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Executive Summary

This chapter assesses multiple lines of evidence to evaluate past, 
present and future changes in the global water cycle. It complements 
material in Chapters 2, 3 and 4 on observed and projected changes 
in the water cycle, and Chapters 10 and 11 on regional climate 
change and extreme events. The assessment includes the physical 
basis for water cycle changes, observed changes in the water cycle 
and attribution of their causes, future projections and related key 
uncertainties, and the potential for abrupt change. Paleoclimate 
evidence, observations, reanalyses and global and regional model 
simulations are considered. The assessment shows widespread, non-
uniform human-caused alterations of the water cycle, which have 
been obscured by a competition between different drivers across the 
20th century and that will be increasingly dominated by greenhouse 
gas forcing at the global scale.

Physical Basis for Water Cycle Changes

Modifications of Earth’s energy budget by anthropogenic 
radiative forcings drive substantial and widespread changes 
in the global water cycle. There is high confidence that global 
mean precipitation and evaporation increase with global warming, 
but the estimated rate is model-dependent (very likely range of 
1–3% per 1°C). The global increase in precipitation is determined by 
a robust response to global mean surface air temperature (very likely 
2–3% per 1°C) that is partly offset by fast atmospheric adjustments 
to atmospheric heating by greenhouse gases and aerosols. The overall 
effect of anthropogenic aerosols is to reduce global precipitation and 
alter large-scale atmospheric circulation patterns through their well-
understood surface radiative cooling effect (high confidence). Land-
use and land-cover changes also drive regional water cycle changes 
through their influence on surface water and energy budgets (high 
confidence). {8.2.1, 8.2.3.4, 8.2.2.2, Box 8.1}

A warmer climate increases moisture transport into weather 
systems, which, on average, makes wet seasons and events 
wetter (high confidence). An increase in near-surface atmospheric 
water holding capacity of about 7%  per  1°C of warming explains 
a  similar magnitude of intensification of heavy precipitation events 
(from sub-daily up to seasonal time scales) that increases the severity 
of flood hazards when these extremes occur (high confidence). 
The severity of very wet and very dry events increases in a warming 
climate (high confidence), but changes in atmospheric circulation 
patterns alter where and how often these extremes occur, with 
substantial regional differences and seasonal contrasts. A slowdown 
of tropical circulation with global warming partly offsets the warming-
induced strengthening of precipitation in monsoon regions (high 
confidence). {8.2.2, 8.2.3, 8.3.1.7, 8.4.1, 8.5.1}

Warming over land drives an increase in atmospheric 
evaporative demand and the severity of droughts (high 
confidence). Greater warming over land than over the ocean alters 
atmospheric circulation patterns and, on average, reduces continental 
near-surface relative humidity, which contributes to regional drying 
(high confidence). Increasing atmospheric CO2 concentrations 

increase plant growth and water-use efficiency, but there is low 
confidence in how these factors drive regional water cycle changes. 
{8.2.2, 8.2.3}

Causes of Observed Changes

Human-caused climate change has driven detectable changes 
in the global water cycle since the mid-20th century (high 
confidence). Global warming has contributed to an overall increase 
in atmospheric moisture and precipitation intensity (high confidence), 
increased terrestrial evapotranspiration (medium confidence), 
influenced global patterns in aridity (very likely), and enhanced 
contrasts in surface salinity and precipitation minus evaporation 
patterns over the oceans (high confidence). {3.4.2, 3.4.3, 3.5.2, 
8.3.1, 9.2.2}

Greenhouse gas forcing has driven increased contrasts 
in precipitation amounts between wet and dry seasons 
and weather regimes over tropical land areas (medium 
confidence) and a  detectable precipitation increase in the 
northern high latitudes (high confidence). Greenhouse gas 
forcing has also contributed to drying in dry summer climates, 
including the Mediterranean, south-western Australia, south-western 
South America, South Africa, and western North America (medium 
to high confidence). Earlier onset of spring snowmelt and increased 
melting of glaciers have already contributed to seasonal changes in 
streamflow in high-latitude and low-elevation mountain catchments 
(high confidence). {Box 8.2, 8.2.2.1, 8.3.1, 3.3.2, 3.3.3, 3.5.2}

Anthropogenic aerosols have driven detectable large-scale 
water cycle changes since at least the mid-20th century (high 
confidence). Shifts in the tropical rain belt are associated with 
the inter-hemispheric temperature response to the time-evolving 
radiative influence of anthropogenic aerosols and the ongoing 
warming influence of greenhouse gases (high confidence). Cooling in 
the Northern Hemisphere by sulphate aerosols explained a southward 
shift in the tropical rain belt and contributed to the Sahel drought 
from the 1970s to the 1980s (high confidence), subsequent recovery 
from which has been linked with greenhouse gas warming (medium 
confidence). Observed changes in regional monsoon precipitation, 
especially over South Asia, East Asia and West Africa, have been 
limited over much of the 20th century due to increases driven by 
warming from greenhouse gases being counteracted by decreases 
due to cooling from anthropogenic aerosols (high confidence). 
{8.3.1.3, 8.3.2.4, Box 8.1}

Land-use change and water extraction for irrigation have 
influenced local and regional responses in the water cycle 
(high confidence). Large-scale deforestation has likely decreased 
evapotranspiration and precipitation and increased runoff over the 
deforested regions. Urbanization has increased local precipitation 
(medium confidence) and resulting runoff intensity (high confidence). 
Increased precipitation intensities have enhanced groundwater 
recharge, most notably in tropical regions (medium confidence). 
There is high confidence that groundwater depletion has occurred 
since at least the start of the 21st century as a  consequence of 
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groundwater withdrawals for irrigation in agricultural areas in 
drylands (e.g., the southern High Plains and California Central Valley 
of the USA, North China Plain, and north-west India). {8.2.3.4, 
8.3.1.7, Box 10.3, FAQ 8.1}

Southern Hemisphere storm tracks and associated precipitation 
have shifted polewards since the 1970s, especially in the austral 
summer and autumn (high confidence). It is very likely that these 
changes are associated with a positive trend in the Southern Annular 
Mode, related to both stratospheric ozone depletion and greenhouse 
gas increases. There is medium confidence that the recent observed 
expansion of the Hadley circulation was caused by greenhouse gas 
forcing, especially in the Southern Hemisphere, but there is only low 
confidence in how it influences the drying of subtropical land areas. 
{8.2.2, 8.3.2, 3.3.3}

Future Water Cycle Changes

Without large-scale reduction in greenhouse gas emissions, 
global warming is projected to cause substantial changes 
in the water cycle at both global and regional scales (high 
confidence). Global annual precipitation over land is projected to 
increase on average by 2.4 [–0.2 to +4.7] %  (likely  range) in the 
SSP1-1.9 low-emissions scenario and by 8.3 [0.9 to 12.9] % in the 
SSP5-8.5 very high-emissions scenario by 2081–2100, relative to 
1995–2014. It is virtually certain that evaporation will increase over 
the oceans and very likely that evapotranspiration will increase over 
land with regional exceptions in drying areas. There is low confidence 
in the sign and magnitude of projected changes in global land runoff 
in all Shared Socio-economic Pathway scenarios. Projected increases 
in precipitation amount and intensity will be associated with 
increased runoff in the northern high latitudes (high confidence). 
There is high confidence that mountain glaciers will diminish in 
all regions and that seasonal snow cover duration will generally 
decrease. Runoff from small glaciers will typically decrease through 
loss of ice mass, while runoff from large glaciers is likely to increase 
with increasing global warming until glacier mass becomes depleted 
(high confidence). {4.5.1, 8.4.1}

Increased evapotranspiration due to growing atmospheric 
water demand will decrease soil moisture over the 
Mediterranean, south-western North America, southern Africa, 
south-western South America, and south-western Australia 
(high confidence). In the Mediterranean, south-western South 
America, and western North America, future aridification will far 
exceed the magnitude of change seen in the last millennium (high 
confidence). Some tropical regions are also projected to experience 
increased aridity, including the Amazon basin and Central America 
(high confidence). {8.4.1}

Water cycle variability and extremes are projected to increase 
faster than average changes in most regions of the world and 
under all emissions scenarios (high confidence). In the tropics 
and in the extratropics of both hemispheres during summer/warm 
season, interannual variability of precipitation and runoff over land 
is projected to increase at a  faster rate than changes in seasonal 

mean precipitation amount (medium confidence). It is very likely that 
rainfall variability related to the El Niño–Southern Oscillation will be 
amplified by the end of the 21st century. Sub-seasonal precipitation 
variability is also projected to increase, with fewer rainy days but 
increased daily mean precipitation intensity over many land regions 
(high confidence). Precipitation extremes will increase in almost all 
regions (high confidence), even where seasonal mean precipitation is 
projected to decrease (medium confidence). There is high confidence 
that heavy precipitation events associated with both tropical and 
extratropical cyclones will intensify. {4.5.1.4, 4.5.3.2, 8.2.3.2, 8.4.1, 
8.4.2, 8.5.2, 11.7.1.5}

There are contrasting projections in monsoon precipitation, 
with increases in more regions than decreases (medium 
confidence). Summer monsoon precipitation is projected to increase 
for the South, South East and East Asian monsoon domains, while 
North American monsoon precipitation is projected to decrease 
(medium confidence). West African monsoon precipitation is 
projected to increase over the Central Sahel and decrease over the 
far western Sahel (medium confidence). There is low confidence in 
projected precipitation changes in the South American and Australian 
monsoons (for both magnitude and sign). There is high confidence 
that the monsoon season will be delayed in North and South 
America and medium confidence that it will be delayed in the Sahel. 
{8.2.2, 8.4.2.4}

Precipitation associated with extratropical storms and 
atmospheric rivers will increase in the future in most regions 
(high confidence). A  continued poleward shift of storm tracks in 
the Southern Hemisphere (likely) and the North Pacific (medium 
confidence) will lead to similar shifts in annual or seasonal 
precipitation. There is low confidence in projections of blocking and 
stationary waves and therefore their influence on precipitation for 
almost all regions. {8.4.2}

The seasonality of precipitation, water availability and 
streamflow will increase with global warming over the 
Amazon (medium confidence) and in the subtropics, especially 
in the Mediterranean and southern Africa (high confidence). 
The annual contrast between the wettest and driest month of the 
year is likely to increase by 3–5% per 1°C in most monsoon regions 
in terms of precipitation, precipitation minus evaporation, and runoff 
(medium confidence). There is high confidence in an earlier onset in 
spring snowmelt, with higher peak flows at the expense of summer 
flows in snow-dominated regions globally, but medium confidence 
that reduced snow volume in lower-latitude regions will reduce 
runoff from snowmelt. {8.2.2, Box 8.2, 8.4.1.7, 8.4.2.4}

