
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 4, 549–557
http://dx.doi.org/10.1080/16864360.2015.1131551

Design Criteria Modeling - Use of Ontology-Based Algorithmic Modeling to
Represent Architectural Design Criteria at the Conceptual Design Stage

Chieh-Jen Lin

Tainan University of Technology, Taiwan

ABSTRACT
This paper proposes an ontology-based parametricmodeling tool termed “Design CriteriaModeling
(DCM),” which applies a graphic predicate tool and semantic ontologies of architectural topology.
DCM aims to help architects in representing, exploring, and validating design criteria by means of
parametric 3Dmodel at the early design stage. By applying a semantic ontology reasoner, DCM can
help architects to determine whether conceptual models meet the semantic ontology of proposed
design criteria.

KEYWORDS
Algorithmic modeling;
architectural design criteria;
semantic ontology;
parametric design

1. Introduction

Due to continuous reductions in the cost of computer
graphics and processing power, 3D modeling software
has become an essential tool for architectural design
education and practice. There are at least three types
of 3D modeling tools for different architectural design
applications: (1) Building Information Modeling (BIM),
(2) rapid 3D modeling, and (3) algorithmic modeling.

Thanks to its use of 3D visualization and database
technology, BIM has gradually replaced the 2D draw-
ings of CAD as a means of solving information inte-
gration problems among different disciplines within the
Architecture-Engineering-Construction (AEC) indus-
try. Based on the Industry Foundation Class (IFC)
standard[5], BIM enables sharing of semantic informa-
tion concerning 3D building components, and thereby
facilitates communication among different AEC disci-
plines. However, the cognitive and learning overload
caused by the complexity of BIM applications is still
a major obstacle in architectural design. Based on the
Levels Of Development (LOD) protocol[4], lower LOD
objects, such as massing objects in Autodesk Revit, can
reduce the burden of modeling works at the early and
conceptual stages by minimizing details. However, since
BIM focuses on representing a building product, rather
than the design processes, architectural design criteria for
generating or validating a building model are usually not
easily represented and delivered.

CONTACT Chieh-Jen Lin t60011@mail.tut.edu.tw

For early and conceptual design, a growing number of
architects employ rapidmodeling tools, such as SketchUp
and Rhino, when freely exploring geometric possibili-
ties, rather than BIM applications that are more useful
for detailed modeling of building components. However,
rapid 3D models lack semantic information concerning
the fundamental components of a building, and thus also
make it difficult to determinewhethermodels satisfy pro-
posed design criteria. Some tools can solve some building
performance issues. For example, Autodesk Vasari can
evaluate sunshine and shadowing of massing models for
energy saving in sustainable designs, but other design cri-
teria require different validating algorithms that must be
proposed by users.

Since algorithmic modeling tools such as Grasshop-
per emerged, generating complex forms through the use
of algorithms has become much easier than before. The
visual programming interfaces of algorithmic model-
ing tools are easier to learn than textual programming
tools, and allow architects to freely explore creative ideas
with the help of immediate, visual feedback. Algorithm-
based generativemodeling has therefore become popular
among architects as a means of composing algorithms
for generating complex building forms when engaging in
geometric creativity during early design stages. On the
other hand, proposing algorithms for representing and
validating design criteria has become much easier than
before. For example, a study has proposed a algorithmic

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/0000-0001-9981-5864
mailto:t60011@mail.tut.edu.tw
http://www.cadanda.com


550 C.-J. LIN

method for finding heuristic solutions for sustainable
building designs at the early decision stage[6]. However,
except in the case of constructability issues involving
complex geometric forms, and abstruse issues for where
design criteria can be communicated by generative algo-
rithms, how to compose algorithms in order to meet
the requirements of design criteria is still more a test of
programming skills than of pure design creativity.

To help architects in representing, exploring, and
validating design criteria by means of parametric 3D
modeling at an early stage, this paper proposes an
ontology-based algorithmic modeling tool termed
“Design Criteria Modeling (DCM),” which applies the
results of previous projects, including visual ontologies of
architectural design[13] and a predicate tool for architec-
tural topology[14] based on OWL of Protégé. The goal of
DCM is to integrate architectural design knowledge with
algorithm-based parametric design tools for represent-
ing, validating, and communicating architectural criteria
within algorithmic modeling.

