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Generating a reference model of the surface with a hole for downstream process
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ABSTRACT
The value of 3D CAD models is continuously increasing in downstream processes. The more exten-
siveuseof a3Dmodel outside traditional designandmanufacturing is trendingnow. Todistribute3D
data quickly to downstream departments is significant boosts to product quality, production costs,
and delivery to markets. Unfortunately, interoperability causes poor communication since down-
stream applications rely on the reusability and interoperability of CAD models. However, 3D CAD
data size for expressing precise forms tends to be big and time-consuming for computation, which
may interfere in the communication. In addition, downstreamprocesses emphasize surface smooth-
ness more than precision. Therefore, this paper describes the reconstruction method of a smooth
surface by integrating the advantages of Gregory and B-spline surfaces. In this paper, a new sur-
face representation is proposed. Two surfaces are connectedwithG1-continuity by using the control
points at the common boundary obtained from joining equations. The internal control point that is
not connected to the boundary curve is obtained from the least squares approximationmethod. The
proposed method is applicable to shapes with a hole.
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1. Introduction

3D data designed with 3D CAD systems are becoming
vital communication tools between the design process
and downstream processes. Quickly distributing 3D data
to downstream departments can dramatically enhance
their work efficiency. In the downstream department, 3D
data received from a design department can be effec-
tively utilized as a reference model for the creation of
various process procedures and technical documents,
such as creating visual assembly instructions, creating
product manuals and product catalogs. In such works,
clear visual communication for ease of understanding is
important. However, size of 3D CAD data for express-
ing precise forms tends to be big and takes long time to
compute, therefore it may interfere with communication
among users. In addition, since the internal data struc-
tures and tolerances do not coincide in each system, the
intended shape model for downstream distribution may
not be delivered correctly. If the shape delivery fails in
one system, the shape should be modified through some
method to import suitably within the system. To over-
come the problem, the direct modeling which modifies
the curve mesh is effective. For example, Fig. 1 shows the
gap between two trimmed surfaces which was caused by
the different tolerances. The gap is one of the most seri-
ous interoperability challenges between CAD, CAM and
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CAE systems [2]. In direct modeling, modification of a
trimmed surface [1] has the restriction where boundary
edges must lie on the surface within a certain tolerance.
Thus, it is difficult to maintain geometrical consistency
of the modified boundary edges and surfaces. There-
fore, it is effective to apply a new free-form surface to
a closed region enclosed with modified boundary edges
because the consistency of the trimmed surface can be
maintained. Since downstreamprocesses concern surface
smoothness rather than the precision of the approxi-
mated surface, the smoothness is more important than
the approximation precision. Because, 3D surfacemodels
show the entire 3D image and shape of an object, so the
visual impact ismore important. For instance, Fig. 2 illus-
trates the importance of the visible connections between
surfaces of two same 3D objects. At a first glance, we
can see that which one is more appropriate as a reference
model. In consideration of the discontinuity at connec-
tion parts as marked in red circles in Fig. 2(b), Fig. 2(a) is
more appropriate than Fig. 2(b) as a referencemodel. The
problem of smooth connection will reduce the quality of
the data as a reference model. In conventional surface
fitting method which approximates a surface using sam-
ple points derived from the tangent plane, the continuity
with an adjacent surface will collapse because the surface
was generated individually. In contrast, the surface fitting

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/[0000-0002-4584-0906]
http://orcid.org/[0000-0003-3836-2245]
http://orcid.org/[0000-0001-7476-9291]
http://orcid.org/[0000-0002-1902-0939]
mailto:gulbahar@lk.cis.iwate-u.ac.jp
http://www.cadanda.com


COMPUTER-AIDED DESIGN & APPLICATIONS 531

Figure 1. Modifying a boundary edge in directmodeling for data
healing.

(a) (b)

Figure 2. Example of surface smoothness.

method [5] is proposed by Muraki et al. in considera-
tion ofmaintainingG1-continuity with adjacent surfaces.
In their method, G1- continuity is guaranteed on the
common boundary edges. However, when a surface con-
nects with adjacent surfaces with G1-continuity in two
adjoining directions along the common boundary edges
as shown in 3, the conditions used asG1-continuous can-
not be fulfilled near the corner portions with a B-spline
surface. In Fig. 3(a), the red x marks are indicate the
discontinuous portion near the corner of the common
boundary edges.

The goal of this work is to propose a new surface rep-
resentation to solve the problems of theMuraki’smethod.