Confidence in Projections, Non-linear Responses and the 
Potential for Abrupt Changes

Representation of key physical processes has improved in 
global climate models, but they are still limited in their ability 
to simulate all aspects of the present-day water cycle and to 
agree on future changes (high confidence). Climate change 
studies benefit from sampling the full distribution of model 
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outputs when considering future projections at regional 
scales. Increasing horizontal resolution in global climate models 
improves the representation of small-scale features and the statistics 
of daily precipitation (high confidence). High-resolution climate and 
hydrological models provide a better representation of land surfaces, 
including topography, vegetation and land-use change, which 
improve the accuracy of simulations of regional changes in the water 
cycle (high confidence). There is high confidence in the potential 
added value of regional climate models but only medium confidence 
that this potential is currently realized. {8.5.1}

Natural climate variability will continue to be a major source of 
uncertainty in near-term (2021–2040) water cycle projections 
(high confidence). Decadal predictions of water cycle  changes 
should be considered with low confidence in most land areas 
because the internal variability of precipitation is difficult to predict 
and can offset or amplify the forced water cycle response. Water 
cycle changes that have already emerged from natural variability 
will become more pronounced in the near term, but the occurrence 
of volcanic eruptions (either single large events or clustered smaller 
ones) can alter the water cycle for several years, decreasing global 
mean land precipitation and altering monsoon circulation (high 
confidence). {8.5.2, Cross-Chapter Box 4.1}

Continued global warming will further amplify greenhouse 
gas-induced changes in large-scale atmospheric circulation 
and precipitation patterns (high confidence), but in some 
cases regional water cycle changes are not linearly related to 
global warming. Non-linear water cycle responses are explained by 
the interaction of multiple drivers, feedbacks and time scales (high 
confidence). Non-linear responses of regional runoff, groundwater 
recharge and water scarcity highlight the limitations of simple 
pattern-scaling techniques (medium confidence). Water resources fed 
by melting glaciers are particularly exposed to non-linear responses 
(high confidence). {8.5.3}

Abrupt human-caused changes to the water cycle cannot be 
excluded. There is evidence of abrupt change in some high-emissions 
scenarios, but there is no overall consistency regarding the magnitude 
and timing of such changes. Positive land surface feedbacks, including 
vegetation and dust, can contribute to abrupt changes in aridity, 
but there is only low confidence that such changes will occur during 
the 21st century. Continued Amazon deforestation, combined with 
a  warming climate, raises the probability that this ecosystem will 
cross a  tipping point into a  dry state during the 21st century (low 
confidence). The paleoclimate records show that a  collapse in the 
Atlantic Meridional Overturning Circulation (AMOC) causes abrupt 
shifts in the water cycle (high confidence), such as a southward shift in 
the tropical rain belt, weakening of the African and Asian monsoons, 
strengthening of Southern Hemisphere monsoons, and drying in 
Europe. There is medium confidence that AMOC will not collapse 
before 2100, but should it collapse, it is very likely that there would be 
abrupt changes in the water cycle. {8.6.1, 8.6.2}

Solar radiation modification could drive abrupt changes in 
the water cycle (high confidence). It is very likely that abrupt 
water cycle changes will occur if solar radiation modification 

(SRM) techniques are implemented rapidly or terminated abruptly. 
The impact of SRM is spatially heterogeneous (high confidence), will 
not fully mitigate the greenhouse gas-forced water cycle changes 
(medium confidence), and can affect different regions in potentially 
disruptive ways (low confidence). {8.6.3}
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8.1 Introduction

8.1.1 Scope and Overview 

8.1.1.1 Importance of Water for Human Societies  
and Ecosystems

Water is vital to all life on Earth. Seventy-one percent of the Earth 
is covered by water, with saline ocean water accounting for around 
97% of total water availability (Figure  8.1). Terrestrial freshwater 
represents less than 2% of all water on Earth, and the remainder 
(around 1–2%) is primarily made up of saline groundwater and saline 
lakes (Durack, 2015; Abbott et al., 2019). Ice sheets, glaciers and 
snow pack account for approximately 96% of all freshwater, with less 
than 4% of freshwater considered easily accessible and available for 
essential ecosystem functioning and human society’s water resource 
needs (Durack, 2015; Abbott et al., 2019). This very small fraction of 
freshwater represents a total volume of about 835,000 km3, mostly 
contained in groundwater (630,000 km3), the remaining 205,000 km3 

being stored in lakes, rivers, wetlands and soils (Abbott et al., 2019). 
Although the natural cycling rate of this amount is theoretically 
enough to meet global human and ecosystem needs, there are large 
geographical and seasonal differences that influence the availability 
of freshwater to meet regional demands. 

Freshwater is the most essential natural resource on the planet 
(Mekonnen and Hoekstra, 2016; Djehdian et al., 2019) and underpins 
almost all Sustainable Development Goals (SDGs), which require 
access to adequate and safe resources for drinking and sanitation 
(SDG 6) and many other purposes. Freshwater supports a  range of 
human activities from irrigation to industrial processes including 
the generation of hydro-electricity and the cooling of thermoelectric 
power plants (Bates et al., 2008; Schewe et al., 2014). These activities 
require sufficient quantities of freshwater that can be drawn from 
rivers, lakes, groundwater stores, and in some cases, desalinated sea 
water (Schewe et al., 2014). Recent estimates of global water pools 
and fluxes suggest that half of global river discharge is redistributed 
each year by human water use (Abbott et al., 2019). This emphasizes 
the need to consider both anthropogenic climate change and 
direct human influences, such as population increase or migration, 
economic development, urbanization, and land use change, when 
planning water-related mitigation or adaptation strategies (Jiménez 
Cisneros et al., 2014).

Water scarcity occurs when there are insufficient freshwater resources 
to meet water demands, although water problems may also arise 
from water quality issues or from economic and institutional barriers 
(AR6 WGII Chapter 4). This affects the preservation of environmental 
flows that ultimately influence ecosystem functioning and services 
(Schewe et al., 2014; Mekonnen and Hoekstra, 2016; Djehdian 
et al., 2019). As such, water availability is a  major constraint on 
human society’s ability to meet the future food and energy needs of 
a growing population (D’Odorico et al., 2018). Water plays a key role 
in the production of energy, including hydro-electricity, bioenergy, 

1 In this chapter, the term ‘evaporation’ includes all evaporative processes over land and ocean, including transpiration over land, while the term ‘evapotranspiration’ (ET) is also used interchangeably 
when the focus is only on land.

and the extraction of unconventional fossil fuels (Schewe et al., 2014; 
D’Odorico et al., 2018; Djehdian et al., 2019). These dependencies 
have resulted in increasing competition for water between the food 
and energy sectors. Pressures on this ‘food-energy-water nexus’ are 
further compounded by increasing globalization, which can transfer 
large-scale water demands to other regions of the world, raising 
serious concerns about local food and water security in regions that 
are highly dependent on agricultural exports or imports (D’Odorico 
et al., 2018).

The consequences of climate change on terrestrial ecosystems and 
human societies are primarily experienced through changes to 
the global water cycle (Jiménez Cisneros et al., 2014). Changes in 
the quantity and seasonality of water due to climate change have 
long been recognized by IPCC and global development agencies as 
heavily influencing the food security and economic prosperity of many 
countries, particularly in the arid and semi-arid areas of the world 
including Asia, Africa, Australia, Latin America, the Mediterranean, 
and small island developing states (Bates et al., 2008; Schewe 
et al., 2014; Mekonnen and Hoekstra, 2016). Having too much or 
too little water increases the likelihood of flooding and drought, 
as precipitation variability increases in a  warming climate (Stocker 
et al., 2013; Hoegh-Guldberg et al., 2018). Climate change poses 
a threat to both regional water availability and global water security. 
Changes in precipitation and glacier runoff and snowmelt influence 
other hydroclimate variables like surface and subsurface runoff, and 
groundwater recharge, which are critical to the water, food and energy 
security of many regions (Oki and Kanae, 2006; Jiménez Cisneros 
et al., 2014; Schewe et al., 2014; Mekonnen and Hoekstra, 2016). 

Currently, around four billion people live under conditions of severe 
freshwater scarcity for at least one month of the year, with half 
a  billion people in the world facing severe water scarcity all year 
round (Mekonnen and Hoekstra, 2016). The AR5 WGII reported that 
approximately 80% of the world’s population already suffers from 
high levels of threat to water security (Jiménez Cisneros et al., 2014). 
Given the vulnerability of the planet’s freshwater resources and the 
role of climate change in intensifying adverse impacts on human 
societies and ecosystems (Hoegh-Guldberg et al., 2018; IPCC, 2018), 
this chapter evaluates advances in the theoretical, observational and 
model based understanding of the global water cycle made since AR5 
(IPCC, 2013) and AR6 Special Reports.

8.1.1.2 Overview of the Global Water Cycle  
in the Climate System

As shown in Figure  8.1, the global water cycle is the continuous, 
naturally occurring movement of water through the climate system 
from its liquid, solid and gaseous forms among reservoirs of the 
ocean, atmosphere, cryosphere and land (Stocker et al., 2013). 
In the atmosphere, water primarily occurs as a gas (water vapour), 
but it is also present as ice and liquid water within clouds where 
it substantially affects Earth’s energy balance (Sections  7.4.2.2 
and 7.4.2.4). The water cycle primarily involves the evaporation1 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1061

Water Cycle Changes  Chapter 8

8

Soil moisture Soil moisture 
54±9054±9054±90%%

Atmosphere 13±3%

Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow Seasonal snow 
3±15%3±15%3±15%3±15%3±15%

Oceans, inland seas
and saline lakes (97%)

Saline groundwater (<2%)

Total water on Earth
(1 380 000 thousand km3)

(a) Water stores

Saline/fossil groundwaterSaline/fossil groundwater 22000±80%

Fresh/young groundwater Fresh/young groundwater 630±70% 

Ice 26000 ±10% ReservoirsReservoirsReservoirsReservoirsReservoirsReservoirsReservoirsReservoirsReservoirs
11±40%11±40%11±40%11±40%11±40%11±40%11±40%

PermafrostPermafrostPermafrostPermafrostPermafrostPermafrostPermafrostPermafrost
210±100%210±100%210±100%

Rivers
2±20%2±20%

Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water Biological water 
1±20%1±20%1±20%1±20%

Saline lakes Saline lakes 
54±90%54±90%

WetlandsWetlandsWetlandsWetlandsWetlands
14±20%14±20%

Fresh water consists 
of:

