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ABSTRACT 

 

Duplicate designs consume a significant amount of company resources during product 

development. Search for similar parts for a given query part, which facilitates design reuse, is crucial 

to avoiding this problem. Previous studies have only compared parts on a complete scale, not on a 

partial scale. This paper proposes a novel scheme which incorporates the concept of LOD (Levels of 

Detail) into 3D part comparison in order to assess partial similarity. Different LOD variants are 

generated from negative feature decomposition of a solid model. A human comparison behavior 

model (HCBM), mainly consisting of a back-propagation artificial neural network (ANN), is 

established by training with the result of a similarity ranking experiment. It combines the dissimilarity 

value at each LOD based on a modified D2 distribution. Test examples show that the proposed 

scheme is effective in 3D part search with LODs. 

 

Keywords: Similarity assessment, levels of detail (LOD), negative feature, feature recognition, part 

search, design retrieval. 

 

 

1. INTRODUCTION 

Product development plays an important role in competition among modern enterprises. Previous studies have 

identified that lowering costs, improving quality and shortening the time for product development are the key factors in 

the development process [1]. Design is a critical stage in the development of any new product. It generally determines 

80% of the total development costs, which can only be decreased by less than 25% after this stage [2]. Over 75% of 

design activities involve design modification, variant design or case-based design [3]. Engineers usually adapt existing 

products or technologies to fulfill new requirements, enhance functionalities, and/or lower costs. Enterprises also 

encourage design reuse in development projects for the same purpose. Many companies have introduced product 

data management (PDM) to manage product design data, but effective tools for search similar parts by the way of 

design intent are not yet available. Using a text-based search engine to search on file names and keywords does not 

always produce the expected results. Consequently, most of the time parts will be recreated by constructing different 

CAD files for the same function, making multiple copies of the same data. This thus raises cost and complicates the 

data management. Therefore, advanced CAD technologies should be adopted to manage part design data. 

Most assessment schemes for 3D part similarity generate a Shape Signature from the CAD model, and distinguish 

different models based on the dissimilarity of the signature defined by a distance function [4-7]. Shape Signature is a 

high-level abstraction of 3D geometry that is unique to each model. However in practice, the comparison of two 3D 

parts often needs to be partially similar, and necessarily to be similar in every detail. A partial similarity, rather than a 

complete similarity, may better satisfy part search for design reuse. Previous studies were lack of support to such 

partial-similarity search. To overcome this deficiency, this paper proposes a part comparison scheme that integrates 

the concept of LOD (Levels of Detail) in similarity assessment of 3D shapes. It generates different LOD variants of a 

3D model from the negative feature decomposition process, which has a close correlation with design functions. The 

similarity assessment combines the dissimilarity value at each LOD using a modified D2 distribution. A back-

propagation artificial neural network (ANN) is established to characterize human cognition in an experiment of ranking 

similar parts. The network trained with the experimental result, namely a Human Comparison Behavior Model 

(HCBM), serves as a centerpiece for similarity assessment. Test examples show that the proposed scheme performs 

well in discriminating 3D mechanical parts. It facilitates design reuse by offering 3D part search with partial similarity. 
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2. SIGNIFICANCES OF 3D PART SEARCH TECHNOLOGY 

3D part search helps enhance the effectiveness of design reuse in product development [8]. Design reuse influences 

not only on CAD construction, but also production utilization, inventories, tooling, and other activities in a product 

lifecycle. Product data management that permits knowledge reuse would need a combination of text-based as well as 

content-based search. Taking on a wider context, strategic sourcing to find appropriate component providers becomes 

an important issue in the distributed environment [9]. Broadening the supplier base is a significant task for enterprises 

that generally outsource many components and/or customized designs to their suppliers [10]. Intelligent searching for 

geometrically as well as functionally similar parts would make huge numbers of parts and suppliers available 

electronically all over the world. Similarity assessment for 3D components is an enabling technology in supplier 

selection in this case [11]. In summary, 3D mechanical part search technology provides the following benefits for 

companies [12]: 

• Avoiding duplicate design: engineers would like to upload a query model; search through existing designs in the 

company legacy data; obtain similar parts, and modify them for the current design task, therefore save hidden 

costs for companies. 