2. The approach of design criteria modeling

In the early and conceptual design stages, architectural
design does not consist only of representing and vali-
dating known design criteria, but also of learning and
developing new criteria. However, not all conceptual
design criteria are visible and obvious in 3D models. For
examples, minimal space requirements[3], visual field
and privacy issues of openings, circulation of indoor
and outdoor spaces, and other design issues proposed
by architects are different from issues of concern in the
engineering and construction disciplines. Traditionally,
architects employ other visual media, which usually con-
sist of a series of diagrams, to represent their beliefs
and intentions. Since those visual media are separate
from 2D drawings and 3D models, their information
cannot be easily converted into BIM or other model-
ing applications for validation. However, with the emer-
gence of algorithm-based generative modeling tools such
as Grasshopper, graphic programming interfaces have
become a promising means of representing geometric
criteria concerning building forms.

Nevertheless, the absence of appropriate annotations
sometimes leads to communication difficulties when
working with graphic compositions of algorithms, espe-
cially when abstract criteria other than geometric fea-
tures are encountered. Since design information in BIM
consists of three types of design information, which
are semantic, topological, and geometric[7], architectural
design can be regarded as the conversion and process-
ing of these three types of design information. This paper
therefore proposes a “geometric-topological-geometric”

conversion framework for modeling conceptual design
criteria at an early stage of the design process.

2.1. Modeling the semantic ontology of design
criteria

Architectural conceptual design always begins with the
elaboration of the building plan, site, and other design
contexts, which usually consist of textual descriptions
of various requirements. The primary design criteria
are consequently the semantic elaborations of design
objects and their objectives. In BIM, semantic infor-
mation concerning building components is default and
self-evident. However, the semantic criteria proposed by
architectsmay not only represent a consensus concerning
the design context, but also the epistemology for how to
interpret the design context, and require further valida-
tion in order to avoid contradictions. Semantic ontology
techniques were therefore incorporated in DCM in order
to deal with semantic criteria.

Semantic ontology is a knowledge representation tech-
nique used in artificial intelligence to develop semantic
webs[1], which can enable search engines to understand
users’ intentions. Protégé is a popular tool for developing
semantic ontologies of domain knowledge[15], and logic
reasoners based on semantic web rule language (SWRL),
such as FaCT and HermiT built in Protégé, can help
knowledge engineers validate and infer implicit knowl-
edge within an ontology. DCM therefore applies a SWRL
reasoner as a tool for validating proposed criteria. How-
ever, since architectural design must consider various
criteria based on heterogeneous information, develop-
ing a complete ontology for architectural design needs
extremely complicated and laborious works. A modu-
lar approach therefore was proposed to allows a flex-
ible integration of the various design information[11].
DCM project also did not attempt to develop a complete
ontology of architectural knowledge, but rather provide
a rapid mechanism for representing and validating par-
tial ontology of proposed design criteria as a ontological
module. For example, assuming that a set of semantic
ontology rules is declared a basic feature of a “Good Out-
door Space” of a building as follows: (1) an “Outdoor
Space” having a “Good Landscape Element” implies a
“Good Landscape” property (Eqn. 1), and (2) an “Out-
door Space” having a “Good Landscape” property implies
a “Good Outdoor Space.” (Eqn. 2) A semantic logic
reasoner can deduce a new assertion that an “Outdoor
Space” with “Good Landscape Element” implies a “Good
Outdoor Space” (Eqn. 3) based on these two assertions.

OutdoorSpace(?x) ∧ LandscapeElement(?y)

∧ hasQuality(?y, “Good′′)



COMPUTER-AIDED DESIGN & APPLICATIONS 551

∧ hasLandscapeElement(?x, ?y)

→ hasLandscapeQuality(?x, “Good′′) (1)

OutdoorSpace(?x) ∧ hasLandscapeQuality(?x, “Good′′)

→ hasQuality(?x, “Good′′) (2)

OutdoorSpace(?x) ∧ LandscapeElement(?y)

∧ hasQuality(?y, “Good′′)∧
hasLandscapeElement(?x, ?y)

→ hasQuality(?x, “Good′′) (3)

Although the semantic logic reasoner cannot auto-
matically deduce solutions that will satisfy the proposed
design criteria, it can detect contradictions, and can help
architects maintain the consistency of design criteria. For
example, the third rule (Eqn. 3) can remind architect
to add some good landscape elements to enhance the
quality of an outdoor space, such as a courtyard or a fore-
court. Therefore, by designating landscape elements of
an outdoor space, such as planting, sculptures, ponds, or
gardens as a subclasses or an instances of “Good Land-
scape Element,” a logic reasoner can determine whether
an outdoor space is good or not based on those elements.