In this method shapes can be approximated in good
accuracy as a reference model for downstream processes.
Our method generates a trimmed surface that is G1-
continuous with adjacent surfaces in all directions and
applicable to shapes with a hole.

2. Related work

In the field of CAD, construction of N-side region has
received a lot of attention. Muraki et al. proposed a
reconstruction method of trimmed surfaces for an N-
side region and allowed discontinuous portions near the
corners of the common boundary edges [5]. His method
unites the advantages of the surface interpolationmethod
[4,11] and the N-side filling method [5]. On a com-
mon boundary where two surfaces should be connected
with G1-continuity, an input curve mesh is represented
by cubic Bezier curves and the cross boundary deriva-
tives are calculated based on the basis patch method [7].
Among control points of the B-spline surface, the con-
trol points lying on the inner side of the boundary curves
are calculated by the surface interpolationmethod.More-
over, other internal control points are calculated by the
N-side Filling method. However, by using conventional
B-spline surfaces, the cross-boundary derivative vectors
cannot be specified independently. Concretely, as shown
in Fig. 3(b), the control point ‘A’ indicates the only con-
trol point that involves in calculation of a B-spline surface
cross-boundary derivatives inuand vdirections. There-
fore, when the connection with adjacent surfaces per-
formed successively inuand vdirections, B-spline has no
degree of freedom to individually define the connections
of two surfaces with G1-continuity inuand vdirections.
Moreover, when a surface connects with adjacent sur-
faces in two adjoining directions along common bound-
ary edges as shown in Fig. 3(a), knots are inserted near
the corners (at parameters 0.05 and 0.95) [5] in order to
narrow down the discontinuous sectionwith the adjacent

(a) (b)

Figure 3. Problems of the method of Muraki et al. [5].
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surfaces even if two surfaces have to be connected with
G1-continuity. However, the method of determining the
knot values near the corners are unclear.

In surface reconstruction, how to guarantee a smooth
connection between adjacent B-spline surfaces, is very
important. Mu et al. proposed the construction of B-
spline surfaces by interpolating its boundary curves, or
even the cross-boundary derivatives, and the inner points
were approximated simultaneously [8]. In their method,
a B-spline surface is smoothly connected with adjacent
surfaces, however, it cannot be respond to local modifi-
cation and the applicability to the shapes with a hole was
not discussed in the literature.

In this paper, we mainly focus on the problems of
Muraki et al. and propose a new surface representation
with which the cross-boundary derivatives can be spec-
ified independently in both u and v directions with the
B-spline blending functions.

3. New surface representation

This research integrates the advantages of the B-
spline and Gregory surfaces to define a new surface
representation. To be more concrete, construction of a
new surface representation via the boundary curves and
approximation of the inner control points will be stud-
ied.We express a fitting surfaceS(u, v)using surface con-
trol pointsPi,j,k(i = 0, . . . , n; j = 0, . . . , m; k = 0, 1).
SurfaceS(u, v) is expressed by Eqn. (3.1), whereN3

i (u)
andN3

j (v) are the cubic B-spline basis functions over the
knot spans

U = [
0, 0, 0, 0, u0, . . . , up, 1, 1, 1, 1

]
and

V = [
0, 0, 0, 0, v0, . . . , vq, 1, 1, 1, 1

]
.

S(u, v) =
n∑

i=0

m∑

j=0
N3
i (u)N

3
j (v)Qi,j(u, v) (3.1)

The rational functionsQi,j(u, v)(0 ≤ i ≤ n; 0 ≤ j ≤
m) are defined by the following relationships:

1. If(i, j) = (1, 1), (1, m − 1), (n − 1, 1),
(n − 1,m − 1), then

Q1,1(u, v) = uP110 + vP111
u + v

(0 < u < u0, 0 < v < v0) (3.2)

Q1,m−1(u, v) = uP1(m−1)0 + (1 − v)P1(m−1)1

u + (1 − v)

(0 < u < u0, vq < v < 1) (3.3)

Qn−1,1(u, v) = (1 − u)P(n−1)10 + vP(n−1)11

(1 − u) + v

(up < u < 1, 0 < v < v0) (3.4)

Qn−1,m−1(u, v) =
(1 − u)P(n−1)(m−1)0+
(1 − v)P(n−1)(m−1)1

(1 − u) + (1 − v)

(up < u < 1, vq < v < 1) (3.5)

2. If others, then

Qi,j = Pij0 (3.6)

In our method, a surface is fitted using the Eqn.
(3.1), and the concept of our method is shown in Fig. 4.
Fig. 4(a) shows surface F that has G1-continuous adja-
cent surfaces F1, F2, F3 and F4 in all four directions.
On a common boundary where two surfaces are con-
nected with G1-continuity, each boundary of an input
curve mesh is represented by a cubic Bezier curve. The
concept of our proposed method explains in the case
where knots are inserted at parametersu0 = 0.5 and v0 =
0.5 (p = 0, q = 0) as shown in Fig. 4(b). The yellow con-
trol points are obtained from boundary curves, the red
ones are obtained by the joining equations [3] and the
blue one is obtained by the least squares approximation
method.

