems)= =
: m_sr.m_GetItenAtlributesio_Chﬂlte.& ?.S}'l
| Return m_CADItems -
! Case 8.5

k m_CADItems = m_Bom.lListCADItems()

] m_Bom .GetItenProperties(m CADItems)= =
. m_sn-.sctnunurihuus(u_cmlu—-Q 8.5) %
] Return m_CADItems -

Figure 10. APl handling.

s Public Overrides ReadOnly Property GetTree As

Dinm_Bom = New
Select Case m_CADNX.CADInfos.Release

(X (m_CADNX)
Case 7.5

Return s_Bom. GetTree()
Case B.5

Return =_Bom.GetTree()

! 1
! 1
L} e 1
1 Dim NXitem As CADItemix \
| NXitem.GetItemAttributes(m_NXApp.CADInfos.Release) 1
' L}

Friend Overrides ReadOnly Property GetItemAttributes(ByVal CADRelease As Double)
;;(;Q(Itl!ﬂ\!tfﬂzu%esf(ADRelease)

End Sub i

Private Sub m_GetItemAttributes(ByVal CADRelease As Double)

o S Sy

482 M. SALCHNER ET AL.

routines. The functional scope of the automation rou-
tines is only limited by the provided CAD-API, whereby
this functionality is often coupled with the used pro-
gramming language and available license packages. The
common denominator of different CAD systems regard-
ing functionality, costs and development within the pre-
sented approach is stated by the NET framework. It is a
software framework developed by Microsoft since 2002,
which supports different coding languages like Visual
Basic (VB), C# or J#. Due to the fact, that many CAD
solutions deliver integrated VB programming editors and
simultaneously provide VB.NET, the multi-CAD strat-
egy is developed based on this programming language.
The main disadvantage, compared to programming lan-
guages like C, is a lack of code protection. Nevertheless,
there are some options to protect the code in an efficient
and sufficient way. Considering that today’s most KBD
tools in automotive industry are specific in-house appli-
cations, the protection of knowledge plays an important
role, [4], [14], [15], [18].

CAD related programming libraries can be provided
in two species. The first one includes dynamic link
libraries (dlls), which can be added as stand-alone ref-
erences to the desired programming environment - NX.
The second possibility is to use registered ActiveX ele-
ments, which are based on the Component Object Model
(COM) standard - CATIA. In this case, the references are
not linked in a static way, but based on windows registry
entries. The required libraries are loaded at runtime by
default, either from the startup path (dlls) or by use of
the current registered COM element. This faces a prob-
lematic situation in case of different CAD releases. The
code libraries of different CAD releases or versions have
the same nomenclature, and therefore a specific linking
method was developed.

The mentioned problem can be handled in differ-
ent ways. During the iterative development process,
explained in section 3.1, a large amount of different con-
cepts has been worked out. The result, which fits all men-
tioned requirements under consideration of the entire
strategy is explained in the next lines.

The solution bypasses the windows registry entries
and allows a much more efficient realization of multi-
release capability. At startup of the initialization process,
the current running CAD process is linked. Based on the
current CAD system the required libraries are automati-
cally created. In the final step, the libraries are loaded at
runtime. This method fulfills all requirements consider-
ing the multi-CAD approach.

The virtual connection between the KBD tool and the
CAD system is carried out by a connection principle,
which is also defined by the API of the CAD system.
CATIA for example, is based on the Component Object

Model (COM) of Microsoft, and therefore the connection
to the actual active CATIA window is reached out due to
the registered application name - “CATIA.Application.”
Thus, different CATIA releases cannot be differenti-
ated, and therefore multiple window applications are not
allowed. The API of NX on the other hand is not based
on the COM strategy. In this case, the connection is
performed due to the Transmission Control Protocol /
Internet Protocol (TCP/IP) by use of a server and a client
application, whereby both can be applied on one single
computer [4], [14], [18].

The mentioned CAD initialization process and the dif-
ferent connection methods are implemented within the
multi-CAD-Framework accessible for KDB-Developer.