2.2. Modeling topological relations of design
criteria

Topologies are both the mathematical connections of
components in BIM and the fundamental definitions
of parametric modeling[7]. However, the topologies of
BIM applications are usually prior knowledge, which is
embedded in the parameters ofmodels for the purpose of
fabrication and construction, and cannot be freely rede-
fined or manipulated by architects. Topological relations
nevertheless usually also constitute critical information
used in validating whether a model satisfies the seman-
tic ontology of proposed design criteria. For example, the
landscape elements of an outdoor space imply the ele-
ments are within sight. In other words, those landscape
elements should be within, adjacent to, nearby, or far
away from a site, but not visually obstructed from the site
(Eqn. 4).

OutdoorSpace(?x) ∧ LandscapeElement(?y)

∧ ((isEnclosing(?x, ?y) ∨ isAdjacent(?x, ?y)

∨ isNearby(?x, ?y) ∨ noObstructBetween(?x, ?y))

→ hasLandscapeElement(?x, ?y) (4)

The topological criteria of design elements contain
the mathematical relations of those elements’ geometric
features, concerning their coordination and shape. How-
ever, not all topological criteria of design elements or

objects are visible or obvious. For example, the purpose
of arranging landscape elements is usually not only to
ensure the quality of an outdoor space, but also to provide
visual elements for adjacent indoor spaces. Therefore,
an invisible topological criterion between landscape ele-
ments and indoor spaces is the vision of “Window.” This
rule can be declared as: if “Window” of “Indoor Space”
has the “FaceTo” property with a “Good Landscape Ele-
ment,” this implies that the “Indoor Space” has the “Good
Vision” property (Eqn. 5).

IndoorSpace(?s) ∧ Window(?w)

∧ hasWindow(?s, ?w) ∧ OutdoorSpace(?x)

∧ LandscapeElement(?y) ∧ hasQuality(?y, “Good′′)

∧ isAdjacent(?s, ?x) ∧ FaceTo(?w, ?y)

→ hasVisionQuality(?s, “Good′′) (5)

Since the “FactTo” property of “Window” usually is
invisible or non-obvious in either 2D drawings or 3D
models, architects usually employ sketches or diagrams
to visualize this kind of topological criterion. However, it
is easy to compose an algorithm in Grasshopper to detect
this kind of topology. For example, an algorithm can
be developed to calculate the angle between the wall of
“Window” and the central connecting line of “Window”
and “Landscape Element” before the size of window is
determined (Fig. 1.a), or to calculate whether the “Land-
scape Element” is within the vision cone of “Window”
from the center of the “Indoor Space” after the size of
“Window” is determined (Fig. 1.b).

However, the complexity of detecting simple topolo-
gies, such as separated, adjacent, overlapping, and enclos-
ing, will increase linearly with the number of relevant
elements, let alone the case of other complex topolo-
gies involving multiple objects, such as surrounding,
centralizing, clustering, and branching[10]. Before algo-
rithmic modeling tools such as Grasshopper appeared,
how to program topological relation detection algo-
rithms was usually more of a challenge of program-
ming skills than design skills for architects. By employing
algorithmic components in Grasshopper, simple topolo-
gies between two geometries are more easily detected
than before. However, as composing algorithms within
Grasshopper is usually too complex to be easily recog-
nized by most architects, composing complex or mul-
tiple algorithms within a single topological class is
usually more convenient for most users. For exam-
ple, to packaging “isEnclosing,” “isAdjacent,” “isNearby,”
and “noObstructBetween” algorithms into a “hasLand-
scapeElement” class can simplify the representation of
topological criteria for the “Outdoor Space” class. How-
ever, complex topologies concerning multiple objects,



552 C.-J. LIN

(a) (b)

Figure 1. Two Algorithms for detecting “FaceTo” topology of “Window” with “Landscape Element.”

which are easily recognized by humans or generated by
algorithms, sometimes cannot be efficiently detected or
validated using easily-developed algorithms. As a pro-
totype tool, DCM first focuses on providing conver-
sion algorithms for associating simple topologies, which
only concern two objects, with semantic relations in the
ontologies of design criteria.

2.3. Modeling geometric features of design criteria

Geometric features are the primary parameters of BIM’s
components, and modeling the detailed geometric fea-
tures of building components is therefore one of the
major tasks performed by BIM applications. In the early
design stage, however, design objects usually contain only
abstract semantic information, such as building massing,
zones, spaces, and other attributes assigned by archi-
tects, and their geometric features are usually simpli-
fied in order to speed up validation of the topological
relations among objects. By applying Grasshopper as an
algorithmic modeling tool, DCM is therefore able to use
the geometric functions of Rhino for generating geo-
metric features of design objects. However, unlike BIM,
the geometric objects of Rhino have no primary seman-
tic information concerning building components, and all
generated objects of Grasshopper therefore need to have
necessary attached semantic information for retrieving
and validating relevant design criteria. Through the help
of semantic reasoning, DCM can help users to easily
attach semantic information concerning design criteria
to generated objects in Grasshopper, which will then
trigger semantic reasoning to validate whether relevant
design criteria are satisfied or not.