• Facilitate knowledge management of product lifecycle: intelligent component search promotes transfer of 

knowledge fragments, which maximizes the value of knowledge management in modern enterprises. It provides a 

good approach to disseminating knowledge within and among organizations.  

• Expedite B2B E-Commerce: design retrieval allows a designer to search for potential suppliers and technology 

providers over the Internet. A supplier that generates “similar” parts to the intended use would be potential 

candidates for collaboration in outsourcing and engineering. 
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Fig. 1: Computation procedure for search similar 3D parts. 

 

3. 3D PART SIMILARITY ASSESSEMENT WITH LOD 

3.1 Present State of Similarity Comparison Method 

Most previous approaches generate a “shape signature” from the CAD model, and compare different signatures 

according to a pre-defined measure function. They can be classified into six categories based on the CAD information 

that makes up the shape signature: feature-based similarity, topology-based similarity, histogram-based similarity (e.g., 

shape distribution, shape statistics), graph-based similarity (e.g., skeletal graph, reeb graph, aspect graph), product 

information-based similarity (e.g., section image, group technology) and Octree-based similarity [4-5]. The choice of 
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shape signature and similarity function can influence discrimination capability of similarity assessment [13-14]. These 

assessment schemes include all the geometric information in the shape signature, and thus cannot compare partial 

similarity. 

This work develops a 3D shape similarity assessment scheme integrated with the LOD concept. Fig. 1 shows the search 

procedure based on the scheme. First, the user uploads a query part or classified sets of negative features that may 

represent the current design intention. Different feature-based LOD models are generated by negative feature 

decomposition. A shape signature based on a modified D2 distribution is then created at each level from the distance 

sets of all the features belonging to it. Every component to be assessed is then retrieved in sequence from the database, 

along with its shape signature of each level, and compared with the query model. The user is allowed to specify a set of 

comparison attributes. We then compute the dissimilarity value between the query/candidate parts at each level and 

combine them using an artificial neural network. 

 

 

3D Part 

LOD 

Higher Lower 

 

Fig. 2: Different feature-based LOD models of 3D part. 

 

    

 

(a) 

                         

 

      (b)         (c)  
 

Fig. 3:  The D2 shape histograms for different LOD models. 

 

3.2 Feature-Based LOD Model 

Volumetric decomposition [15] provides hierarchical approximation capability based on the feature of a part, and 

generates this part by with a Boolean operation. Convex decomposition works well for polyhedral objects, and 

provides decomposition methods for form feature and negative feature based on convex decomposition [16-18]. 

Previous studies have also noted the importance of manufacturing feature recognition in automatic process planning 

[16]. Therefore, a LOD model is defined as a representation of 3D part with different levels of features in this paper 

(see fig. 2). It corresponds to different groupings of the hierarchy in negative feature decomposition [15], which consists 

of one positive base feature (stock) and other negative removal volumes (machining volumes). 
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3.3 D2-Based Similarity Assessment 

The shape distribution of a 3D object is generated based on a chosen shape function such as A3, D1, D2, D3 and D4. 

The D2 function is regarded as a better discrimination criterion among them [19]. Thus we adopt D2 distribution as the 

major shape signature in the complete/partial similarity assessment. However, the part comparison using regular D2 

cannot distinguish certain geometries, e.g. Fig. 3(a) indicates that two different parts consisting of negative features 

have a similar D2 distribution [20]. The reason is that the distances taken in regular D2 generation do not distinguish 

among in-distance, out-distance, and mixed distance, which fails to differentiate minor shape discrepancies or severe 

feature interactions. In contrast, Figs. 3(b) and 3(c) show the distributions of the same parts at lower LODs. Therefore, 

we will improve the discerning capability of D2 distribution in two ways. First, the generation of D2 distribution is 

modified to differentiate in/out/mixed distances. In addition, the comparison results at all LODs are taken into account 

in similarity assessment, which characterizes the model construction process to a certain degree. 

 

We develop a four-step algorithm for similarity assessment complying with the above ideas. Instead of comparing the 

dissimilarity of two complete parts, it calculates the dissimilarity between models at each LOD level using the modified 

D2.  
• Generate the modified D2 distribution at each level 

Generate a set of distances between two random points for every feature of each level, then compute D2 

distributions by the distance sets of all features for each level. Such a D2 distribution only utilizes in-distances 

within features. This step can be described as follows: 

− Suppose },...,LOD,...,LOD{LODL ni1=  denotes a set of LOD models at n levels and the feature set of iLOD  

is given by i
mj

i },...,f,...,f{fF 1= . 