(a) (b)

Figure 4. Concept of our proposed method (b) applied to the gray region of (a).
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First, when two surfaces are connected with G1-
continuity, we calculate theG1-continuous control points
at the common boundary by using joining equa-
tions described in section 3.1. Next, a bi-cubic Gre-
gory patch is constructed by the G1-continuous control
points. Since the constructed Gregory patch is insuf-
ficient for representing a trimmed surface, knots are
inserted in both u and v directions for increasing the
degree of freedom. Then, the unknown inner control
points are optimized using least squares approximation
method [9]. Finally, a new surface is constructed using
Eqn. (3.1).

3.1. Joiningwith the adjacent surface

In order for two surfaces S1 and S2, with a com-
mon boundary curve shown in Fig. 5(a) to have a
G1-continuity, the derivative vectors on the boundary
curves should satisfy the condition defined by Eqn.
(3.7) [3], where k(v) and h(v) are scalar functions of
v as shown in Eqn. (3.8) [3]. If the vectors are set to
ai(i = 0, . . . , 3), bi(i = 0, . . . , 3), ci(i = 0, . . . , 2) as
shown in Fig. 5(b). The G1-continuous control points
are calculated by solving Eqn. (3.9) and (3.10) (see
APPENDIX for the derivation), where k0, k1 are posi-
tive real numbers and h0, h1 are arbitrary real numbers.
To be more concrete, the cross boundary derivatives of
the two surfaces are calculated by the joining equations
[3], and control points which G1-continuous with adja-
cent surfaces are obtained. The obtained cross bound-
ary derivatives serve as a condition for connecting two
surfaces with G1-continuity.

∂S2(0, v)

∂u
= k(v)

∂S1(1, v)

∂u
+ h(v)

∂S1(1, v)

∂v
(3.7)

k(v) = k0(1 − v) + k1v,

(a) (b)

Figure 5. (a) G1-continuity condition and (b) connection of two
surfaces using the joining equations [3].

h(v) = h0(1 − v) + h1v. (3.8)

a30 = a0 + b0
|a0 + b0| , a

3
3 = a3 + b3

|a3 + b3| ,

a31 = 2a30 + a33
3

, a32 = a30 + 2a33
3

,

b0 = k0a0 + h0c0 , (3.9)

b3 = k1a3 + h1c2, b1 = (k1 − k0)a30
3

+ k0a31

+ 2h0c1
3

+ h1c0
3

, b2 = k1a32

− (k1 − k0)a33
3

+ h0c2
3

+ 2h1c1
3

. (3.10)

4. Approximation

In this paper, the boundary information and sample
points on the boundary edges which represent a hole
are used to approximate the inner control point by the
least squares approximation method. A new surface is
constructed using the Eqn. (3.1).

4.1. Approximation process

In Fig. 6, our approximation process of the inner con-
trol point is shown. As our concept of proposed method
explains, knots are inserted at parameters u0 = 0.5 and
v0 = 0.5 (p = 0, q = 0). The process is executed in the
following steps:

(1) TheG1-continuous control points are obtained from
joining equations and bi-cubic Gregory patch is
constructed. The vectors between control vertices
bi, b̃i(i = 0, . . . , 3) are calculated for u direction.
The vectors dj, d̃j(j = 0, . . . , 3) are calculated for v

direction.
(2) Knots are inserted in both u and v directions. After

knot insertion, vectors ri = u0bi, (i = 0, . . . , 4)
are calculated and vectors r̃i, vj, ṽj are calculated
in the same manner. Moreover, control points are
obtained from scaled vectors ri, r̃i and vi, ṽj as
shown in Fig. 6.

(3) The points on the boundary edges which represent
a hole are calculated as sample points and the center
point of the hole is also added to the sample points.
It is better to add center point to the sample points
because it will improve the approximation accu-
racy around the hole. In our method, each bound-
ary edge which represent a hole is equally divided
into 10 sections and the number of sample points
t = the number of boundary edges which represent a
hole × 10 + 1 are assumed to be As(0 ≤ s ≤ t). The
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Figure 6. Inner control point approximation process.

parameters of As are assumed to be ūs and ῡs, and
they are calculated by projectingAs onto theGregory
patch constructed in step 1.