Since generative modeling tools like Grasshopper can
input geometric objects in Rhino as parameters for gen-
erating 2D shapes or 3D models, DCM therefore also
takes geometric features constituting conceptual design
objects, such as 2D curves and regions, and 3D massing,
as input parameters, and then generates validation results
by means of algorithms. For example, the plan shape of

a building within a site can be generated from simple
design criteria as follows: the “Buildable Area” is equal
to the “Shape” of the “Building Site” minus the “Shape”
of “Unbuildable Area.” (Eqn. 6)

Site(?x) ∧ hasShape(?x, ?g)

∧ UnbuildableArea(?y) ∧ hasShape(?y, ?q)

→ hasBuildableAreaShape(?x, minus(?g, ?q)) (6)

By indicating the subclasses of “Unbuildable Area,”
such as “Retreat of Building Codes,” “Sidewalk,” “Exist-
ing Building,” “Good Landscape Element,” et al., and
then applying the “Region Difference” algorithm,
Grasshopper can therefore easily generate the shape of
a possible “Buildable Area” by indicating the “Curves”
of the given “Site,” and the “Unbuildable Area” within
the “Site.” However, unlike generative modeling, which
is often used to generate complex and sophisticated 3D
models, DCM first attempts to model invisible or non-
obvious design criteria, such as minimum space require-
ments, view fields of openings, and geometric constraints
of the building codes on design objects, rather than auto-
matically generating optimal or possible solutions. In the
“Buildable Area” example mentioned above, the visual-
ization of “Unbuildable Area” and the implementation of
“minus” topology is more important than the generated
shape of “Buildable Area” when communicating design
criteria with others.

2.4. Summary

Based on the foregoing “geometric-topological-geometric”
information conversion framework, DCM consequently
divides conceptual design tasks into three modeling
steps: (1) semantic ontologies of design objects or objec-
tives, (2) topological relations among those objects, and
(3) geometric features for visually validating ontologies
by means of their topologies. DCM not only aims to pro-
vide a tool for incorporating design criteria, especially



COMPUTER-AIDED DESIGN & APPLICATIONS 553

those criteria that are invisible or non-obvious in 3Dvisu-
alizations of parametric models, but also provides guid-
ance for architects when they wish to explicitly represent
their design beliefs and intentions.

3. Implementation and initial evaluation of
DCM

3.1. Prototype implementation of DCM

One of initial motivations for developing DCM was
to improve the knowledge representation abilities of
Grasshopper in architectural design, and the initial pro-
totype of DCMwas developed within Grasshopper. Since
Grasshopper is a DotNET plugin for Rhino, VisualBasic
or C# should be the first choice of programming lan-
guage for developing plugins for Grasshopper. However,
the integration of semantic ontology techniques is the
biggest difference between DCM and other Grasshopper
plugins. Since Protégé was developed in Java, most ontol-
ogy tools are also available only in Java. Fortunately, the
new Rhino 5 also supports the Python script language,
and some Python libraries, the such as RDFLib[16]
and FuXi[8], and can support the manipulation func-
tions of RDF/OWL and logical reasoning of SWRL, and
Jython[12] can support Python script in a Java virtual
machine (JVM). The GhPython[9] plugin, which can
provide a hook for Python scripts for Grasshopper, was
therefore an ideal tool for implementing DCM.

3.2. Initial testing and evaluation

The DCM prototype was tested by students, who were
asked to rapidly design an “Architect’s Office as a Good
Neighbor,” which was a topic on Taiwan’s architect qual-
ification examination in 2014. The urban context of the
site includes middle-rise housing to the east, several low-
rise houses to the west, a community park to the south,
and a primary school to the north. In addition, the site
also contains two old trees and an old two-story dormi-
tory for public servants, and the trees and old dormitory
must be retained and reused (Fig. 2).

The design of this project involves determining how
the context and content of the site will affect the massing
of the office building, and how to arrange outdoor and
indoor spaces in the office building so as to be a good
neighbor to the community. The context and content of
the site not only constrain, but also suggest feasible lay-
outs for the building massing and interior spaces. While
these cluesmaynot be obvious, andmay even be invisible,
learning how to recognize and express the influence of the
design context is the major purpose of this kind of exer-
cise. Traditionally, students must first try to develop and

Figure 2. The site context for the rapid design of an “Architect’s
Office as a Good Neighbor.”

express design criteria by means sketches, such as in the
case of entrances and access for different types of users
(Fig. 3.a), and possible zones of neighborhood activities
(Fig. 3.b).

