MAJORIZATION-SUBORDINATION THEOREMS FOR LOCALLY UNIVALENT FUNCTIONS, II

DOUGLAS MICHAEL CAMPBELL

Let \subseteq denote the set of all normalized analytic univalent functions in the open unit disc D. Let $f(z), F(z)$ and $\varphi(z)$ be analytic in $|z|<r$. We say that $f(z)$ is majorized by $F(z)$ in $|z|<r(f(z) \ll F(z))$, if $|f(z)| \leqq|F(z)|$ in $|z|<r$; we say that $f(z)$ is subordinate to $F(z)$ in $|z|<r(f(z) \prec F(z))$, if $f(z)=F(\varphi(z))$ where $|\varphi(z)| \leqq|z|$ in $|z|<r$.

Let \mathfrak{U}_{α} be the set of all locally univalent $\left(f^{\prime}(z) \neq 0\right)$ analytic functions in D with order $\leqq \alpha$ which are of the form $f(z)=z+\ldots$. The family \mathfrak{U}_{α} is known as the universal linear invariant family of order $\alpha[6]$. A concise summary of and introduction to properties of linear invariant families which relate to the following material is contained in [1]. The present paper contains the proofs of some of the results announced in [1].

Majorization-subordination theory begins with Biernacki who showed in 1936 that if $f(z)$ is subordinate in D to $F(z)(F(z) \in \subseteq)$, then $f(z)$ is majorized by $F(z)$ in $|z|<1 / 4$. Goluzin, Tao Shah, Lewandowski and MacGregor have examined various related problems since that time but always under the stipulation that the dominant function $F(z)$ is in \subseteq (for greater detail see [1]).

In this paper we generalize the previously investigated problems by allowing $F(z)$ to be in \mathfrak{U}_{α}. Our investigation shows that the important datum for majori-zation-subordination theory is not univalence, but the order of a linear invariant family. In particular, many classically derived estimates for univalent functions are true for functions of infinite valence.

1. Majorization of the derivatives. MacGregor [4] in 1967 investigated the effect that majorization by a univalent function has on the radius of majorization of the derivative. We prove corresponding results for majorization by a function in \mathfrak{l}_{α} and give a simplified proof that the result is sharp.

Theorem 1. Let $f(z)$ be majorized by $F(z)$ in D. If $F(z) \in \mathfrak{U}_{\alpha}, 1 \leqq \alpha<\infty$, then $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in

$$
|z| \leqq\left[(\alpha+1)^{1 / \alpha}-1\right] /\left[(\alpha+1)^{1 / \alpha}+1\right]=\tanh \left[(2 \alpha)^{-1} \ln (\alpha+1)\right] .
$$

The result is best possible for each α.
Proof. If $f(z)$ is majorized by $F(z)$ in D, then $f(z)=\varphi(z) F(z)$ where $|\varphi(z)| \leqq 1$ in $D[4$, Lemma 5]. Since [5, p. 168]

$$
\left|\varphi^{\prime}(z)\right| \leqq\left(1-|\varphi(z)|^{2}\right) /\left(1-|z|^{2}\right)
$$

Received February 3, 1972 and in revised form, August 15, 1972.
and for functions $F(z)$ in \mathfrak{U}_{α} we have [6, p. 115, 1.10]

$$
|F(z)| \leqq \frac{1}{2 \alpha}\left(1-|z|^{2}\right)\left|F^{\prime}(z)\right|\left[\left\{\frac{1+|z|}{1-|z|}\right\}^{\alpha}-1\right]
$$

it follows that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|F^{\prime}(z)\right|\left\{|\varphi(z)|+\left[\frac{1-|\varphi(z)|^{2}}{2 \alpha}\right]\left[\left(\frac{1+|z|}{1-|z|}\right)^{\alpha}-1\right]\right\} \tag{1}
\end{equation*}
$$

However,

$$
\begin{equation*}
|\varphi(z)|+\left[\frac{1-|\varphi(z)|^{2}}{2 \alpha}\right]\left[\left(\frac{1+|z|}{1-|z|}\right)^{\alpha}-1\right] \leqq 1 \tag{2}
\end{equation*}
$$

if

$$
\begin{equation*}
\left(\frac{1+|z|}{1-|z|}\right)^{\alpha}-1 \leqq \alpha \tag{3}
\end{equation*}
$$