(4) From the control points generated in step 2 and
the sample points generated in step 3, the unknown
inner control point is approximated by using
Eqn. (4.1).

(5) A new surface is constructed by the control points
which were obtained in step 2 and the approxi-
mated inner control point which was obtained in

step 4.

f =
t−1∑

s=0
|As − S(ūs, v̄s)|2 (4.1)

4.2. Evaluation of generated surface

This section describes the evaluation method of the gen-
erated new surface. To verify the accuracy of the gener-
ated surface, the distance between the generated surface

(a)

(d) (e) (f) (g)

(b) (c)

Figure 7. Control points of generated surfaces (a) to (g).
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and the source surface retained by the trimmed surface
is measured. The source surface was divided equally in
both u and v directions into twenty sections so that a
square grid was generated. The generated grid points on
the source surface are projected to the generated surface
and the distance between the source surface and gen-
erated surface is measured. Moreover, to find a relative
error, the ratio of the bounding box size and the maxi-
mumdistance are calculated [5]. In this paper, when ratio
is smaller than 1% [5,10], it is assumed that a shape is
approximated in good accuracy as a reference model for
downstream processes.

5. Experimental results

Ourmethod is applied to the shapes with a hole obtained
from CAD data as shown in Fig. 6(a) to (g) and the prac-
ticality was verified. The generated surfaces were evalu-
ated with the evaluationmethod described in section 4.2.
Fig. 7(a) shows the control points of generated surface
F that has G1-continuous adjacent surfaces F1 and F2 in

Table 1. Error evaluation.

Object Evaluation object Avg. Max Ratio

(a) Trimmed surface 0.582885 1.865794 0.388339%
(b) Trimmed surface 0.005640 0.024776 0.049194%
(c) Trimmed surface 0.352679 1.139214 0.253059%
(d) Trimmed surface 0.012622 0.068239 0.460547%
(e) Trimmed surface 1.205581 4.220689 0.817447%
(f) Trimmed surface 0.002428 0.011756 0.092034%
(g) Trimmed surface 0.225614 0.895673 0.182698%

two directions. Fig. 7(b) to (e) shows the control points of
generated surface F that hasG1-continuous adjacent sur-
faces F1, F2 and F3 in three directions. Fig. 7(f) and (g)
shows the control points of generated surface F that has
G1-continuous adjacent surfaces F1, F2, F3 and F4 in all
directions. The red dots indicate the control points gener-
ated in step 2 and the blue ones indicate the approximated
control point in step 4, described in section 4.1.

The error evaluation of the generated surface is shown
in Tab. 1, Avg. indicates the average error margin value
obtained by averaging the distances between the gener-
ated surface and the source one.Max indicates the max-
imum error margin value representing the maximum
distance between the generated surface and the source
one. Ratio indicates the ratio of the bounding box size
and the maximum distance. The ratio of all objects (a) to
(g) are less than 1% as shown in Tab. 1, and we can find
that shapes are approximated in good accuracy as refer-
ence models for downstream processes. As described as
the step. 3 in the section 4.1, it is better to add the cen-
ter point to the sample points because it will improve the
approximation accuracy around the hole. Tab. 2 shows
the difference of error margins around the hole, obtained
by adding the center point to the sample points. We can
find that the approximation accuracy improved both on
the average and maximum error margin values around
the hole area by adding center point to the sample points.
Additionally, the discrete evaluation result of a surface
overall shape was visualized by generating a color map
within a range of the distances between the generated

Table 2. Difference of error margins around the holes obtained by adding the center point to the sample points.

With center point(Y) Without center point(N) Difference(Y-N)

Data Avg. Max Avg. Max Avg. Max

(a) 0.969301 1.578882 0.967025 1.589873 0.002276 −0.010991
(b) 0.026929 0.029018 0.063070 0.066205 −0.036141 −0.037187
(c) 0.284248 0.601748 0.303415 0.741213 −0.019167 −0.139465
(d) 0.009415 0.017530 0.009912 0.022806 −0.000497 −0.005276
(e) 0.706996 1.228102 0.750653 1.287324 −0.043657 −0.059222
(f ) 0.010209 0.012188 0.011112 0.013014 −0.000903 −0.000826
(g) 0.243074 0.543374 0.248200 0.557874 −0.005126 −0.014500

(a) (b) (c)

Figure 8. Result of surface evaluation: distances between the generated surface and the source one are calculated. (a), (b) and (c) are
the error margins of objects (a), (c) and (g) in Fig. 7 respectively.
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(a)

(d) (e) (f) (g)

(b) (c)

Figure 9. Verification of the continuity with adjacent surfaces: the normal vectors of the generated surfaces coincide with those of the
adjacent surfaces on their boundary edges.

surface and the source surface as shown in Fig. 8(a) to (c).
The red indicates the minimum error margins and the
blue indicates themaximum errormargins on the surface
in Fig. 8.