Soil moisture
Wetlands
Atmosphere
Artificial reservoirs
Seasonal snow 
Rivers
Biological water 

Ice

Fresh groundwater
Permafrost
Fresh lakes

Usable

Usable

Ocean 1 335 000 ±1%

(b) Water fluxes

Fresh lakes  Fresh lakes  Fresh lakes  Fresh lakes  Fresh lakes  Fresh lakes  
220±20% 220±20% 

Fresh water (< 2%)

Units in thousands of km3

Units in thousands of km3  per year

Unusable

Ocean to land water
vapour transport
46±10%

Ocean evaporation 
470±10%

Land evaporation
74±10%

Land precipitation
120±10%

Ocean precipitation
424±10%

Fresh groundwater discharge 0.25±90% 

Groundwater 
recharge 13±60%

Inland drainage 
basin 1±30%

River discharge 
46±10%

Net loss of land ice and
groundwater to oceans 

0.8±15% 

Human 
water use 
24±10%

Figure 8.1 | Depiction of the present-day water cycle based on previous assessments (Trenberth et al., 2011; Rodell et al., 2015; Abbott et al., 2019) 
with adjustments for groundwater fl ows (Zhou et al., 2019c; Luijendijk et al., 2020), seasonal snow (Pulliainen et al., 2020) and ocean precipitation and 
evaporation (Stephens et al., 2012; Allan et al., 2020; Gutenstein et al., 2021). The net loss of frozen and liquid water from land to ocean is estimated from Chapter 9, 
Table 9.5. In the atmosphere, which accounts for only 0.001% of all water on Earth, water primarily occurs as a gas (water vapour), but it is also present as ice and liquid water 
within clouds. The ocean is the primary water reservoir on Earth: it comprises mostly liquid water across much of the globe but also includes areas covered by ice in polar regions. 
Liquid freshwater on land forms surface water (lakes, rivers) and, together with soil moisture and mostly unusable groundwater stores, accounts for less than 2% of global water 
(Stocker et al., 2013). Solid terrestrial water that occurs as ice sheets, glaciers, snow and ice on the surface, and permafrost currently represents nearly 2% of the planet’s water 
(Stocker et al., 2013). Water that falls as snow in winter provides soil moisture and streamfl ow after melting, which are essential for human activities and ecosystem functioning. 
Note that these best estimates do not lead to a perfectly closed global water budget and that this budget has no reason to be closed given the ongoing human infl uence through 
both climate change (e.g., melting of ice sheets and glaciers, see Chapter 9) and water use (e.g., groundwater depletion through pumping into fossil aquifers, see Figure 8.10).
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and precipitation of moisture at the Earth’s surface including 
transpiration associated with biological processes. Water that falls on 
land as precipitation, supplying soil moisture, groundwater recharge, 
and river flows, was once evaporated from the ocean or sublimated 
from ice-covered regions before being transported through the 
atmosphere as water vapour, or in some areas was generated over 
land through evapotranspiration (Gimeno et al., 2010; van der Ent 
and Savenije, 2013). In addition, the net flux of atmospheric and 
continental freshwater is a key driver of sea surface salinity, which in 
turn influences the density and circulation of the ocean (Chapter 9). 

Understanding the interactions between the water and energy 
cycles is one of the four core projects of the World Climate Research 
Programme (WCRP). Latent heat fluxes, released by condensation of 
atmospheric water vapour and absorbed by evaporative processes, are 
critical to driving the circulation of the atmosphere on scales ranging 
from individual thunderstorm cells to the global circulation of the 
atmosphere (Stocker et al., 2013; Miralles et al., 2019). Water vapour 
is the most important gaseous absorber in the Earth’s atmosphere, 
playing a key role in the Earth’s radiative budget (Schneider et al., 2010). 
As atmospheric water vapour content increases with temperature, it 
has a  considerable influence on climate change (Section  7.4.2.2). 
Additionally, a  small fraction of the atmospheric water content is 
liquid or solid and has a major effect on both solar and longwave 
radiative fluxes, from the Earth’s surface to the top of the atmosphere. 
The cloud response to anthropogenic radiative forcings, both in the 
tropics and in the extratropics (Zelinka et al., 2020), is therefore also 
crucial for understanding climate change (Section 7.4.2.4).

The terrestrial water and carbon cycles are also strongly coupled (Cross-
Chapter Box 5.1). As atmospheric carbon dioxide (CO2) concentration 
increases, the physical environment in which plants grow is altered, 
including the availability of soil moisture necessary for plants’ CO2 
uptake and, potentially, the effectiveness of CO2 removal techniques 
to mitigate climate change (Section  5.6.2.1.2). Rising surface CO2 
concentrations also modify stomatal (small pores at the leaf surface) 
regulation as well as the plants’ biomass, thus affecting ecosystem 
photosynthesis and transpiration rates and leading generally to 
a net increase in water use efficiency (Lemordant et al., 2018). These 
coupled changes have profound implications for the simulation of the 
carbon and water cycles (Gentine et al., 2019; see also Section 5.4.1), 
which can be better assessed with the new generation Earth system 
models, although both the carbon concentration and carbon-climate 
feedbacks remain highly uncertain over land (Section  5.4.5; Arora 
et al., 2020). The water constraints on the terrestrial carbon sinks 
are a matter of debate regarding the feasibility or efficiency of some 
land-based CO2 removal and sequestration techniques requested to 
comply with the Paris Agreement (Section 5.6.2.2.1; Fuss et al., 2018; 
Belyazid and Giuliana, 2019).

8.1.2 Summary of Water Cycle Changes From AR5 
and Special Reports

This Report is the first IPCC assessment to include a chapter specifically 
dedicated to providing an integrated assessment of the global water 
cycle changes, by building on many chapters from previous reports. 

This section summarizes observed and projected water cycle changes 
reported in AR5 (IPCC, 2013) and in the recent IPCC Special Reports 
on Global Warming of 1.5°C (SR1.5), the Ocean and Cryosphere in 
a Changing Climate (SROCC), and Climate Change and Land (SRCCL). 

8.1.2.1 Summary of Observed and Projected Water Cycle 
Changes from AR5

Based on long-term observational evidence (Hartmann et al., 2013), 
AR5 concluded it was likely that anthropogenic influence has affected 
the water cycle since the 1960s (IPCC, 2018). Detectable human 
influ ence on changes to the water cycle were found in atmospheric 
moisture content (medium confidence), global-scale changes of 
precipitation over land (medium confidence), intensification of heavy 
precipitation events over land regions where sufficient data networks 
exist (medium confidence), and very likely changes to ocean salinity 
through its connection with evaporation minus precipitation change 
patterns (Sections  2.5, 2.6, 3.3, 7.6, 10.3 and 10.4; Stocker et al., 
2013). The AR5 also reported that it is very likely that global surface air 
specific humidity increased since the 1970s. There was low confidence 
in the observations of global-scale cloud variability and trends, medium 
confidence in reductions of pan-evaporation, and medium confidence 
in the non-monotonic changes of global evapotranspiration since the 
1980s. In terms of streamflow and runoff, AR5 identified that there 
is low confidence in the observed increasing trends of global river 
discharge during the 20th century. Similarly, AR5 concluded that there 
is low confidence in any global-scale observed trend in drought or 
dryness (lack of rainfall) since the mid-20th century. Yet, the frequency 
and intensity of drought likely increased in the Mediterranean and 
West Africa, while they likely decreased in central North America and 
north-western Australia since 1950. 

Water cycle projections in AR5 (Collins et al., 2013) were 
considered primarily in terms of water vapour, precipitation, surface 
evaporation, runoff, and snowpack. Globally-averaged precipitation 
was projected to increase with global warming with virtual certainty 
(Chapter 12 Executive Summary and Section 12.4.1.1). Regionally, 
precipitation in some areas of the tropics and polar regions could 
increase by more than 50% by the end of the 21st century under 
the RCP8.5 emissions scenario, while precipitation in large areas 
of the subtropics could decrease by 30% or more (AR5 FAQ 12.2, 
Figure  12.22). Overall, the contrast of annual mean precipitation 
between dry and wet regions and between dry and wet seasons 
(‘wet get wetter, dry get drier’) was projected to increase over 
most of the globe with high confidence (Chapter  12 Executive 
Summary and Section 12.4.5.2). Globally, the frequency of intense 
precipitation events was projected to increase while the frequency 
of all precipitation events was projected to decrease, leading to 
the contradictory-seeming projection of a  simultaneous increase 
in both droughts and floods (12.2 and Section  12.4.5.5 in AR5 
WGI). Surface evaporation change was projected to be positive 
over most of the ocean and to generally follow the pattern of 
precipitation change over land (Chapter  12 Executive Summary, 
and Section  12.4.5.4). Near-surface relative humidity reductions 
over many land areas were projected to be likely, with medium 
confidence (Section 12.4.5.1). General decreases in soil moisture in 
present-day dry regions were considered likely, and projected with 
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medium confidence under the RCP8.5 scenario (Section 12.4.5.3). 
Soil moisture drying in the Mediterranean, south-west USA 
and southern African regions was considered likely, with high 
confidence by the end of this century under the RCP8.5 scenario 
(Section  12.4.5.3). Projections for annual runoff included both 
decreases and increases. Decreases in Northern Hemisphere snow 
cover were assessed as very likely with continued global warming 
(Section  12.4.6.2). As temperatures increase, snow accumulation 
was projected to begin later in the year and melting to start earlier, 
with related changes in snowmelt-driven river flows (FAQ 12.2 and 
Section 12.4.6.2 in AR5 WGI). In terms of the potential for abrupt 
change in components of the water cycle, long-term droughts and 
monsoonal circulation were identified as potentially undergoing 
rapid changes, but the assessment was reported with low 
confidence (Sections 12.5.5.8.1 and 12.5.5.8.2, and Table 12.4).

8.1.2.2 Key Findings of AR6 Special Reports

The SR1.5 assessed the impacts of global warming of 1.5°C above 
pre-industrial levels. The dominant human influence on observed 
global warming and related water cycle changes was confirmed. 
Further evidence that anthropogenic global warming has caused 
an increase in the frequency, intensity and/or amount of heavy 
precipitation events at the global scale (medium confidence), as 
well as in drought occurrence in the Mediterranean region (medium 
confidence) was also reported. Chapter 3 of SR1.5 (Hoegh-Guldberg 
et al., 2018) highlights that each half degree of additional global 
warming influences the climate response. Heavy precipitation shows 
a  global tendency to increase more at 2°C compared to 1.5°C, 
though there is low confidence in projected regional differences 
in heavy precipitation at 1.5°C compared to 2°C global warming, 
except at high latitudes or at high altitude where there is medium 
confidence. A key finding is that ‘limiting global warming to 1.5°C 
compared to 2°C would approximately halve the proportion of the 
world population expected to suffer water scarcity, although there 
is considerable variability between regions (medium confidence)’ 
(SR1.5). This is consistent with greater adverse impacts found at 
2°C compared to 1.5°C for a number of dryness or drought indices 
(Schleussner et al., 2016; Lehner et al., 2017; Greve et al., 2018). There 
is also medium confidence that land areas with increased runoff and 
exposure to flood hazards will increase more at 2°C compared to 
1.5°C of global warming.