Inequality (3) is equivalent to $|z| \leqq \tanh \left[(2 \alpha)^{-1} \ln (\alpha+1)\right]$. Therefore, it follows from (1) and (2) that $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in

$$
|z| \leqq \tanh \left[(2 \alpha)^{-1} \ln (\alpha+1)\right] .
$$

We now show that the result is best possible for each α. Consider the functions

$$
F(z)=(2 \alpha)^{-1}\left(1-[(1-z) /(1+z)]^{\alpha}\right) \text { and } \varphi(z)=(z+b) /(1+b z)
$$

where $-1 \leqq b \leqq 1$. Let $f(z) \equiv \varphi(z) F(z)$. Clearly $F(z) \in \mathfrak{U}_{\alpha}$ majorizes $f(z)$ in D. Choose any r such that $\tanh \left[(2 \alpha)^{-1} \ln (\alpha+1)\right]<r<1$. We show for each such r that we can choose b so that $f^{\prime}(r)>F^{\prime}(r)>0$. It therefore follows that $F^{\prime}(z)$ cannot majorize $f^{\prime}(z)$ outside of $|z| \leqq \tanh \left[(2 \alpha)^{-1} \ln (\alpha+1)\right]$. We first note that

$$
\begin{equation*}
\frac{F(r)}{F^{\prime}(r)}=\frac{\left(1-r^{2}\right)}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right]>\frac{1-r^{2}}{2} \tag{4}
\end{equation*}
$$

Since

$$
f^{\prime}(r)=F^{\prime}(r)\left[\frac{r+b}{1+r b}+\frac{1-b^{2}}{(1+r b)^{2}} \cdot \frac{F(r)}{F^{\prime}(r)}\right] \equiv F^{\prime}(r) H(r, b)
$$

and $H(r, 1) \equiv 1$, we need only show that $\partial H(r, b) /\left.\partial b\right|_{b=1}<0$ in order to establish that $H(r, 1-\epsilon)>1$ and hence that $f^{\prime}(r)>F^{\prime}(r)>0$. But

$$
\left.\frac{\partial}{\partial b} H(r, b)\right|_{b=1}=\frac{2}{(1+r)^{2}}\left[\frac{1-r^{2}}{2}-\frac{F(r)}{F^{\prime}(r)}\right],
$$

which is negative by (4). Thus the result is best possible.
Corollary 1. If $f(z) \ll F(z)$ in D and $F(z) \in \mathfrak{U}_{2}$, then $f^{\prime}(z) \ll F^{\prime}(z)$ in $|z| \leqq 2-\sqrt{ } 3$.

Corollary 2. If $f(z) \ll F(z)$ in D and $F(z) \in \mathfrak{U}_{1}$, then $f^{\prime}(z) \ll F^{\prime}(z)$ in $|z| \leqq 1 / 3$.

Pommerenke [6, p. 134] showed that \mathfrak{U}_{1} is precisely the class of convex univalent functions. It is well-known that \mathfrak{S} is a proper subset of \mathfrak{U}_{2}. Therefore, Corollary 1 is stronger than MacGregor's Theorem 1B, while Corollary 2 is his Theorem 1C.
2. The converse of the Biernacki problem. Lewandowski [2] in 1961 established a converse to the original Biernacki problem under the normalization $f(0)=0, f^{\prime}(0) \geqq 0$. He showed that majorization of $f(z)$ in D by $F(z)$ $(F(z) \in \mathbb{S})$ implied that $f(z)$ is subordinate to $F(z)$ in $|z|<.21$. We remove the restriction of global univalence of $F(z)$ and substitute local univalence and finite order. Let $R(\alpha)$ be the 'radius of subordination' for functions majorized by a function in \mathfrak{U}_{α}; that is, $R(\alpha)$ is the largest number such that if $f(z) \ll F(z)$ in $D\left(F(z) \in \mathfrak{U}_{\alpha}\right)$ and $f^{\prime}(0) \geqq 0$, then $f(z) \prec F(z)$ in $|z|<R(\alpha)$.

Theorem 2. Let $f^{\prime}(0) \geqq 0, F(z) \in \mathfrak{U}_{\alpha}, 1 \leqq \alpha<\infty$ and $f(z)$ be majorized by $F(z)$ in D. Let $R_{2}(\alpha)$ denote the root in $[0,1]$ of the equation

$$
x(1+x)^{\alpha}-(1-x)^{\alpha}=0 .
$$

Let α^{*} denote the root of

$$
\begin{equation*}
\frac{1}{x}-\left[\frac{x-1}{x+1}\right]^{x / 2}\left[1-\frac{1}{4}\left(\frac{x-1}{x+1}\right)^{x}\right]^{1 / 2}=0 \tag{5}
\end{equation*}
$$