− Triangulate each jf  in iF  into facets. Assume jd  represents a set of distances between two random points 

in the facets. All the distance sets of iLOD  are given by i
mj

i },...,d,...,d{dD 1= and generated as:  

a. Assume that the triangular facets of jf  are written as }t,...,t,{tT k21= . Calculate the surface area of each 

triangular facet; estimate the total area (TA) by adding the facet area, and log the accumulated TA 

corresponding to each facet. 

b. Generate a random value within [0,TA] and identify the corresponding facet based on the log value. 

c. Generate two random values 1r , 2r  within [0,1]; then calculate a random point p with the three vertices 

1P , 2P , and 3P  of the facet and 1r , 2r  according to: 

32122111 )(1)(1 prrprrprp +−+−=                                                        (1) 

d. Calculate jd , which consists of a set of distances between two points randomly generated from jf . 

− Generate the modified D2 distribution ( ),δ(binhi ) of iLOD  as: 

a. Derive the maximum distance ( MAXD _ ) from iD  and bin-width is given by 
numberbin

MAXD
_

_
. 

b. Set the corresponding jbin  for every distance value of iD , numberbinj _,...,1= . 

c. Generate a shape distribution ),δ(binhi  based on occurrence probability jδ  of distance in each jbin , 

where numberbin _  is the user input parameter. 

− Define the level D2 set of LOD model as },...,h,...,h{hH ni1= . 

 

• Calculate the dissimilarity value of each level 

Since the level number of each LOD model is different, the dissimilarity value is calculated as follows: 

− Determine the level maximum ( nmax_ ) of the query model and all candidate models. 

− Derive Q
qi

Q },...,h,...,h{hH 1=  for the query model, and C
ci

C },...,h,...,h{hH 1=  for a candidate model. 

− For each ih , we need to distinguish four conditions in calculating the dissimilarity value of each level 

between the query and candidate parts. 

a. If qn >max_  and cn >max_ : 

� If ih  exist in both query and candidate models, the dissimilarity value ( iDS )is defined as. 
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∑
=

−=

bin

i

iiHHDS

1

2121 ||),( δδ                                                                     (2) 

� If ih  does not exist in either of them, then iDS  = 1. 

� If ih  does not exist in both, then iDS  = 0. 

b. If qn =max_ , cn >max_ : 

� If ih  exists in both query and candidate models, then calculate iDS  based on (2). 

� If ih  does not exist in the candidate model, then iDS  = 1. 

c. If qn >max_  , cn =max_ : 

� If ih  exists in both query and candidate models, then calculate iDS  based on (2). 

� If ih  does not exist in the candidate model, then iDS  = 1. 

d. If cqn ==max_ , then calculate iDS  according to (2). 

− Assume the value set of one candidate model is },...,DS,...,DS{DSL ni max_1= ; the dissimilarity value of all 

candidate models is },...,L,...,L{LDisSet pk1
= , where P  denotes the number of candidate parts.  

 

• Combine the dissimilarity values of all LOD levels 

User-driven search: the user is allowed to specify individual preferences in searching similarity part such as 

complete/partial similarity and weights of each LOD.  

− Specify the number of LODs ( nL _ ) in similarity assessment and select between complete/partial 

comparison. 

− Input weights for each level within [0,1] and transform normalized weight ( iw ) according to (3): 

∑
=

=
nL

i

i

i
i

R

R
w

_

1

                                                                                  (3) 

 where iR  denotes the weighting factor of iLOD . 

− Obtain },...,DS,...,DS{DSL nLi
k

_1=  from DisSet  and combine them into kDisVaule  as follows:  

∑
=

=

nL

i

ii
k DSwDisValue

_

1

                                                                         (4) 

− For a given set of p candidate parts, we compute the corresponding kDisVaule  and determine their 

similarity ranks with respect to the query part. 