The Special Report on the Ocean and Cryosphere in a  Changing 
Climate (SROCC) provides a comprehensive assessment of recent and 
projected changes, specifically in snow and ice-covered areas that 
form a key component of the water cycle in high-elevation and high-
latitude areas. High mountain regions have experienced significant 
warming since the early 20th century, resulting in reduced snowpack 
on average (Marty et al., 2017), with glaciers retreating globally 
since the mid-20th century (Marzeion et al., 2018; Zemp et al., 2019). 
Glacier shrinkage and snow cover changes have led to changes 
(both increases and decreases) in streamflow in many mountain 
regions in recent decades (Milner et al., 2017). Permafrost regions 
have undergone degradation and ground-ice loss due to recent 
warming (Lu et al., 2017). Glacier mass loss is projected to continue 
through the 21st century under all scenarios. In high mountain areas, 

low-elevation snow cover is also projected to decrease, regardless 
of emissions scenario. Widespread permafrost thaw is projected to 
continue through this century and beyond. River runoff in snow- or 
glacier-fed basins is projected to increase in winter and to decrease in 
summer (and in the annual mean) by 2100. In the oceans, the Atlantic 
Meridional Overturning Circulation (AMOC) will very likely weaken 
over the 21st century under all emissions scenarios (SROCC), with 
potential effects on atmospheric circulation and the water cycle at 
the regional scale (see also Section 8.6).

The Special Report on climate change, desertification, land 
degradation, sustainable management, food security, and 
greenhouse gas (GHG) fluxes in terrestrial ecosystems (SRCCL) has 
clear connections with the water cycle. This Report indicates that since 
1850–1900, land surface temperature has risen nearly twice as much 
as global surface temperature (high confidence), with an increase 
in dry climates (high confidence). Land surface processes modulate 
the likelihood, intensity and duration of many extreme events 
including droughts (medium confidence) and heavy precipitation 
(medium confidence). The direction and magnitude of hydrological 
changes induced by land use change and land surface feedbacks 
vary with location and season (high confidence). Desertification 
exacerbates climate change through feedbacks involving vegetation 
cover, greenhouse gases and mineral dust aerosol (high confidence). 
Urbanization increases extreme rainfall events over or downwind of 
cities (medium confidence). Intensification of rainy events increase 
their consequences on land degradation. 

8.1.3 Chapter Motivations, Framing and Preview

The AR5 report was a major step forward in the assessment of the 
human influence on the Earth’s water cycle, yet regional projections 
of precipitation and water resources often remained very uncertain 
for a range of reasons including modelling uncertainty and the large 
influence of internal variability (Sections  1.4.3 and 8.5.2; Hawkins 
and Sutton, 2011; Deser et al., 2012). Since AR5, longer and more 
homogeneous observational and reanalysis datasets have been 
produced along with new ensembles of historical simulations driven 
by all or individual anthropogenic forcings. These factors, together 
with improved detection-attribution tools, has enabled a  more 
comprehensive assessment and a  better understanding of recent 
observed water cycle changes, including the competing effects of 
GHGs and aerosol emissions. New paleoclimate reconstructions 
have been also developed, particularly from the SH, that were not 
available at the time of AR5. There have also been advances in 
modelling clouds, precipitation, surface fluxes, vegetation, snow, 
floodplains, groundwater and other processes relevant to the water 
cycle. Convection permitting and cloud-resolving models have been 
implemented over increasingly large domains and can be used as 
benchmarks for the evaluation of the current-generation climate 
models. The added value of increased resolution in global or regional 
climate models can be also assessed more thoroughly based on 
dedicated model intercomparison projects (Sections 10.3.3 and 8.5.1). 
Ongoing research activities on decadal predictions and observational 
constraints are aimed at narrowing the plausible range of near-term 
(2021–2040) to long-term (2081–2100) water cycle changes.
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This chapter assesses water cycle changes and considers climate 
change from the perspective of its effects on water availability 
(including streamflow and soil moisture, snow mass and glaciers, 
groundwater, wetlands and lakes) rather than only precipitation. 
The chapter highlights the sensitivity of the water cycle to multiple 
drivers and the complexity of its responses, depending on regions, 
seasons and time scales. Anthropogenic drivers include not only 
emissions of GHGs but also different species of aerosols, land and 
water management practices. Emphasis is placed on assessing the 
full range of projections, including ‘low likelihood, high impact’ 
climate trajectories such as the potential for abrupt changes in the 
water cycle.

The chapter starts with theoretical evidence that link small-scale 
processes and drivers, as well as global energy budget and large-
scale circulation constraints to physically-understood changes in the 
global water cycle (Section 8.2). Observed and projected water cycle 
changes (Sections 8.3 and 8.4, respectively) are assessed in separate 
sections, but with a  parallel structure to facilitate comparison of 
a specific topic across sections. Projections are primarily assessed on 
the basis of contrasted emissions scenarios to emphasize the water 
cycle response to mitigation. Unless otherwise specified, projected 
anomalies are estimated relative to the 1995–2014 baseline 
climatology and are assessed over 20-year time slices, 2021–2040, 
2041–2060 and 2081–2100 for near-, mid- and long-term changes 
respectively. Beyond multi-model ensemble means, model response 
uncertainty, the influence of natural climate variability, and the 
potential non-linearities in the regional water cycle response are 
also considered (Section 8.5). Low likelihood but physically plausible 

high-impact scenarios are also assessed, especially the potential 
for abrupt climate change (Section 8.6). Final remarks about future 
studies on water cycle changes (Section 8.7) are also provided, and 
the chapter addresses three frequently asked questions (FAQs) on the 
water cycle’s sensitivity to land use change (FAQ 8.1), the projected 
occurrence and severity of floods (FAQ 8.2) and droughts (FAQ 8.3) at 
the global scale. This chapter outline is summarized with a schematic 
(Figure  8.2) which also provides a  quick guide to the main topics 
addressed across the different sections.

Chapter  8  has multiple links across all AR6 WGI chapters, so 
necessarily includes references to other chapter subsections and 
figures. Model evaluation of large-scale circulation and precipitation 
is mostly covered by Chapter  3, while hydrological extremes are 
covered by Chapter 11. Chapter 8 focuses on key processes relevant 
to the water cycle and their resolution-dependent representation in 
models. Observed and projected changes in large-scale circulation and 
precipitation are primarily assessed in Chapters 2, 3 and 4. Beyond 
global and regional mean precipitation amounts, Chapter  8  also 
focuses on other precipitation properties (e.g.,  frequency, intensity 
and seasonality) and other water cycle variables (evapotranspiration, 
runoff, soil moisture and aridity, solid and liquid freshwater reservoirs). 
Key regional phenomena (e.g.,  tropical overturning circulations, 
monsoons, extratropical stationary waves and storm tracks, modes 
of variability and related teleconnections) are also assessed given 
their major dynamical contribution to regional water cycle changes. 
Although the biosphere and the cryosphere are key components of 
the water cycle, a more comprehensive assessment of their responses 
can be found in Chapters 5 and 9, respectively. Further assessment 
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Figure 8.2 | Visual guide to Chapter 8. 
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on regional water cycle changes can be found in Chapters 10 to 12 
and in the Atlas. The reader is also referred to the interactive Atlas 
for a  more detailed assessment of the range of model biases and 
responses at the regional scale. Beyond WGI, water is also a major 
topic for both adaptation and mitigation policies so has strong 
connections with both WGII and WGIII. Assessment of hydrological 
impacts at basin and catchment scales, including a broader discussion 
on adaptation and vulnerability, potential threats to water security, 
societal responses, improving resilience in water systems and related 
case studies is provided in WGII (Chapter 4).

8.2 Why Should We Expect Water 
Cycle Changes?

It is well understood that global precipitation and evaporation 
changes are determined by Earth’s energy balance (Section 8.2.1). 
At regional scales smaller than about 4000 km, water cycle changes 
become dominated by the transport of moisture ( Dagan et al., 
2019a; Jakob et al., 2019; Dagan and Stier, 2020), which depend 
on both thermodynamic and dynamical processes (Section  8.2.2). 
The constraints of energy budgets at global scales and moisture 
budgets at regional scales cause key water cycle characteristics 
such as precipitation intensity, duration and intermittence to alter 

as the climate warms ( Pendergrass and Hartmann, 2014b; Döll et al., 
2018). Future water availability is also determined by changes in 
evaporation, which is driven by a general increase in the atmospheric 
evaporative demand ( Scheff and Frierson, 2014) and modulated by 
vegetation controls on evaporative losses (Milly and Dunne, 2016; 
Lemordant et al., 2018; Vicente-Serrano et al., 2020). At regional 
scales, water cycle changes result from the interplay between 
multiple potential drivers (CO2, aerosols, land use change and human 
water use; Section 8.2.3). This section assesses advances in physical 
understanding of global to regional drivers of water cycle changes.

8.2.1 Global Water Cycle Constraints

The Clausius–Clapeyron equation determines that low-altitude 
specifi c humidity increases by about 7% °C–1 of warming, assuming 
that relative humidity remains constant, which is approximately 
true at a  global scale but not necessarily valid regionally. It is 
very likely that near surface specifi c humidity has increased since 
the 1970s (Section  2.3.1) and total atmospheric water vapour 
content (precipitable water) is very likely to increase at close to 
a thermodynamic rate on average globally with continued warming. 
Different radiative forcing mechanisms lead to some variation in 
the global mean thermodynamic response by altering the relative 
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by the atmosphere; H is sensible heat fl ux; E is surface evaporative heat fl ux; and T is temperature). Adapted from Allan et al. (2020) with statistics taken from Figures 7.2 and 
Figure 8.1.