5. Conclusions

The presented approach provides a platform for the
efficient development of KBD applications for multi-
CAD environments. This includes a multi-CAD interface
and different software modules that manage inconsis-
tent CAD APIs, capture knowledge, provide reusable
functions and libraries, and have an enhanced service
and error handling. In contrast to common approaches,
where one single KBD tool has to be released sepa-
rately for each single CAD-system and release, this novel
strategy allows a standalone-releasing of different KBD
tools. This simplifies company-internal roll out proce-
dure, update management and administration. Of course
this strategy is part of the framework and uses the men-
tioned Firebird database as application storage, user man-
agement and administration. Furthermore, it plays an
important role regarding the protection of the applica-
tion and consequently of the knowledge. On the other
hand, the change or update management in view of the
KBD-Engineer is therefore optimized, because of a cen-
tralized project management. In this way, the KBD-User
is not forced to execute different application files and the
standardized consistent GUI of all KBD tools minimizes
the training period significantly. Referring to the start-
ing statement concerning future trends of web-based and
case-based applications, the presented framework allows
the creation of four different solutions:

Windows Form Application [14]
Windows Console Application [14]
Windows Service Application [14]
Web Apps with ASPNET [14]

In the next months the approach is applied in a broad
way by implementation of the new API of CATIA V6 [4]
and additional open source CAD viewing tools. Further-
more, different open source geometrical libraries will be

investigated and the open xml software development kit
[14] will be implemented. In this way, the functionality
will grow and the platform - and vendor dependency will
decrease step by step.

Considering multiply effects because of a large num-
ber of KBD tools used in automotive industry, a sig-
nificant time reduction in the application of complex
CAD-environment can be achieved.

ORCID

Markus Salchner (© http://orcid.org/0000-0001-6379-0562

Severin Stadler (2 http://orcid.org/0000-0001-9867-0552

Mario Hirz ‘© http://orcid.org/0000-0002-4502-4255

References

[1] CADEC Works, http://www.cadec.in, access date: 2015-
04-08.

[2] Catic, A.; Malmqpvist, J.: Towards integration of KBE and
PLM, International Conference on Engineering Design,
2007.

[3] Chapman, C.B.; Pinfold, M.: The application of a knowl-
edge based engineering approach to the rapid design and
analysis of an automotive structure, Advances in Engi-
neering Software, 32,2001, 903-912. http://dx.doi.org/10.
1016/S0965-9978(01)00041-2.

[4] Dassault Systemes, http://www.3ds.com, access date:
2015-01-27.

[5] Eclipse, https://eclipse.org/, access date: 2015-01-27.

[6] Eigner, M.; Stelzer, R.: Product Lifecycle Management:
Ein Leitfaden fiir Product Development und Life Cycle
Management, Springer, 2009, ISBN: 9783540443735,
http://dx.doi.org/10.1007/b93672.

[7] Firebird, http://www.firebirdsql.org/, access date: 2015-
04-13.

[8] Hirz, M.; Dietrich, W.; Gfrerrer, A; Lang, J.: Inte-
grated computer-aided design in automotive develop-
ment: development processes, geometric fundamentals,
methods of CAD, knowledge-based engineering data
management, Springer, 2013, ISBN: 9783642119392,
http://dx.doi.org/10.1007/978-3-642-11940-8.

[9] KBEWorks, http://www.visionkbe.com, access date: 2015-
04-08.

COMPUTER-AIDED DESIGN & APPLICATIONS 483

[10] Lin, B.-T.; Chan, C.-K.; Wang, J.-C.: A knowledge-based
parametric design system for drawing dies, International
Journal of Advanced Manufacturing Technology, 36,
2008, 671-680, http://dx.doi.org/10.1007/s00170-006-
0882-y.

[11] Lin, B.-T; Chang, M.-R.; Huang, H.-L; Liu, C.-Y.
Computer-aided structural design of drawing dies for
stamping processes based on functional features, Interna-
tional Journal of Advanced Manufacturing Technology,
42, 2009, 1140-1152. http://dx.doi.org/10.1007/s00170-
008-1670-7.