After quick studies in the form of hand-drawing
sketches, the studentswere asked to developmore explicit
expressions of their design criteria for conversion to
semantic ontology. However, the initial semantic cri-
teria, such as the building codes, traffic, and climate
response, recognized by most of the students, usually
could not directly shape or generate the building forms
without topological or geometric criteria. Experienced
students therefore acquired more clues from the site’s
context, which consisted of further parameters that could
be input into criteria for generating the building forms.
For example, students realized that the two old trees con-
stituted favorable conditions for shaping outdoor spaces,
and could provide scenery and ventilation for indoor
spaces. The students were thus able to develop “Good
Landscape Element” criteria (Eqn. 1 to 4), and a “Good
Vision” of “Indoor Space” criterion (Eqn. 5). Since the
building plan required retention and reuse of the old dor-
mitory, “Unbuildable Area” criteria (Eqn. 6) therefore
were developed. However, after reviewing all proposed
criteria, the students found there was no criterion for
“Neighborhood Friendly,” and therefore had to develop



554 C.-J. LIN

Figure 3. Development of design criteria by means of sketches for an “Architect’s Office as a Good Neighbor”: (a) Entrances and means
of access (b) Neighborhood activities and possible locations.

more topological criteria, such as the rule that “Good
Open Space” must be adjacent to “Public Access,” and
“Public Space,” such as a “Community Park.” (Eqn. 7)

OutdooSpace(?x)

∧ hasLandscapeQuality(?x, “Good′′)

∧ PublicAccess(?a) ∧ PublicSpace(?p)

∧ (isAdjacent(?x, ?a) ∨ isAdjacent(?x, ?p))

→ OpenSpace(?x) ∧ hasQuality(?x, “Good′′) (7)

This criterion can explain why experienced students
chose to place the office building on the southeast side,
where the open space around two old trees can be eas-
ily accessed by people in order to facilitate neighborhood
activities. However, the geometric criteria for generat-
ing the open space shape or the building form were still
not adequate. More geometric criteria therefore had to
be developed, such as that the “Minimum Active Space”
around a “Tree” must be larger than 3 meters (Eqn. 8),
and the “Minimum Retreat Space” of the new building
away from an “Existing Building” must be larger than 2
meters (Eqn. 9).

OpenSpace(?x) ∧ hasShape(?x, ?s) ∧ Tree(?t)

∧ hasShape(?t, ?v) ∧ isEnclosing(?s, ?v)

∧ isLargerThan(minus(?s, ?v), 3)

→ hasActiveSpace(?t, “Enough′′) (8)

NewBuilding(?b) ∧ hasShape(?b, ?s)

∧ ExistingBuilding(?e) ∧ hasShape(?e, ?r)

∧ isSeparated(?b, ?r) ∧ isLargerThan(Distance

(?s, ?r), 2) → hasRetreatSpace(?b“Enough′′) (9)

These two criteria can further constrain the open
space and buildable area, enabling feasible shapes of
the new building plan to be found. However, since the
algorithm for detecting minimum space around trees
was not so easy for students to implement in Grasshop-
per, alternatives in the form of “offsetting” the shape of
trees (Eqn. 10), and use of the “Existing Building” shape
(Eqn. 11) to ensure “Minimum Space,” were proposed as
follow:

OpenSpace(?x) ∧ hasShape(?x, ?s) ∧ Tree(?t)

∧ hasShape(?t, ?v) ∧ isEnclosing(?s, ?v)

∧ isEnclosing(?s, offset(?v, 3))

→ hasActiveSpace(?t, “Enough′′) (10)

Site(?x) ∧ hasShape(?x, ?g) ∧ UnbuildableArea(?y)

∧ hasShape(?y, ?q)ExistingBuilding(?e)

∧ hasShape(?e, ?r) → hasBuildableAreaShape

(?x, minus(?g, ?q, offset(?r, 2)) (11)

These two criteria were easier for student to imple-
ment in Grasshopper by applying the 2D/3D-offset
algorithm to the geometric shape of trees and existing
building. A demonstration is shown as follows of mod-
eling the design criterion of “Minimum Active Space”
of two trees, and thus shaping the preliminary building



COMPUTER-AIDED DESIGN & APPLICATIONS 555

Figure 4. Primary test modeling of design criteria for the site context of “Architect’s Office as a Good Neighbor.”

massing in Grasshopper based on the “open space” crite-
ria and “buildable area” criteriamentioned above (Fig. 4).