Human Comparison Behavior Model (HCBM): this model characterizes the intelligence of human comparison in 

determining },...,DS,...,DS{DSL nLi
k

_1=  from DisSet ; then generates one similarity value ( kDisVaule ) from the 

model as:  

)( max_1 ni
k ,...,DS,...,DSDSHCBMDisValue =                                                       (5) 

 

3.4 Human Comparison Behavior Model (HCBM) Using Artificial Neural Network 

Artificial neural networks (ANN) construct complex system models without the need of explicit descriptions of the 

system behavior or rules. A network consists of processing elements and connections. Each processing element has a 

single output signal that fans out along connections to every other processing element. An MLFF (Multi-Layer Feed 

forward) network using arbitrary squashing functions can approximate most functions of interest to any desired degree 

of accuracy [21]. Any continuous mapping based on back-propagation can be approximately represented by multi- 

layer networks with sigmoid output functions [22]. This study adopts back-propagation network (BPN) for HCBM by 

combining the dissimilarity value of each level. The corresponding experiment comprises the following steps. 

• Produce test 3D parts 

According to the limitations of negative feature decomposition, we generate 32 test parts and randomly select 

one query part from them. 

• Acquire BPN input data 
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Utilize the similarity assessment algorithm to obtain input values of BPN as },...,L{LDisSet 321
= . Since the 

maximum LOD number is 6 in all the parts, BPN has six input nodes, and the dissimilarity value set of each 

candidate part is },...,DS{DSLi
61= . 

• Obtain the target value of BPN with a part-comparison experiment 

Sequence values are obtained by a series of part similarity comparison experiments in which eight engineering 

graduate students participate. These sequence values are manually determined by their individual perception on 

the similarity between the query part and all the candidate parts. They are then transformed into a dissimilarity 

values as: 

Dissimilarity Value = 1 − [(32 − Sequence Value) ×  (1/32)]                                (6) 

where the sequence value 1 indicates that the query and candidate parts are the most similar. The target value is 

derived as the average of eight dissimilarity values for each candidate part. The BPN has only single output, 

corresponding to the average dissimilarity value. 

• Train BPN to characterize human comparison behavior 

There are many parameters (e.g. learning rate, momentum, network architecture, training/testing ratio, epochs, 

and input sequence) need to be determined through the training process. The procedure for finding a proper 

combination of these parameters is as follows: 

− Select the error function 

The function estimates the error between the output and the target. The mean square error (MSE) is used as 

the performance function during the training process. 

− Choose the activation function 

Since the similarity assessment is a continuous mapping with a value within [0,1], a binary sigmoid function 

is chosen as the activation function of BPN. The input transforms the output based on: 

xe
f(x)

−
+

=
1

1
                                                                            (7) 

− Determine the momentum (µ) 

Obtain five values for µ by decreasing µ in a step of 0.1 from 0.9 to 0.5, with other parameters fixed. The 

MSE of the testing set becomes minimal at µ=0.9. We next obtain ten values by decreasing µ in a step of 

0.01 from 0.95 to 0.9 to determine whether MSE begins to rise when µ > 0.9 or when µ < 0.9. 

− Decide the learning rate (LR) 

Find the condition when the MSE starts to increase when LR>0.1, and again obtain nine values 

incrementing in a step of 0.01 from 0.01 to 0.1. The MSE of the testing set becomes minimal in the case of 

LR=0.05. 

− Confirm training/testing number 

The number of test parts is 32. The training/testing ratio is chosen as 5:3 for multifold cross-validation. The 

testing set contains J5, J11, J12, J14, J15, J16, and J26 (see implementation for these models).The  

validation set include J6, J13, J17, J22, and J23, which are randomly chosen from the testing set. The 

training/testing are used in the training process of BPN and the validation set verify the result of testing 

unknown parts. 

− Judge the epochs 

A MSE figure helps identify that epochs=30000 is the stop point during the training under the parameter 

combination as µ=0.9, LR=0.05 and network architecture 6-4-1. The MSE of the testing set becomes 

minimal at this point. 

− Construct the network architecture 

− Determine a proper training-parameter combination according to the previous steps. The hidden layer of 

BPN is single in the architecture-parameter and according to (8) and (9) the maximum and minimum of 

hidden nodes are 13 and 4. Among the five network architectures from [13,4], the MSE of the testing set is 

lowest in the 6-6-1 architecture. The 6-7-1 architecture raises the MSE. 