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1066

Chapter 8 Water Cycle Changes

8

humidity distribution: the rate of global precipitable water increase 
with global surface temperature ranges2 from 6.4 ± 1.5% °C–1 for 
sulphate aerosol-induced changes to 9.8 ±  3.3%  °C–1 for black 
carbon-induced changes based on idealized modelling (Hodnebrog 
et al., 2019b). Specific humidity increases at a  lower rate over 
land due to decreasing relative humidity (Collins et al., 2013) 
as corroborated by observations and simple models (Byrne and 
O’Gorman, 2018). Prevalent increases in atmospheric water vapour 
drive powerful amplifying feedbacks (Section  7.4.2.2), intensify 
atmospheric moisture transport and heavy precipitation events 
(Section  8.2.3.2), and alter the surface and atmospheric energy 
balance, thereby influencing global evaporation and precipitation 
changes (Figure 8.3).

While thermodynamics exert a  strong control on water vapour 
changes, global mean precipitation and evaporation are constrained 
by the balance of energy fluxes in the atmosphere and at the surface 
(Figure 8.3). Global mean precipitation increases of 1–3% per 1 °C of 
warming, as estimated in AR5 (Collins et al., 2013), are explained as 
a combination of rapid (or fast) atmospheric adjustments and slow 
temperature-driven responses (Figure 8.3, panels 1–4) to radiative 
forcings (Andrews et al., 2010; Bala et al., 2010; Cao et al., 2012). Fast 
atmospheric adjustments are caused by near-instantaneous (hours 
to days) changes in the atmospheric energy budget (Figure  8.3, 
panels 1–3) and atmospheric properties (e.g.,  temperature, clouds 
and water vapour) in direct response to the radiative effects of 
a forcing agent (Sherwood et al., 2015). A further relatively fast (days 
to months) adjustment of the climate system involves interactions 
with vegetation and land surface temperature (Figure 8.3, panel 3), 
which respond more rapidly than ocean temperature to a radiative 
forcing (Cao et al., 2012; Dong et al., 2014). The slower temperature-
dependent precipitation response is driven by the increased 
atmospheric radiative cooling rate of a  warming atmosphere. 
Warming drives increases in precipitation intensity while frequency is 
dominated by rapid atmospheric adjustments to the radiative forcing 
based on abrupt 4×CO2 CMIP6 simulations (Douville and John, 2021). 
Since AR5, many new studies applying the dual rapid adjustment and 
slow response framework show that global precipitation responses 
to different forcing agents are physically well understood (Fläschner 
et al., 2016; MacIntosh et al., 2016; Samset et al., 2016; Myhre et al., 
2018a). Further confidence in the coupled processes involved are 
provided by simple models representing the energy budget and 
thermodynamic constraints that limit global mean evaporation to 
around 1.5% °C–1 (Siler et al., 2019). This strengthens the physical 
link between energy budget and thermodynamic drivers of the global 
water cycle (Section 8.2.2.1).

Hydrological sensitivity (η) is defined as the linear change in 
global mean precipitation with global surface air temperature 
(GSAT) once rapid adjustments of the hydrological cycle to radiative 
forcings have occurred (Figure 8.3a). There is robust understanding 
and high agreement across idealized CO2 forcing CMIP5 and CMIP6 
experiments (Fläschner et al., 2016; Samset et al., 2018b; Pendergrass, 
2020b) that η  = 2.1–3.1%  °C–1 (Figure  8.4). The magnitude of 
η depends primarily on atmospheric net radiative cooling which is 

2 5–95% confidence range estimates are quoted unless otherwise stated.

controlled by thermal deepening of the troposphere (Jeevanjee and 
Romps, 2018) and limited by surface evaporation and consequent 
atmospheric latent heat release and warming (Webb et al., 2018). 
Climate feedbacks (e.g., temperature lapse rate and clouds) that vary 
across models (Sections 7.4 and 3.8.2) also modulate the magnitude 
of η  (O’Gorman et al., 2012; Fläschner et al., 2016; T.B. Richardson 
et al., 2018a). Uncertainty in η  across CMIP5 models relating to 
deficiencies in representing low-altitude cloud feedbacks (Watanabe 
et al., 2018) and absorption of shortwave radiation by atmospheric 
water vapour (DeAngelis et al., 2015) do not apply well to CMIP6 
simulations, the latter improvement explained by more accurate 
radiative transfer modelling (Pendergrass, 2020b).

Observed estimates of hydrological sensitivity (η = 3.2 ± 0.8% °C–1) 
based on interannual variability (Allan et al., 2020) or responses to 
El Niño–Southern Oscillation (ENSO) of 9% °C–1 (Adler et al., 2017) are 
not suitable to assess the magnitude of η (Figure 8.4). This is because 
these relationships depend on amplifying feedbacks associated with 
ENSO-related cloud changes (G.L. Stephens et al., 2018) that may not 
be relevant for longer term climate change. However, there is robust 
evidence and high agreement across observations, modelling and 
supporting physics that precipitation increases at a lower % °C–1 rate 
than water vapour content in the global mean (Held and Soden, 2006; 
Collins et al., 2013; Allan et al., 2020), implying an increased residence 
time of atmospheric water vapour (Hodnebrog et al., 2019b; Dijk et al., 
2020). Increasing global precipitation, evaporation and moisture fluxes 
with warming thereby drive an intensification but not acceleration of 
the global water cycle (Sections 8.3.1.1 and 8.4.1.1). 

The overall global mean rate of precipitation change per 1 °C of 
GSAT increase, apparent hydrological sensitivity (ηa), is reduced 
compared to hydrological sensitivity by the direct influence of 
radiative forcing agents on the atmospheric energy balance. Rapid 
atmospheric adjustments that alter precipitation are primarily 
caused by GHGs and absorbing aerosols, with high agreement and 
medium evidence across idealized simulations (Fläschner et al., 2016; 
Samset et al., 2016). A  range of rapid precipitation adjustments to 
CO2 between models are also attributed to vegetation responses 
leading to a re-partitioning of surface latent and sensible heat fluxes 
(DeAngelis et al., 2016). Values obtained from six CMIP5 models 
simulating the Last Glacial Maximum (LGM; 21,000–19,000 years 
ago) and pre-industrial period (ηa = 1.6–3.0% °C–1) are larger than for 
each corresponding abrupt 4×CO2 experiment (ηa = 1.3–2.6% °C–1) 
due to differences in the mix of forcings, vegetation and land surface 
changes and a  higher thermodynamic %  °C–1 evaporation scaling 
in the colder state (Figure  8.4, Section  8.4.1.1; G.  Li et al., 2013). 
Updated estimates across comparable experiments from 22 CMIP5/
CMIP6 models (Rehfeld et al., 2020) display a  consistent range 
(ηa = 1.7 ± 0.6% °C–1). Confirming ηa in observations (Figure 8.4) is 
difficult due to measurement uncertainty, varying rapid adjustments 
to radiative forcing and unforced variability (Dai and Bloecker, 2019; 
Allan et al., 2020).

Climate drivers that instantaneously affect the surface much more than 
the atmospheric energy budget (such as solar forcing and sulphate 
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aerosol) produce only a small rapid adjustment of the global water 
cycle and therefore larger ηa than drivers that immediately modulate 
the atmospheric energy budget such as GHGs and absorbing aerosol 
(Salzmann, 2016; Samset et al., 2016; Lin et al., 2018; F.  Liu et al., 
2018). Thus, global precipitation appears more sensitive to radiative 
forcing from sulphate aerosols (2.8 ± 0.7% °C–1; ηa≈η) than GHGs 
(1.4 ± 0.5% °C–1; ηa<η) while the response to black carbon aerosol 
can be negative (–3.5 ± 5.0% °C–1; ηa<<η) due to strong atmospheric 
solar absorption (Samset et al., 2016). Therefore, artificially reducing 
surface-absorbed sunlight through solar radiation modification 
strategies to mitigate GHG warming will not mitigate precipitation 
changes (see Sections  4.6.3.3, 6.4.7 and 8.6.3). Aerosol-induced 
precipitation changes depend upon the type of aerosol species 
and their spatial distribution. Global mean precipitation increases 
after complete removal of present-day anthropogenic aerosol 
emissions (see also Section 4.4.4) in four different climate models 
(ηa = 1.6–5.5% °C–1) are mainly attributed to sulphate aerosol as 
opposed to other aerosol species (Samset et al., 2018b). Idealized 
modelling studies show that sulphate aerosol increases over Europe 
produce a  larger global precipitation response than an equivalent 
increase in aerosol burden or radiative forcing over Asia, explained 
by differences in cloud climatology and cloud-aerosol interaction 
(Kasoar et al., 2018; L. Liu et al., 2018). The vertical profiles of black 
carbon and ozone further influence the magnitude of the rapid global 
precipitation response, yet are difficult to observe and simulate (Allen 
and Landuyt, 2014; MacIntosh et al., 2016; Stjern et al., 2017; Sand 
et al., 2020). 

Hydrological sensitivity is generally lower over land but with a large 
uncertainty range (η = –0.1 to 3.0%  °C–1) relative to the oceans 
(η = 2.3 to 3.3% °C–1) based on multi-model 4 × CO2 CMIP6 simulations 
(Pendergrass, 2020b), broadly consistent with comparable CMIP5 
experiments (T.B.  Richardson et al., 2018a; Samset et al., 2018a). 
Suppressed hydrological sensitivity over land (Figures 8.3d and 8.4) 
is associated with greater warming compared with the oceans, which 
alters atmospheric circulation and precipitation patterns (Saint-Lu 
et al., 2020). Also, since oceans supply much of the moisture to fuel 
precipitation over land, the slower ocean warming rate means there 
is insufficient moisture supplied to maintain continental relative 
humidity levels (Byrne and O’Gorman, 2018), which can inhibit 
convection (J. Chen et al., 2020a). Land surface feedbacks involving 
soil-vegetation-atmosphere coupling further drive continental drying 
(Berg et al., 2016; Kumar et al., 2016; Chandan and Peltier, 2020). 
The suppressed hydrological sensitivity is counteracted by rapid 
precipitation responses in most GHG-forced simulations, explained 
by increases in surface downward longwave radiation due to CO2 
increases that rapidly warm the land, destabilize the troposphere and 
strengthen vertical motion in the short term (Chadwick et al., 2014; 
T.B. Richardson et al., 2016, 2018a). There is medium understanding 
of how land–sea warming contrast governs rapid precipitation 
responses based on idealized modelling that shows similar spatial 
patterns of precipitation response to radiative forcing from GHGs, 
solar forcing and absorbing aerosols (Xie et al., 2013; Samset et al., 
2016; Kasoar et al., 2018). Rapid precipitation adjustments to CO2 
have been counteracted by cooling from anthropogenic aerosol 
increases over land (Box 8.1) but this compensation is expected to 
diminish as aerosol forcing declines (T.B. Richardson et al., 2018a). 

The fast and slow precipitation responses over global land combine 
on average during transient climate change (Figure  8.3d). This 
explains a  consistent land and ocean mean precipitation increase 
in projections (Table 4.3) but this is determined by a complex and 
model-dependent evolution of continental water cycle changes over 
space and time.