However, it is inevitable that conflicts will occur
among different design criteria. For example, since a
“Landscape Element” such as the trees located on thewest
side of the buildable area, a conflict occurs when applying
the “FaceTo” criterion of “Window”with “Landscape Ele-
ment,” and the “NotFaceToWest” criterion of “Window”
for avoiding the strong sunshine from the west. This was
originally a deliberate element of the exam, and intended
to challenge students. There are two tactics for solving
the conflicting criteria: (1) first rank the importance of
the design criteria, then apply design criteria in the order
of importance; and (2) search for more criteria which
can meet all requirements of the conflicting criteria. The
second tactic usually is more satisfactory than the first.

Experienced students recognized the climate conse-
quences of their choices, and therefore took appropriate
countermeasures, such as deep balconies, vertical shad-
ings, double walls, plantings, and water pools. This kind
of tactic is to declare more criteria for the “FaceToW-
est” criteria of “Window” in order to solve the con-
flicts. However, some creative students argued that the
vertical shadings usually obstructed the scenery of the
landscape elements, and therefore proposed that the old
trees could serve as natural vertical shadings to meet
this condition. In this case, asking students to model
their proposed design criteria not only required novice
students to explicitly recognize design problems, and

then solve the given problems, but also encouraged cre-
ative students to challenge conflicts by proposing appro-
priate criteria. Through the guidance of DCM, nearby
houses, the dormitory building, the old trees, and other
contextual objects could become the primary parameters
of algorithms for modeling design criteria.

4. Discussion

In order to enhance the utility of generative modeling
tools such as Grasshopper in representing and validat-
ing design criteria during early architectural stages, this
paper proposed a “geometric-topological-geometric”
conversion framework for modeling design criteria via
2D/3D visualization. This information-driven approach
is discussed as follows.

4.1. Semantic ontology of design criteria

Primary design criteria are usually described using tex-
tual information in order to establish reasoning logic
concerning how to validate whether a given proposal
is satisfied or not. In contrast, while the algorithms in
Grasshopper can directly generate geometric results, the
logic within the semantic ontologies of design criteria can
usually only judgewhether a proposal satisfies certain cri-
teria. In the previous architectural exercise, for example,
if the two old trees are taken as a “necessary condition”
in the ontology, then DCM will declare that the deletion



556 C.-J. LIN

or relocation of the trees is inconsistent with this crite-
rion. The missing associations between semantic criteria
and a proposed design often become a cause of disagree-
ment in both design education and practice. DCM can
promote better communication among stakeholders in
a project, as in the case of students playing architects
and design teachers playing clients and consultants at an
architectural school.

By employing a semantic reasoner of SWRL, a seman-
tic ontology of design criteria can be validated in advance,
avoiding basic inconsistencies. However, DCM does not
implement the full functions of ontology techniques such
as those in Protégé, but applies Protégé as an external
editor and validating mechanism by exchanging XML
files of semantic ontology between DCM and Protégé.
The XML file of semantic ontology therefore can be used
to share design criteria among different projects. How-
ever, since the ontologies of conceptual design are usually
partial and incomplete, inconsistencies and contradic-
tions among design criteria are common and inevitable
in early architectural design. In the previous architec-
tural exercise, for example, the requirement of western
sun shading in response to climate issues, the utiliza-
tion of the old trees for their scenic effect, and the
use of space for neighborhood events reflects contradic-
tions concerning openings in the building massing on
the western side. But while dilemmas involving design
criteria may cause trouble for AI knowledge engineers,
they may also serve as drivers of architectural creativ-
ity. When encountering such dilemmas, students can
not only try to modify criteria to avoid contradictions,
but can also challenge dilemmas by proposing more
criteria.

4.2. Topological relationships of design criteria

Converting semantic design criteria into generative algo-
rithms of geometric features is often the first difficulty
facing novices applying generative modeling tools to
design criteria at an early design stage. Topological rela-
tionships among design objects therefore provide clues
for the selection of input parameters and composition
of algorithms. Using the basic definitions of topological
relationships, including “separated,” “connective,” “adja-
cent,” and “enclosing,” DCM can help users to com-
pose more topological relationships associated with the
semantic ontologies of design criteria. In the previous
architectural exercise, for example, the idea of shaping
outdoor spaces using two old trees can be converted into
an enclosing topology of the building around the trees,
or a separating topology between trees and building as a
minimal void for outdoor spaces.