2

NM
H

+
=                                                                                   (8) 

12 += NH                                                                                    (9) 

where H denotes the number of hidden nodes, N represents the number of input nodes, and M is the 

number of output nodes. A large number of hidden nodes can lower the MSE of the training set in the 
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result, but the MSE of testing set also rises when H>6. The best parameter combination are thus chosen as 

µ=0.9, LR=0.05, epochs=30000 and 6-6-1 architecture.  

• Integrate HCBM into the similarity assessment algorithm 

The trained BPN serves as the underlying mechanism of the HCBM. The major model parameters include 

network architecture (6-6-1), sigmoid function, and weights of all connections. The network is integrated into the 

algorithm described in Section 3.1 to reflect the behavior of human similarity cognition in 3D part search. 

 

           Query model 

         
Similarity Seq.:     1         2          3           4           5  

Fig. 4: Complete similar parts retrieved from the part library with a query model for user-driven. 

 

 

 
Fig. 5: Partially similar parts with respect to a query model with user-input weights. 

 

4. IMPLEMENTATION  

The search scheme proposed by this paper was implemented using ACIS C++ library [24]. All 32 test models are 

converted into the SAT format prior to experiment. All the test parts (see Fig. 6) have gone through negative feature 

decomposition, among which Parts J01-J15 are the ones previously published in [25]. All the results are listed in a 

decreasing order of part similarity. Fig. 4 shows the result of complete part comparison with the weights of 1, 0.6, 0.4, 

0.2, 0.1 and 0.1 chosen by the user for each LOD. Fig. 5 illustrates the results of partial similarity based on different 

LOD models (2 and 3 LODs respectively) of a second query part. The weights used in the first test remain the same in 

this test. The hierarchical structure of the query model in NFD is also shown. Note that the retrieved first five models 

are different in both cases. Fig. 6 shows the result of complete part comparison produced by human with a third query 

model. Five validation models are randomly chosen and listed at the bottom. Fig. 7 depicts the rank generated from 

the HCBM with the same query model. For the validation samples (unknown to the HCBM), the similarity rank of Part 

J17 is different from that of the human comparison shown in Fig. 6. In addition, the first four parts have been 

successfully identified among the top five. Tab. 1 shows the search results with different query models. Only the best 
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three models are included. All the identical models have been identified from the database. The above results illustrate 

that the network has captured the human discerning capability to a large extent. They also validate that the proposed 

scheme can search for parts that are similar to the ones being queried. 

 

5. CONCLUSION 

Automatic 3D part search facilitates design reuse in new product development. This requires part comparison which is 

based on partial similarity and captures design intent. Previous studies have provided a variety of methods for 

assessing 3D shape similarity, but do not yet address partial similarity assessment. This study proposes a novel scheme 

of 3D part comparison that integrates the concept of LOD into similarity assessment process. LOD variants correspond 

to different subtrees in negative feature decomposition of a solid model. Part comparison incorporates the dissimilarity 

value of each level computed with a modified D2 shape distribution of the corresponding LOD model and weighted by 

user inputs. In addition, a human cognition experiment is conducted to determine the similarity rank of a set of test 

models with respect to a query part. A Human Cognition Behavior Model based on back-propagation artificial neural 

network is trained with the experimental result. It then tests on another set of validation models and thus verifies its 

discriminating capability of 3D shapes. Future work based on this study is as follows. First, additive volumes need to be 

considered in part comparison with form feature decomposition. Moreover, a part search engine of practical use should 

provide Google-like user interfaces for more complex query with Boolean operations applied to feature attributes 

(e.g. form, kind, parameters). 
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        Query model 

 

               
    1           2           3          4           5           6          7 

J09   J06         J08  J10        J07      J04        J05 

                    
   8           9          10          11         12          13         14 

J02         J01         J03   J11        J12      J37        J32 

                  
    15          16         17          18          19         20         21 

  J30         J17        J22         J28      J31       J34     J27 

                 
    22          23         24          25          26         27         28 

J26         J15    J38         J13         J29        J35        J14 

           
29          30         31          32 

J33       J36     J16         J23  
 

Fig. 7: Similarity sequence of HCBM. 

 

 Query Part Result #1 Result #2 Result #3 

Query 1 

    

Query 2 

    

Query 3 

    
 

Tab. 1: Test results of HCBM corresponding to different query parts. 

 