If $1 \leqq \alpha \leqq \alpha^{*}$ let $R_{2}(\alpha)$ be the root of the equation

$$
\frac{2 x}{1+x^{2}}-\left[\frac{1-x}{1+x}\right]^{\alpha}\left[1-\frac{1}{4}\left(\frac{1-x}{1+x}\right)^{2 \alpha}\right]^{1 / 2}=0
$$

and let $R_{2}(\alpha)$ be $\alpha-\left(\alpha^{2}-1\right)^{1 / 2}$ if $\alpha \geqq \alpha^{*}$. Then the 'radius of subordination' for functions majorized by a function in \mathfrak{U}_{α} satisfies

$$
R_{1}(\alpha) \leqq R(\alpha) \leqq R_{2}(\alpha)
$$

Proof. A computation shows that $2.88<\alpha^{*}<2.89$.
We first show that $R(\alpha) \leqq R_{2}(\alpha)$ for all $\alpha, 1 \leqq \alpha<\infty$. Again we let $F(z)=(2 \alpha)^{-1}\left[1-((1-z) /(1+z))^{\alpha}\right]$. If $f(z)=z F(z)$, then clearly $F(z)$ majorizes $f(z)$ in D and $f^{\prime}(0)=0$. It is easy to verify that $f(-\rho)>F(\rho)>0$ for any ρ which satisfies $R_{2}(\alpha)<\rho<1$.

Suppose that $f(z)$ were subordinate to $F(z)$ in $|z|<r$ where $R_{2}(\alpha)<r<1$. Then $f(z)=F(\omega(z))$ where $\omega(z)$ is an analytic function satisfying $|\omega(z)| \leqq|z|$ in $|z|<r$. An analysis of $F(\omega(z))=f(z)$ shows that $\omega(z)$ must be real if $z \in(-r, r)$.

If we restrict $F(z)$ to the real axis, it is an increasing real valued function. Thus for $R_{2}(\alpha)<\rho<r$, we have $\rho=|-\rho| \geqq|\omega(-\rho)| \geqq \omega(-\rho)$ and therefore $F(\rho) \geqq F(\omega(-\rho))=f(-\rho)$. This is absurd since $f(-\rho)>F(\rho)$ for all $R_{2}(\alpha)<\rho<1$. Therefore, for any α in $1 \leqq \alpha<\infty$, the radius of subordination $R(\alpha)$ cannot be greater than $R_{2}(\alpha)$ if $f(z)$ is majorized by $F(z)\left(F(z) \in \mathfrak{U}_{\alpha}\right)$.

To establish a lower bound for $R(\alpha)$ we develop two preliminary bits of technical information. We first claim that $R_{1}(\alpha)$ is always less than or equal to the radius of convexity of the family \mathfrak{U}_{α} (which is $\left.\alpha-\left(\alpha^{2}-1\right)^{1 / 2}[6, p .133]\right)$. Since $R_{1}(\alpha)$ is precisely the radius of convexity for $\alpha \geqq \alpha^{*}$, we need only show that for $1 \leqq \alpha \leqq \alpha^{*}$, the root of

$$
T(x)=\frac{2 x}{1+x^{2}}-\left[\frac{1-x}{1+x}\right]^{\alpha}\left[1-\frac{1}{4}\left(\frac{1-x}{1+x}\right)^{2 \alpha}\right]^{1 / 2}=0
$$

is less than or equal to $\alpha-\left(\alpha^{2}-1\right)^{1 / 2}$. Since it is easy to show that $T(x)$ is a monotone increasing function on $[0,1]$, it suffices to show that

$$
T\left(\alpha-\left(\alpha^{2}-1\right)^{1 / 2}\right) \geqq 0
$$

for $1 \leqq \alpha \leqq \alpha^{*}$. This follows upon noting that

$$
T\left(\alpha-\left(\alpha^{2}-1\right)^{1 / 2}\right)=\frac{1}{\alpha}-\left[\frac{\alpha-1}{\alpha+1}\right]^{\alpha / 2}\left[1-\frac{1}{4}\left(\frac{\alpha-1}{\alpha+1}\right)^{\alpha}\right]^{1 / 2}
$$

is a monotone decreasing function of α which is positive for $1 \leqq \alpha \leqq \alpha^{*}$ where α^{*} is the root of (5). A computation shows that $2.8<\alpha^{*}<2.9$.