While topological relationships constitute critical
information used in validating the semantic ontology of
design criteria, it is usually difficult for architects who
have insufficient programming skills to implement their
ideas using this approach. By applying the algorithms of
Grasshopper, DCM can help users to easily validate the
design criteria of topological relationships. Although it is
possible to apply DCM to automatically generate possible
design criteria solutions in Grasshopper, DCM is more
useful in the visualization of invisible or non-obvious
design criteria than in generating forms by means of
algorithms. In the previous architectural exercise, for
example, if the two old trees and the community park
are modeled as “must-see” scenery from interior spaces,
DCM does not need an explanation of why to open
western windows facing them.

4.3. Geometric features of design criteria

The ability to easily generate sophisticated forms through
the use of algorithms is the biggest advantage of
generative modeling tools like Grasshopper. However,
abstract architectural design criteria cannot easily be
converted into the parameters of algorithmic compo-
nents in Grasshopper. In contrast, geometric features of
design objects are associated with semantic ontology and
defined topological algorithms in DCM, and can there-
fore not only be applied to the representation of design
criteria, but can also be the input parameters of algo-
rithms. In the previous architectural exercise, for exam-
ple, different shapes of objects can be the input param-
eters of topological algorithms in DCM. Students can
input a circle, cylinder, sphere, or other irregular shape
as “tree” parameters representing retained criteria, and
the validation results obtained by DCM vary with the
geometric parameters.

The modeling of design criteria therefore not only
involves modeling of the building itself, but also model-
ing of other invisible and non-obvious contextual design
aspects, which are recognized by architects andwill shape
the building. The geometric features of the design con-
text can affect the expression of design criteria. However,
since DCM does not attempt to generate optimal results,
the results of validation using DCM will retain enough
freedom for geometric creativity.

5. Conclusions

One of major complaints concerning BIM applications
is their complexity, which causes cognitive overload and
learning difficulties[7]. For conceptual development and
schematic design, algorithm-based generative modeling
tools such as Grasshopper have become popular among



COMPUTER-AIDED DESIGN & APPLICATIONS 557

architects because of their ability to handle complex geo-
metric forms through the simple graphic combination
of algorithmic components. However, as the generative
algorithms in Grasshopper become more complex, even
experienced architects may have difficulty remembering
why a specific algorithmhas a certain composition,much
less be able to explain or communicate their ideas with
others. However, since not all issues can be easily repre-
sented and discovered by product-oriented 3D models,
proposals have been made to attach more informational
dimensions to 3D BIM, such as time or phasing (4D),
cost (5D), energy performance (6D), and facility man-
agement (7D)[2]. Architects will continue to apply 2D
sketches and diagrams when studying and solving design
issues in the early design stage, and not all architectural
design issues require a 3D model for representation or
validation. For example, minimum space requirements
aremore easily recognized in 2D drawings. Furthermore,
the effort to integratemore design issues into BIMmay be
lead to the dilemma of an infinite D’s model.

Some design criteria may be too axiomatic, and thus
need not be indicated, such as minimum space require-
ments, sufficient ventilation, daylighting, and ceiling
height in a habitable room. Other criteria may be too
personal to be integrated, such as the epistemology of
design contexts, formal aesthetics, and stylistic prefer-
ences. These criteria are inevitably lost in BIM, and may
not even be required to be included in BIM. Since 3D
models generated using BIM have become a powerful
medium of communication in the AEC industry, how
to represent and validate proposed criteria, especially
those that are invisible or non-obvious in 3D models,
and to communicate ideas involving those criteria with
other stakeholders and disciplines at an early stage, is
still a critical issue for architectural design. The DCM
approach described above represents a first effort to apply
Grasshopper as a generative modeling tool in model-
ing design criteria, and can be associated with abstract
semantic ontologies and topological relationships. How-
ever, how to accelerate and simplify the modeling of
complex semantic ontologies and topological algorithms
still requires more investigation in the future.

Acknowledgements

The Ministry of Science and Technology of Taiwan has sup-
ported this paper under grant numberMOST 103-2221-E-165-
001-MY2.

ORCID

Chieh-Jen Lin http://orcid.org/0000-0001-9981-5864

References

[1] Antoniou, G.; Harmelen, F.v.: A Semantic Web Primer,
MIT Press, Cambridge, Mass., 2004.

[2] Banks, J., BIM Guilt: How many Ds are you doing?,
http://www.shoegnome.com/2012/11/06/bim-guilt-how-
many-ds-are-you-doing/.

[3] Banks, J., Minimal Space Requirements and improv-
ing your Design Criteria, http://blog.graphisoftus.com/
archicad-education/tips-and-tricks/minimal-space-
requirements-and-improving-your-design-criteria.