Increases in global precipitation over time, as the climate warms, are 
partly offset by the overall cooling effects of anthropogenic aerosol 
and by rapid atmospheric adjustments to increases in GHGs and 
absorbing aerosol. This explains why multi-decadal trends in global 
precipitation responses in the satellite era (Adler et al., 2017; Allan 
et al., 2020) are small and difficult to interpret given observational 
uncertainty, internal variability and volcanic forcings. The delayed 
warming effect of rising CO2 concentration, combined with declining 
aerosol cooling, are expected to increase the importance of the slow 
temperature-related effects on the energy budget relative to the 
more rapid direct radiative forcing effects as transient climate change 
progresses (Shine et al., 2015; Salzmann, 2016; Myhre et al., 2018b). 

In summary, there is high confidence that global mean evaporation 
and precipitation increase with global warming, but the estimated 
rate is model-dependent (very likely range of 1–3 % °C–1). The global 
increase in precipitation is determined by a robust response to global 
surface temperature only (very likely 2–3% °C–1) that is partly offset 
by fast atmospheric adjustments to the vertical profile of atmospheric 
heating by GHGs and aerosols. Global precipitation increases due to 
GHGs are offset by the well-understood overall surface radiative 
cooling effect by aerosols (high confidence). Over land, the average 
warming-related increase in precipitation is expected to be smaller 
than over the ocean due to increasing land–ocean thermal contrast 
and surface feedbacks, but the overall precipitation increase over 
land is generally reinforced by fast atmospheric responses to GHGs 
that strengthens convergence of winds (medium confidence). Global 
mean precipitation and evaporation increase at a  lower rate than 
atmospheric moisture per 1°C of global warming (high confidence), 
leading to longer water vapour lifetime in the atmosphere and driving 
changes in precipitation intensity, duration and frequency and an 
overall intensification but not acceleration of the global water cycle.

8.2.2 Constraints on the Regional Water Cycle

8.2.2.1 Thermodynamic Constraints on Atmospheric 
Moisture Fluxes

A warming climate drives increases in atmospheric moisture and 
horizontal moisture transport from the divergent to the convergent 
portions of the atmospheric circulation (including storm systems, 
the tropical rain belt and monsoons) that on average amplifies 
existing precipitation minus evaporation (P–E) patterns (Held and 
Soden, 2006). Increased latent heat transports in high latitudes 
also contribute to polar amplification of warming (Section 7.4.4.1). 
Although convergent parts of the atmospheric circulation are 
expected to become wetter (in terms of increasing P–E) and net 
evaporative regions drier (increasing E–P) these regions are not 
geographically and seasonally fixed and their location and timing 
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are expected to alter (Section  8.2.2.2). Atmospheric and ocean 
circulation changes overall decrease the amplification of P–E 
and salinity patterns. Paleoclimate evidence confirms that during 
the LGM zonal mean changes were roughly in agreement with 
thermodynamic expectations (G.  Li et al., 2013). However regional 
changes can be dominated by dynamics, including responses to the 
large Northern Hemisphere (NH) ice sheets (DiNezio and Tierney, 
2013; T.  Bhattacharya et al., 2017; Scheff et al., 2017; D’Agostino 
et al., 2019; Lowry and Morrill, 2019) such that altered P–E patterns 
are not well described by thermodynamic drivers (Oster et al., 2015; 
Lora, 2018; Morrill et al., 2018).

There is robust evidence and high agreement across thermodynamics, 
detailed modelling and observations that amplification of P–E 
patterns occurs over the oceans (Figure  8.5a) with an associated 
‘fresh gets fresher, salty gets saltier’ signature in ocean salinity 
(Sections  2.3.3.2 and 3.5.2). This amplification is moderated by 
proportionally larger increases in subtropical ocean evaporation 
and weakening of the tropical circulation (Section  8.2.2.2), an 
expectation supported by observations (Skliris et al., 2016) and 
process understanding (Yang and Roderick, 2019). Thermodynamics 
explain a smaller low latitude evaporation increase (1% °C–1) than in 
high latitudes (5% °C–1) with changes in surface radiation, boundary 

layer adjustments and ocean heat uptake playing a  secondary 
role, based on idealized modelling (Siler et al., 2019). Increased 
evaporation from warmer oceans and lakes is exacerbated by the 
loss of surface ice in some regions (Bintanja and Selten, 2014; Laîné 
et al., 2014; W. Wang et al., 2018; Sharma et al., 2019; Woolway 
et al., 2020). This can generate a  more local moisture source for 
precipitation, for example in north-west Greenland during non-
summer months since the 1980s (Nusbaumer et al., 2019), though 
moisture transport changes can counteract this effect (Nygård 
et al., 2020). Ocean stratification due to heating of the upper layers 
through radiative forcing has been identified as a mechanism that 
further amplifies surface salinity patterns beyond the responses 
driven by water cycle changes alone (Zika et al., 2018). 

Since AR5, numerous studies have confirmed that changes in P–E 
with warming over land cannot be interpreted simply as a  ‘wet 
regions get wetter, dry regions get drier’ response (Chadwick et al., 
2013; Greve et al., 2014; Roderick et al., 2014; Byrne and O’Gorman, 
2015; Scheff and Frierson, 2015). Firstly, P–E is a simplistic diagnostic 
of the water cycle that inadequately describes ‘dryness’ or aridity (Fu 
and Feng, 2014; Roderick et al., 2014; Greve and Seneviratne, 2015; 
Scheff and Frierson, 2015; Greve et al., 2019; Vicente-Serrano et al., 
2020). Secondly, terrestrial P–E is generally positive and balanced 
by surface runoff and percolation into subsurface soils and 
aquifers (Figure 8.1). As a result, the simple thermodynamic scaling 
(Figure 8.5b) predicts that P–E over land will become more positive 
(wetter) with warming (Greve et al., 2014; Roderick et al., 2014; 
Byrne and O’Gorman, 2015). This is not necessarily true, however, 
in the dry seasons and regions where terrestrial water is lost to 
the atmosphere and exported (Sheffield et al., 2013; Kumar et al., 
2015; Keune and Miralles, 2019). Thirdly, regional P–E patterns over 
land are affected by changes in atmospheric circulation, oceanic 
moisture supply and land surface feedbacks. As the land warms 
more than oceans, spatial gradients in temperature and relative 
humidity influence moisture supply and reduce P–E over some land 
regions, such as southern Chile and Argentina around 30°S–50°S 
as captured by an extended thermodynamic scaling (Figure 8.5b). 
Drying of soils can be amplified by vegetation responses (Berg et al., 
2016; Byrne and O’Gorman, 2016; Lambert et al., 2017) but limited 
by atmospheric circulation feedbacks (Zhou et al., 2021). Changes 
in soil moisture and rainfall intensity (Sections 8.2.3.2 and 8.2.3.3) 
can alter the partitioning of precipitation between evaporation and 
runoff, further complicating terrestrial P–E responses (Short Gianotti 
et al., 2020).

The strong physical basis for regionally and seasonally dependent 
responses of P–E and the expectation for an increasing contrast 
between wet and dry seasons and weather regimes is supported 
by high agreement across multiple observational and CMIP5/CMIP6 
modelling studies (Liu and Allan, 2013; Kumar et al., 2015; Polson 
and Hegerl, 2017; Ficklin et al., 2019; Deng et al., 2020; Schurer 
et al., 2020). Increased moisture transports into storm systems, 
monsoons and high latitudes increase the intensity of wet events 
(Section  8.2.3.2), while stronger atmospheric evaporative demand 
with warming (Scheff and Frierson, 2014; Vicente-Serrano et al., 
2018; Cook et al., 2019) is an important mechanism for intensifying 
dry events (Section  8.2.3.3) and decreasing soil moisture over 
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Figure 8.4 | Estimate (5–95% range) of the increase in precipitation and 
its extremes with global mean surface warming. Global time-averaged 
precipitation changes (left) are based on responses to increasing CO2 (apparent 
hydrological sensitivity, ηa) and the temperature-dependent component (hydrological 
sensitivity, η), both of which are based on GCM experiments; the land (L) and ocean 
(O) components (Fläschner et al., 2016; T.B. Richardson et al., 2018a; Samset et al., 
2018a; Pendergrass, 2020b; Rehfeld et al., 2020) and observational estimates (GPCP/
HadCRUTv4.6) use trends (1988–2014) as a proxy for ηa and interannual variability 
as a proxy for η, with 90% confidence range accounting for statistical uncertainty 
only (Adler et al., 2017; Allan et al., 2020). For extreme precipitation, assessment 
is for 24 hour, 99.9th percentile or annual maximum extremes from GCMs (Fischer 
and Knutti, 2015; Pendergrass et al., 2015; Borodina et al., 2017; Pfahl et al., 
2017; Sillmann et al., 2017), regional climate models (RCMs) (Bao et al., 2017), 
an  observationally-constrained tropical estimate (O’Gorman, 2012) and estimates 
from observed changes (Westra et al., 2013; Donat et al., 2016; Borodina et al., 
2017; Zeder and Fischer, 2020; Sun et al., 2021). For hourly and sub-hourly extremes 
observed changes (Barbero et al., 2017; Guerreiro et al., 2018) and high-resolution 
models, including RCM and cloud-resolving models (CRMs) are assessed (Ban et al., 
2015; Prein et al., 2017; Haerter and Schlemmer, 2018; Hodnebrog et al., 2019a; 
Lenderink et al., 2019). Further details on data sources and processing are available 
in the chapter data table (Table 8.SM.1).
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many subtropical land regions. However, aridification is modulated 
regionally by poleward migration of the subtropical dry zones and 
an increasing land–ocean temperature contrast that drives declining 
relative humidity (Section 8.2.2.2).

To summarize, increased moisture transport from evaporative oceans 
to high precipitation regions of the atmospheric circulation will drive 
amplified P–E and salinity patterns over the ocean (high confidence) 
while more complex regional changes are expected over land. 
Greater warming over land than ocean alters atmospheric circulation 
patterns and on average reduces continental near-surface relative 
humidity which along with vegetation feedbacks can contribute to 
regional decreases in precipitation (high confidence). Based on an 
improved understanding of thermodynamic drivers since AR5 and 
multiple lines of evidence, there is high confidence that very wet or 
dry seasons and weather patterns will intensify in a warming climate 
such that wet spells become wetter and dry spells drier. 