We next claim that for any a such that $0 \leqq a \leqq R_{1}(\alpha)$,

$$
\begin{equation*}
\frac{a+R_{1}}{1+a R_{1}} \leqq\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha}, \tag{6}
\end{equation*}
$$

which is equivalent to showing that

$$
\frac{2 R_{1}}{1+R_{1}{ }^{2}} \leqq\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha}
$$

For $1 \leqq \alpha \leqq \alpha^{*}$ this is immediate since $R_{1}(\alpha)$ satisfies

$$
\frac{2 R_{1}}{1+R_{1}{ }^{2}}=\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha}\left[1-\frac{1}{4}\left(\frac{1-R_{1}}{1+R_{1}}\right)^{2 \alpha}\right]^{1 / 2}<\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha}
$$

For $\alpha \geqq \alpha^{*}$ we need only show (since $R_{1}(\alpha)=\alpha-\left(\alpha^{2}-1\right)^{1 / 2}$) that

$$
\frac{1}{\alpha} \leqq\left[\frac{\alpha-1}{\alpha+1}\right]^{\alpha / 2}
$$

which, just as above, is immediate from (5) for all $\alpha \geqq \alpha^{*}$.
To show that $f(z)$ is subordinate to $F(z)$ in $|z|<r$ it suffices to show that $f(|z|<r) \subset F(|z|<r)$ [3, p. 163]. As previously remarked, if $f(z)$ is majorized by $F(z)$ in D, then $f(z)=\varphi(z) F(z)$ where $|\varphi(z)| \leqq 1$ in D and $\varphi(0)=a=$ $f^{\prime}(0) \geqq 0$. We examine two cases.

Case 1. $0 \leqq a \leqq R_{1}(\alpha)$ where $a=f^{\prime}(0) / F^{\prime}(0)=\varphi^{\prime}(0)$. Since $F(z)$ is convex univalent in $|z|<R_{1}(\alpha)$, it is univalent there and hence with an easy modification of $[\mathbf{6},(1.9)]$

$$
\begin{equation*}
\frac{1}{2 \alpha}\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right] \leqq|F(z)| \leqq \frac{1}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right] \tag{7}
\end{equation*}
$$

for $|z|=r \leqq R_{1}(\alpha)$.

An easy application of the Schwarz lemma to $\varphi(z)$ yields that

$$
|f(z)| \leqq|F(z)|(a+|z|) /(1+a|z|)
$$

Applying (6) and (7) yields

$$
\begin{aligned}
\max _{|z|=R_{1}}|f(z)| & \leqq \max _{|z|=R_{1}}|F(z)| \cdot \frac{a+R_{1}}{1+a R_{1}} \\
& \leqq\left[\frac{R_{1}+a}{1+a R_{1}}\right]\left[\frac{1}{2 \alpha}\right]\left[\left(\frac{1+R_{1}}{1-R_{1}}\right)^{\alpha}-1\right] \\
& \leqq\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha} \frac{1}{2 \alpha}\left[\left(\frac{1+R_{1}}{1-R_{1}}\right)^{\alpha}-1\right]=\frac{1}{2 \alpha}\left[1-\left(\frac{1-R_{1}}{1+R_{1}}\right)^{\alpha}\right] \\
& \leqq \min _{|z|=R_{1}}|F(z)| .
\end{aligned}
$$

This implies that $f\left(|z|<R_{1}\right) \subset F\left(|z|<R_{1}\right)$ and hence that $f(z)$ is subordinate to $F(z)$ in $|z|<R_{1}(\alpha)$ which concludes the proof for Case 1.

Case 2. $R_{1}(\alpha)<a \leqq 1$: Fix $z_{0},\left|z_{0}\right|=R_{1}(\alpha)=R_{1}$. Let $F\left(z_{0}\right)=w_{0}$ and let $\Lambda=F\left(|z|=R_{1}\right)$. Since $F(z)$ is convex and univalent in $|z| \leqq R_{1}, \Lambda$ is a convex Jordan curve contained in the annulus

$$
A=\left\{w: \frac{1}{2 \alpha}\left[1-\left(\frac{1-R_{1}}{1+R_{1}}\right)^{\alpha}\right] \leqq|w| \leqq \frac{1}{2 \alpha}\left[\left(\frac{1+R_{1}}{1-R_{1}}\right)^{\alpha}-1\right]\right\} .
$$

A ray from the origin through w_{0} intersects the inner and outer boundary of the annulus A at, say, c and b respectively. The circle with centre b which passes through the origin determines two new points d and e by its intersection with the inner boundary of A.