[12] Ma, Q.C;; Liu, X.W.: Review of Knowledge Based Engi-
neering with PLM, Applied Mechanics and Materials,
10-12, 2007, 127-130. http://dx.doi.org/10.4028/www.
scientific.net/ AMM.10-12.127.

[13] Microsoft Developer Network, http://msdn.microsoft.
com/de-at/dn308572.aspx.

[14] Microsoft, http://microsoft.com, access date: 2015-01-27.

| PTC, http://www.ptc.com, access date: 2015-01-27.

[16] Reddy, E. J.; Sridhar, C. N. V,; Rangadu, V. P.: Knowl-
edge Based Engineering: Notion, Approaches and Future
Trends, American Journal of Intelligent Systems, 5(1),
2015, 1-17. http://dx.doi.org/10.5923/].ajis.20150501.01

[17] Siemens PLM, http://www.plm.automation.siemens.com,
access date: 2015-01-27

[18] Sanya, 1.0, Shehab, E.M.: An ontology framework
for developing platform-independent knowledge-based
engineering systems in the aerospace industry, Inter-
national Journal of Production Research, 52, 2014,
6192-6215. http://dx.doi.org/10.1080/00207543.2014.
919422.

[19] Skarka, W.: Application of MOKA methodology in gen-
erative model creation using CATIA, Engineering Appli-
cations of Artificial Intelligence, 20, 2007, 677-690.
http://dx.doi.org/10.1016/j.engappai.2006.11.019.

[20] Stokes, M.: Managing Engineering Knowledge - MOKA:
Methodology for Knowledge Based Engineering Appli-
cations, Professional Engineering Publishing Limited,
ASME Press, 2001

[21] Tacton, http://www.tacton.com, access date: 2015-04-08.

[22] Transcat-PLM, https://www.transcat-plm.com/, access
date: 2015-01-27.

[23] Van Der Laan, A.H.; Van Tooren, M.].L.: Parametric
modeling of movables for structural analysis, Journal of
Aircraft, 42, 2005, 1606-1614, http://dx.doi.org/10.2514/
1.9764.

http://orcid.org/0000-0001-6379-0562
http://orcid.org/0000-0001-9867-0552
http://orcid.org/0000-0002-4502-4255
http://www.cadec.in
http://dx.doi.org/10.1016/S0965-9978(01)00041-2
http://dx.doi.org/10.1016/S0965-9978(01)00041-2
http://www.3ds.com
https://eclipse.org/
http://dx.doi.org/10.1007/b93672
http://www.firebirdsql.org/
http://dx.doi.org/10.1007/978-3-642-11940-8
http://www.visionkbe.com
http://dx.doi.org/10.1007/s00170-006-0882-y
http://dx.doi.org/10.1007/s00170-006-0882-y
http://dx.doi.org/10.1007/s00170-008-1670-7
http://dx.doi.org/10.1007/s00170-008-1670-7
http://dx.doi.org/10.4028/www.scientific.net/AMM.10-12.127
http://dx.doi.org/10.4028/www.scientific.net/AMM.10-12.127
http://msdn.microsoft.com/de-at/dn308572.aspx
http://msdn.microsoft.com/de-at/dn308572.aspx
http://microsoft.com
http://www.ptc.com
http://dx.doi.org/10.5923/j.ajis.20150501.01
http://www.plm.automation.siemens.com
http://dx.doi.org/10.1080/00207543.2014.919422
http://dx.doi.org/10.1080/00207543.2014.919422
http://dx.doi.org/10.1016/j.engappai.2006.11.019
http://www.tacton.com
https://www.transcat-plm.com/
http://dx.doi.org/10.2514/1.9764
http://dx.doi.org/10.2514/1.9764

	1. Introduction
	2. Knowledge-based design methods
	3. Multi-CAD approach
	3.1. Development process
	3.2. Overview of the Multi-CAD-framework
	3.3. Realization of Multi-CAD-framework

	4. Multi-CAD developer
	4.1. Programming directives
	4.2. Structured programming
	4.3. CAD Automation interfaces

	5. Conclusions
	ORCID
	References