8.2.2.2 Large-scale Responses in Atmospheric 
Circulation Patterns

Responses of the large-scale atmospheric circulation to a  warming 
climate are not as well understood as thermodynamic drivers 
(Shepherd, 2014). The AR5 identified robust features including 
a  weakening and broadening of tropical circulation with poleward 
movement of tropical dry zones and mid-latitude jets (Collins et al., 

2013). These can dominate regional water cycle changes, affecting 
the availability of freshwater and the occurrence of climate extremes. 
Atmospheric circulation changes generally dominate the spatial 
pattern of rapid precipitation adjustments (Section 8.2.1) to different 
forcing agents in the tropics (Bony et al., 2013; He and Soden, 2015; 
T.B. Richardson et al., 2016, 2018a; Tian et al., 2017; X. Li et al., 2018). 
Radiative forcing with heterogeneous spatial patterns such as ozone 
and aerosols (including cloud interactions; Section 6.4.1 and Box 8.1) 
drive substantial responses in regional atmospheric circulation 
through uneven heating and cooling effects (L. Liu et al., 2018; Dagan 
et al., 2019b; Wilcox et al., 2019). Changes in atmospheric circulation 
are also driven by slower, evolving patterns of warming and associated 
changes in temperature and moisture gradients (Bony et al., 2013; 
Samset et al., 2016, 2018a; Ceppi et al., 2018; Ma et al., 2018). There is 
strong evidence that large regional water cycle changes arise from the 
atmospheric circulation response to radiative forcings and associated 
SST pattern evolution but low agreement in the sign and magnitude 
(Chadwick et al., 2016b). The role of prolonged weather regimes in 
determining wet and dry extremes is also better understood since AR5 
(Kingston and McMecking, 2015; Schubert et al., 2016; D. Richardson 
et al., 2018; Barlow et al., 2019). Advances in knowledge of expected 
large-scale dynamical responses of the water cycle are further 
assessed in this section (see also Figure 8.21).

Long-term weakening of the tropical atmospheric overturning 
circulation is expected as climate warms in response to elevated 
CO2 (Collins et al., 2013). A  weaker circulation is required 
to reconcile  global mean low-level water vapour increases 
(around  7%  °C–1) with the smaller global precipitation responses 
of about 1–3% °C–1 (Section 8.2.1). The slowdown can occur in both 
the Hadley and Walker circulations, but occurs preferentially in the 
Walker circulation in most climate models (Vecchi and Soden, 2007) 
but this response has been questioned on the basis of model bias 
in east Pacific SST (Seager et al., 2019a). Weakening is expected 
to drive P–E decreases over the western Pacific and increases over 
the eastern Pacific. However, the driving mechanisms for Walker 
circulation weakening differ to those involved in determining ENSO 
variability, so it is too simplistic to interpret changes as an El Niño 
pattern of regional hydrological cycle extremes (Sohn et al., 2019). 
Internal variability is also capable of temporarily strengthening the 
Walker circulation (Section 2.3.1.4.1; L’Heureux et al., 2013; Chung 
et al., 2019) while regional responses depend on the pattern of 
warming (Sandeep et al., 2014). 

Model simulations show a stronger Pacific Walker circulation during 
the LGM in response to a cooler climate (consistent with an expected 
weakening in a warmer climate), but a weaker Indian Ocean east–
west circulation in response to the exposure of the Sunda and Sahul 
shelves due to lowered sea level (DiNezio et al., 2011). The latter 
effect is detectable in proxies for hydroclimate, as well as salinity and 
sea surface temperature (DiNezio and Tierney, 2013; DiNezio et al., 
2018). More relevant to future warming is the mid-Pliocene period 
(3 million years ago), the last time the Earth experienced CO2 levels 
comparable to present (see Cross-Chapter Box  2.4). Sea surface 
temperature (SST) reconstructions show a weakening of the Pacific 
zonal gradient and a  pattern of warmth consistent with a  weaker 
Walker cycle response (Corvec and Fletcher, 2017; Tierney et al., 2019; 

Figure 8.5 | Zonally-averaged annual mean changes in precipitation minus 
evaporation (P–E) over (a) ocean and (b) land between the historical 
(1995–2014) and SSP2-4.5 (2081–2100) CMIP6 simulations (blue lines, 
an average of the CanESM5 and MRI-ESM2-0 models). Dashed lines show 
estimated P–E changes using a  simple thermodynamic scaling (Held and Soden, 
2006); dotted lines show estimates using an extended scaling (Byrne and O’Gorman, 
2016). All curves have been smoothed in latitude using a three grid-point moving-
average filter. Further details on data sources and processing are available in the 
chapter data table (Table 8.SM.1).
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McClymont et al., 2020). Although the Pliocene SST pattern and wet 
subtropics contrast with present conditions (Burls and Fedorov, 
2017), the paleoclimate record strengthens evidence that a warmer 
climate is associated with a weaker Walker circulation (Cross-Chapter 
Box 2.4; Section 3.3.3).

Since AR5, weakening of the tropical circulation has been explained 
as a  rapid response to increasing CO2 concentrations and slower 
response to warming and evolving SST patterns (He and Soden, 2017; 
Xia and Huang, 2017; Shaw and Tan, 2018; Chemke and Polvani, 2020). 
Large-scale tropical circulation weakens by 3–4% in a rapid response 
to a quadrupling of CO2 concentrations (Plesca et al., 2018), which 
suppresses tropospheric radiative cooling, particularly in subtropical 
ocean subsidence regions (Bony et al., 2013; Merlis, 2015; Richardson 
et al., 2016). The resulting increased atmospheric stability explains 
the rapid weakening of the Walker circulation (Wills et al., 2017) 
and Northern Hemisphere Hadley Cell (Chemke and Polvani, 2020). 
Subsequent surface warming contributes up to a  12% slowing of 
circulation for a uniform 4°C SST increase, driven by thermodynamic 
decreases in temperature lapse rate (Plesca et al., 2018).

The regional Inter-tropical Convergence Zone (ITCZ) position, width 
and strength determine the location and seasonality of the tropical 
rain belt. Since AR5, multiple studies have linked cross-equatorial 
energy transport to the mean ITCZ position (Donohoe et al., 2013; 
Frierson et al., 2013; Bischoff and Schneider, 2014; Boos and Korty, 
2016; Loeb et al., 2016; Adam et al., 2018; Biasutti and Voigt, 2019). 
Multi-model studies agree that aerosol cooling in the NH led to 
a southward shift in the ITCZ and tropical precipitation after the 1950s 
up to the 1980s that is linked with the 1980s Sahel drought (Box 8.1; 
Section 8.3.2.4 and 10.4.2.1). In particular, aerosol-cloud interaction 
was identified as a potentially important driver of this shift (Chung 
and Soden, 2017) but this is uncertain since observations suggest that 
models may overestimate (Malavelle et al., 2017; Toll et al., 2017) or 
underestimate (Rosenfeld et al., 2019) the aerosol cloud-mediated 
cooling effects. In addition, greenhouse gas forcing has been invoked 
in explaining much of the increase in Sahel precipitation since the 
1980s through enhanced meridional temperature gradient, with only 
a secondary role for aerosol (Dong and Sutton, 2015).

Understanding of how ITCZ width and strength respond to a warming 
climate has improved since AR5 (Byrne and Schneider, 2016; Harrop and 
Hartmann, 2016; Popp and Silvers, 2017; Dixit et al., 2018; Zhou et al., 
2020). Studies suggest that convection gets stronger and more focused 
within the core of the ITCZ (Lau and Kim, 2015; Byrne et al., 2018). This 
leads to drying on the equatorward edges of the ITCZ and a moistening 
tendency in the ITCZ core (Byrne and Schneider, 2016). Feedbacks 
involving clouds have been identified as an important mechanism 
leading to tightening and strengthening of the ITCZ (Popp and Silvers, 
2017; Su et al., 2017, 2019, 2020; Talib et al., 2018). Stronger ascent 
in the core amplifies the ‘wet get wetter’ response while reduced 
moisture inflow near the ITCZ edges reduces this response below the 
7%  °C–1 thermodynamic increase in moisture transport. Thus, there 
is a  range of evidence and medium agreement for strengthening 
and contraction of the ITCZ with warming that sharpens contrasts 
between wet and dry regimes. However, understanding of how the 
regional ITCZ location responds in a  warming climate is not robust 

(Section 8.4.2.1) with limited evidence of distinct regional responses 
to GHG forcing including a northward shift over eastern Africa and the 
Indian Ocean and a southward shift in the eastern Pacific and Atlantic 
oceans (Mamalakis et al., 2021). Paleoclimate evidence highlights the 
distinct regional ITCZ responses to hemispheric asymmetry in volcanic 
and orbital forcing (McGee et al., 2014; Boos and Korty, 2016; Colose 
et al., 2016; Denniston et al., 2016; PAGES Hydro2K Consortium, 2017; 
Singarayer et al., 2017; Atwood et al., 2020) and rapid (>1° latitude 
over decades) shifts in the ITCZ and regional monsoons in response to 
AMOC collapse cannot be ruled out (Sections 8.6.1.1 and 5.1.3).

Monsoons are key components of the tropical overturning circulation 
that can be understood as a  balance between net energy input 
(e.g., radiative and turbulent fluxes) and the export of moist static energy. 
This is determined by contrasting surface heat capacity between ocean 
and land and modified through changes in atmospheric dynamics, 
tropical tropospheric stability and land surface properties (Jalihal et al., 
2019). Thermodynamic increases in moisture transport are expected to 
increase monsoon strength and area (Christensen et al., 2013). Since 
AR5, evidence continues to demonstrate that monsoon circulation is 
sensitive to spatially varying radiative forcing by anthropogenic aerosols 
(Hwang et al., 2013; R.J. Allen et al., 2015; Z. Li et al., 2016b) and GHGs 
(Dong and Sutton, 2015). Changes in SST patterns also play a role (Guo 
et al., 2016; W. Zhou et al., 2019; Cao et al., 2020) by altering cross-
equatorial energy transports and land–ocean temperature contrasts. 
This evidence continues to support a thermodynamic strengthening of 
monsoon precipitation that is partly offset by slowing of the tropical 
circulation but with weak evidence and low agreement for regional 
aspects of circulation changes. Disagreement between paleoclimate 
and modern observations, physical theory and numerical simulations 
of global monsoons have been partly reconciled (Section  3.3.3.2) 
through improved understanding of regional processes (Harrison et al., 
2015; R. Bhattacharya et al., 2017; Bhattacharya et al., 2018; Biasutti 
et al., 2018; D’Agostino et al., 2019; Jalihal et al., 2019; Seth et al., 
2019), although interpreting past changes in the context of future 
projections requires careful account of differing forcings and feedbacks 
(D’Agostino et al., 2019). Assessment of past changes and future 
projections in regional monsoons are provided in Sections 2.3.1.4.2, 
8.3.2.4 and 8.4.2.4. 