[4] Bedrick, J., 2013 Level of Development (LOD) Specifica-
tion http://www.bimforum.org/lod, BIMForum.

[5] buildingSMART, Open Standards 101, http://www.buildi
ngsmart.org/standards/technical-vision/open-standards-
101/.

[6] Changa, M.-C.; Shih, S.-G.: A Hybrid Approach of
Dynamic Programming and Genetic Algorithm for
Multi-criteria Optimization on Sustainable Architecture
design, Computer-Aided Design and Applications, 12(3),
2015, 310–319. http://dx.doi.org/10.1080/16864360.2014.
981460

[7] Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K.: BIMHand-
book: A Guide to Building Information Modeling for
Owners, Managers, Designers, Engineers and Contrac-
tors, 2nd ed., JohnWiley& Sons Inc., Hoboken,N.J., 2011.
http://dx.doi.org/10.1002/9780470261309

[8] FuXi, https://code.google.com/p/fuxi/.
[9] GhPython, http://www.food4rhino.com/project/ghpyth

on?ufh.
[10] Ho, H.-Y.; Wang, M.-H.: Meta Form as a Parametric

Design Language, in: eCAADe 2009, Istanbul, Turkey,
2009, 713–718.

[11] Hois, J.; Bhatt, M.; Kutz, O.: Modular Ontologies for
Architectural Design, in: R. Ferrario, A. Oltramari (Eds.)
Frontiers in Artificial Intelligence and Applications,
2009, 66–77. http://dx.doi.org/10.3233/978-1-60750-
047-6-66

[12] Jython, http://www.jython.org/.
[13] Lin, C.-J.: Visual Architectural Topology: An Ontology-

Based Topological Tool for Use in an Architectural Case
Library, Computer-AidedDesign andApplications, 10(6),
2013, 929–937. http://dx.doi.org/10.3722/cadaps.2013.
929-937

[14] Lin, C.-J.: Architectural Knowledge Modeling: Ontology-
Based Modeling of Architectural Topology with the
Assistance of an Architectural Case Library, Computer-
Aided Design and Applications, 12(4), 2015, 497–506.
http://dx.doi.org/10.1080/16864360.2014.997647

[15] Protégé, http://protege.stanford.edu/, StanfordUniversity.
[16] RDFLib, https://github.com/RDFLib.

http://orcid.org/0000-0001-9981-5864
http://www.shoegnome.com/2012/11/06/bim-guilt-how-many-ds-are-you-doing/
http://www.shoegnome.com/2012/11/06/bim-guilt-how-many-ds-are-you-doing/
http://blog.graphisoftus.com/archicad-education/tips-and-tricks/minimal-space-requirements-and-improving-your-design-criteria
http://blog.graphisoftus.com/archicad-education/tips-and-tricks/minimal-space-requirements-and-improving-your-design-criteria
http://blog.graphisoftus.com/archicad-education/tips-and-tricks/minimal-space-requirements-and-improving-your-design-criteria
http://www.bimforum.org/lod
http://www.buildingsmart.org/standards/technical-vision/open-standards-101/
http://www.buildingsmart.org/standards/technical-vision/open-standards-101/
http://www.buildingsmart.org/standards/technical-vision/open-standards-101/
http://dx.doi.org/10.1080/16864360.2014.981460
http://dx.doi.org/10.1080/16864360.2014.981460
http://dx.doi.org/10.1002/9780470261309
http://www.food4rhino.com/project/ghpython?ufh
http://www.food4rhino.com/project/ghpython?ufh
http://dx.doi.org/10.3233/978-1-60750-047-6-66
http://dx.doi.org/10.3233/978-1-60750-047-6-66
http://www.jython.org/
http://dx.doi.org/10.3722/cadaps.2013.929-937
http://dx.doi.org/10.3722/cadaps.2013.929-937
http://dx.doi.org/10.1080/16864360.2014.997647
http://protege.stanford.edu/
https://github.com/RDFLib

	1. Introduction
	2. The approach of design criteria modeling
	2.1. Modeling the semantic ontology of design criteria
	2.2. Modeling topological relations of design criteria
	2.3. Modeling geometric features of design criteria
	2.4. Summary

	3. Implementation and initial evaluation of DCM
	3.1. Prototype implementation of DCM
	3.2. Initial testing and evaluation

	4. Discussion
	4.1. Semantic ontology of design criteria
	4.2. Topological relationships of design criteria
	4.3. Geometric features of design criteria

	5. Conclusions
	Acknowledgements
	ORCID
	References