Furthermore, in order to verify the continuity with
adjacent surfaces, the normal vectors on the boundary
edges of the generated surface are calculated, shown with
blue lines in Fig. 9, and those of the adjacent surfaces are
shown with red lines. As shown in Fig. 9 (a) to (g), the
normal vectors of the generated surfaces coincide with
those of the adjacent surfaces on their boundary edges,
and we can find that two surfaces are connected with
G1-continuity.

6. Conclusion and future works

6.1. Conclusion

In this paper, we have proposed the method of gen-
erating a smooth surface with a hole that connects to
adjacent surfaces with G1-continuity by applying our
new surface representation to a closed region. The pro-
posed method integrates the advantages of the Gregory
and B-spline surfaces. Concretely, the inner control
points are obtained based on least squares approxi-
mation method, and the G1-continuous control points
on the boundary are obtained from the joining equa-
tions. Moreover, our method is independent of the posi-
tion and the hole shape. Our method is also applica-
ble to a region surrounded by surfaces in all directions

connecting with G1-continuity. Since our method gen-
erates a surface from boundary edge information, it
is applicable to various applications. For instance, by
including our method in the trimmed surface compres-
sion method [6,10] that the authors proposed, a smooth
surfacewith good quality can be generated. It is also effec-
tive for direct modeling where shapes with a hole are
modified.

6.2. Future works

In our method, by integrating the Gregory and B-spline
surfaces, a smooth surface is generated in good accuracy
for a downstream process as a reference model. There-
fore, it is necessary to implement the new surface repre-
sentation. In this paper, on a common boundary where
two surfaces are connected with G1-continuity, an input
curve mesh is represented by cubic Bezier curves and
the G1-continuous control points on the boundary are
obtained from the joining equations. Therefore, it is nec-
essary to extend our method so that it can be applied
to shapes with complex composite boundary curves or
B-spline curves with multiple segments.
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Appendix

In order for two surfaces S1 and S2, shown in Fig. 5(a) with a
common boundary curve to have a G1-continuity, the deriva-
tive vectors on the boundary curves should satisfy the condition
defined by Eqn. (3.7). When υ = 0 and υ = 1 are assigned to
Eqn. (3.7), and Eqn. (A.1) is obtained.

b0=k0a0+h0c0, b3=k1a3+h1c2 (A.1)

Let a30 be the vector between control points of Bezier bound-
ary curve a0 and b0, a33 be the vector between control points of
Bezier boundary curve a3 and b3. Vectors a31, a

3
2 are obtained

by Eqn. (A.2).

a30 = a0 + b0
|a0 + b0| , a31 = 2a30 + a33

3
, a32 = a30 + 2a33

3
,

a33 = a3 + b3
|a3 + b3| . (A.2)

Here, to satisfy Eqn. (A.1), the scalar functions k(v)

and h(v)about υ are assumed to be linear functions. From
Eqn. (3.7) and (3.8), the Eqn. (A.3) is obtained using the vec-
tors between the control points of the surface (See Fig. 5(b)).
Where, B3i (v) is Bernstein base polynomial [1].

3∑

i=0
B3i (v)bi = {k0(1 − v) + k1v}

2∑

i=0
B2i (v)a2i

+ {(1 − v)h0 + vh1}
2∑

i=0
B2i (v) ci (A.3)

Since the left side of the Eqn. (A.3) is cubic, the degree
of polynomial a2i is limited to quadratic. Therefore, when
we assume a2i using Eqn. (A.3), a2i is calculated using
Eqn. (A.4).

a20 = a30, a21 = 3a31 − a30
2

= 3a32 − a33
2

, a22 = a33. (A.4)

The control vectors b1 and b2 can be derived from
Eqn. (3.7), (3.8) and (A.3).

b1 = (k1 − k0)a30
3

+ k0a31 + 2h0c1
3

+ h1c0
3

,

b2 = k1a32 − (k1 − k0)a33
3

+ h0c2
3

+ 2h1c1
3

. (A.5)
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