It follows easily that

$$
\begin{aligned}
\operatorname{angle}\left(d w_{0}, 0\right) & \geqq \operatorname{angle}(d b, 0)=2 \arcsin \frac{1}{2}\left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha} \\
& =\arcsin \left[\frac{1-R_{1}}{1+R_{1}}\right]^{\alpha}\left[1-\frac{1}{4}\left(\frac{1-R_{1}}{1+R_{1}}\right)^{2 \alpha}\right]^{1 / 2} \\
& \geqq \arcsin \frac{2 R_{1}}{1+{R_{1}{ }^{2}}^{2}}
\end{aligned}
$$

where we have used the fact that $T\left(R_{1}\right) \leqq 0$.
The function $h(z)=1-f(z) / F(z)=1-\varphi(z)$ has $\operatorname{Re} h(z)>0$. Therefore, as is well-known, $\left|\arg h\left(z_{0}\right)\right| \leqq \arcsin 2 R_{1}\left(1+R_{1}{ }^{2}\right)^{-1} \leqq$ angle $\left(d w_{0}, 0\right)$. Furthermore, since $H(z)=(1-a)(1+z)(1-a z)^{-1}$ maps D onto a disc centred at 1 with radius 1 , we have $h(D) \subset H(D)$. This implies that $h(z)=$ $H(\omega(z))$ where $\omega(z)$ satisfies the Schwarz lemma. Hence

$$
\left|h\left(z_{0}\right)\right| \leqq(1-a)\left(1+R_{1}\right)\left(1-a R_{1}\right)^{-1}
$$

which is less than 1 since $R_{1}<a$. Therefore, $f\left(z_{0}\right)=w_{0}-w_{0} h\left(z_{0}\right)$ is in the circular sector $w_{0} d 0 e w_{0}$ and hence in $F\left(|z|<R_{1}\right)$, since Λ is convex.

The point z_{0} was arbitrary on $|z|=R_{1}$, consequently

$$
f\left(|z|=R_{1}\right) \subset F\left(|z| \leqq R_{1}\right)
$$

and by the maximum modulus principle $f\left(|z|<R_{1}\right) \subset F\left(|z|<R_{1}\right)$. Thus $f(z)$ is subordinate to $F(z)$ in $|z|<R_{1}$.

Thus in Cases 1 and 2, we have shown that $f(z)$ is subordinate to $F(z)$ in $|z| \leqq R_{1}(\alpha)$ which concludes the proof of the theorem.

Corollary 1. If $f(z) \ll F(z)$ in $D, F(z) \in \mathfrak{U}_{1}$, and $f^{\prime}(0) \geqq 0$, then $f(z) \prec F(z)$ in $|z|<R$ where $.28<R \leqq \sqrt{ } 2-1$.

Corollary 2. If $f(z) \ll F(z)$ in $D, F(z) \in \mathfrak{U}_{2}$, and $f^{\prime}(0) \geqq 0$, then $f(z)<F(z)$ in $|z|<R$ where $.21<R<.3$.

Since \mathfrak{S} is a proper subset of \mathfrak{U}_{2}, Corollary 2 is a strengthening of Lewandowski's original result [2]. Corollary 1 is a new result for the set of normalized convex univalent functions.

In part III of this paper we will present the long and tedious proof of
Theorem 3. Let $f(z)$ be subordinate to $F(z)$ in D and let $f^{\prime}(0) \geqq 0$. If $F(z) \in \mathfrak{U}_{\alpha}, 1.65 \leqq \alpha<\infty$, then $f^{\prime}(z)$ is majorized by $F^{\prime}(z)$ in $|z| \leqq(\alpha+1)-$ $\left(\alpha^{2}+2 \alpha\right)^{1 / 2}$. The inequality is best possible.

The problem investigated in Theorem 3 was first studied by Goluzin and given a complete solution in \mathfrak{S} by Tao Shah (see [1] for further references).

References

1. D. M. Campbell, Majorization-subordination theorems for locally univalent functions, Bull. Amer. Math. Soc. 78 (1972), 535-538.
2. Z. Lewandowski, Sur les majorants des fonctions holomorphes dans le cercle $|z|<1$, Ann. Univ. Mariae Curie-Sklodowska Sect A 15 (1961), 5-11.
3. J. E. Littlewood, Lectures on the theory of functions (Oxford University Press, Oxford, 1944).
4. T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.
5. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
6. Ch. Pommerenke, Linear-invariante Familien Analytischer Funktionen. I, Math. Ann. 155 (1964), 108-154.

Brigham Young University, Provo, Utah