Since AR5, understanding of poleward expansion of the Hadley Cells 
has improved (Section 2.3.1.4.1) but its role in subtropical drying is 
limited to the zonal mean and dominated by ocean regions (Byrne 
and O’Gorman, 2015; Grise and Polvani, 2016; He and Soden, 2017; 
Schmidt and Grise, 2017; Siler et al., 2018; Chemke and Polvani, 2019; 
Grise and Davis, 2020). Over subtropical land, evolving SST patterns 
and land–ocean warming contrasts, that are partly explained by rapid 
responses to CO2 increases, can dominate aspects of the atmospheric 
circulation response (Byrne and O’Gorman, 2015; He and Soden, 2015; 
Chadwick et al., 2017; H. Yang et al., 2020) and resultant regional 
water cycle changes, particularly for projected drying in semi-arid, 
winter-rainfall dominated subtropical climates (Deitch et al., 2017; 
Brogli et al., 2019; Seager et al., 2019b; Zappa et al., 2020). Poleward 
expansion of the tropical belt is expected to drive a  corresponding 
shift in mid-latitude storm tracks, but the controlling mechanisms 
differ between hemispheres. Southern Hemisphere expansion is driven 
by GHG forcing and amplified by stratospheric ozone depletion, while 
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weaker Northern Hemisphere expansion in response to GHG forcing 
is modulated by tropospheric ozone and aerosol forcing, particularly 
black carbon (Davis et al., 2016; Grise et al., 2019; Watt-Meyer 
et al., 2019; Zhao et al., 2020). However, internal variability is found 
to dominate observed responses in the NH, precluding attribution to 
radiative forcing (D’Agostino et al., 2020a). Paleoclimate evidence 
of poleward expansion and weakening of westerly winds in both 
hemispheres in the warmer Pliocene is linked to reduced equator-to-
pole thermal gradients and ice volume (Abell et al., 2021).

The influence of amplified Arctic warming on mid-latitude regional 
water cycles is not well understood based on simple physical 
grounds due to the large number of competing physical processes 
(Cross-Chapter Box 10.1). The thermal gradient between polar and 
lower latitude regions decreases at low levels due to Arctic warming 
amplification. However, at higher altitudes, the corresponding 
thermal gradient increases with warming due to cooling of the Arctic 
stratosphere and this is consistent with a strengthening of the winter 
jet stream in both hemispheres, yet there is low agreement on the 
precise mechanisms (Vallis et al., 2015; Vihma et al., 2016). Changes 
in the strength of the polar stratospheric vortex can also alter the 
mid-latitude circulation in winter, but responses are not consistent 
across models (Oudar et al., 2020a). Nevertheless, thermodynamic 
strengthening of moisture convergence into weather systems and 
polar regions is robust (Section 8.2.2.1) and remains valid despite 
weak understanding of atmospheric circulation change.

In summary, there is high confidence that altered atmospheric 
wind patterns in response to radiative forcing and evolving 
surface temperature patterns will affect the regional water cycle 
in most regions. Mean tropical circulation is expected to slow with 
global warming (high confidence) but temporary multi-decadal 
strengthening is possible due to internal variability (medium 
confidence). Slowing of the tropical circulation reduces the meridional 
P–E gradient over the Pacific and can partly offset thermodynamic 
amplification of P–E patterns and strengthening of monsoons (high 
confidence) but regional characteristics of tropical rain belt changes 
are not well understood. There is medium confidence in processes 
driving strengthening and tightening of the ITCZ that increase 
the contrasts between wet and dry tropical weather regimes and 
seasons. There is high confidence in understanding of how radiative 
forcing and global warming drive a  poleward expansion of the 
subtropics and mid-latitude storm tracks but only low confidence in 
how poleward expansion influences drying of subtropical and mid-
latitude climates. There is low confidence in understanding how Arctic 
warming amplification affects mid-latitude regional water cycles but 
high confidence that thermodynamic strengthening of precipitation 
within weather systems and in monsoons and polar regions is robust 
to large-scale circulation changes.

8.2.3 Local-scale Physical Processes Affecting 
the Water Cycle

Processes operating at local scales are capable of substantially 
modifying the regional water cycle. This section assesses the 
development in understanding of processes affecting the atmosphere, 

surface and subsurface, including cryosphere and biosphere 
interactions and the direct impacts of human activities.

8.2.3.1 Hydrological Processes Related to Ice and Snow

Declining ice-sheet mass, glacier extent and Northern Hemisphere 
(NH) sea ice, snow cover and permafrost (Collins et al., 2013; 
Vaughan et al., 2013) is an expected consequence of a  warming 
climate (Sections  2.3.2, 3.4, 4.3.2.1 and 9.3–9.5). A  decline in 
mountain snow cover and increased snow and glacier melt will 
alter the amount and timing of seasonal runoff in mountain regions 
(Sections  3.4.2, 3.4.3 and 9.5). Earlier and more extensive winter 
and spring snowmelt (X. Zeng et al., 2018) can reduce summer and 
autumn runoff in snow-dominated river basins of mid–high latitudes 
of the NH (Rhoades et al., 2018; Blöschl et al., 2019). Since AR5, 
an earlier but less rapid snowmelt has been explained by reduced 
winter snowfall and less intense solar radiation earlier in the season 
(Musselman et al., 2017; Wu et al., 2018; Grogan et al., 2020). 
Reduced snow cover also increases energy available for evaporation, 
which can dominate declining river discharge based on modelling 
of the Colorado River (Milly and Dunne, 2020). An increase in the 
fraction of precipitation falling as rain compared with snow can lead 
to declines in both streamflow and groundwater storage in regions 
where snowmelt is the primary source of recharge (Earman and 
Dettinger, 2011; Berghuijs et al., 2014). Such regions include western 
South America and western North America, semi-arid regions which 
rely on snowmelt from high mountain chains (Ragettli et al., 2016; 
Milly and Dunne, 2020). Rain-on-snow melt events reduce at lower 
altitudes due to declining snow cover but increase at higher altitudes 
where snow tends to be replaced by rain based on observations and 
modelling (Musselman et al., 2018; Pall et al., 2019), thereby altering 
seasonal and regional characteristics of flooding (Section 11.5).

Seasonal melt water from high mountain glaciers in Asia (see Cross-
Chapter Box 10.4) supply the basic needs of 221 ± 97 million people 
(Pritchard, 2019; Immerzeel et al., 2020). Glacier-melt in response to 
warming can initially lead to increased runoff volumes, especially in 
peak summer flows, but they will eventually decline as most glaciers 
continue to shrink. SROCC concluded there is high confidence that 
the peak runoff has already been passed for some smaller glaciers 
(Hock et al., 2019a). Increased precipitation and glacier-melt can also 
contribute to rising lake levels and flood hazards in regions such as 
the inner Tibetan Plateau, Patagonia, Peru, Alaska and Greenland 
(Lei et al., 2017; Shugar et al., 2020; Stuart-Smith et al., 2020). Since 
AR5, evidence from multiple locations (New Zealand, Greenland, 
Antarctica) shows that intrusions of warm, moist air are important in 
controlling glacier mass balance, the likelihood of extreme ablation 
or snowfall events depending on air temperature (Gorodetskaya  
et al., 2014; Mackintosh et al., 2017; Mattingly et al., 2018; 
Little et al., 2019; Oltmanns et al., 2019; Wille et al., 2019; Adusumilli 
et al., 2021). Sensible heating from warm air and increased longwave 
radiation from atmospheric moisture and low clouds drive melt 
events (Stuecker et al., 2018). 

Reductions in snow, freshwater ice and permafrost affect terrestrial 
hydrology. Permafrost degradation reduces soil ice and alters the 
extent of thermokarst lake coverage (Section  9.5.2; M.  Meredith 
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et al., 2019). A lag between current climate change and permafrost 
degradation is expected, given the slow response rates in frozen 
ground and the fact that snow cover insulates soil from sensible heat 
exchanges with the air above (Hoegh-Guldberg et al., 2018; García-
García et al., 2019; Soong et al., 2020). Post-wildfire areas are also 
linked with permafrost degradation in the Arctic based on satellite 
observations (Yanagiya and Furuya, 2020). An increase in spring 
rainfall can increase heat advection by infiltration, exacerbating 
permafrost thaw and leading to increased methane emissions 
(Section  5.4.7; Neumann et al., 2019). Increased heat transport 
by Arctic rivers can also contribute to earlier sea ice melt (Park 
et al., 2020).

In summary, it is virtually certain that warming will cause a loss of 
frozen water stores, except in areas where temperatures remain 
below 0°C for most of the year. There is high confidence that warming 
and reduced snow volume drives an earlier snowmelt, leading to 
seasonally dependent changes in streamflow. There is medium 
confidence that weaker sunlight earlier in the season can reduce 
the rate of snowmelt. Melting of snowpack or glaciers can increase 
streamflow in high-latitude and high-altitude catchments until 
frozen water reserves are depleted (high confidence). There is high 
confidence that warm, moist airflows and associated precipitation 
dominate glacier mass balance in some regions (New Zealand, 
Greenland, Antarctica). 

8.2.3.2 Processes Determining Heavy Precipitation 
and Flooding

Evidence that heavy precipitation events (from sub-daily up to 
seasonal time scales) intensify as the planet warms has strengthened 
since AR5 (Section 11.4, Box 11.1 and Cross-Chapter Box 3.2) based 
on improved physical understanding, extensive modelling and 
increasing observational corroboration (O’Gorman, 2015; Fischer 
and Knutti, 2016; Neelin et al., 2017). There is robust evidence, with 
medium agreement across a  range of modelling and observational 
studies, of thermodynamic intensification of wet seasons (Chou 
et al., 2013; Liu and Allan, 2013; Dunning et al., 2018; Lan et al., 
2019; Zhang and Fueglistaler, 2019). Extreme daily precipitation is 
expected to increase at close to the 7% °C–1 increase in the near-
surface atmospheric moisture-holding capacity determined by the 
Clausius–Clapeyron equation (Section 11.4, Figure 8.4), with limited 
evidence that higher rates apply for shorter duration precipitation 
events (Formayer and Fritz, 2017; Lenderink et al., 2017; Ali et al., 
2018; Guerreiro et al., 2018; Burdanowitz et al., 2019; W.  Zhang 
et al., 2019a). However, observed estimates sample multiple synoptic 
weather states, mixing thermodynamic and dynamic factors, so are 
not directly relatable to climate change responses (Bao et al., 2017; 
Drobinski et al., 2018). The contrasting spatial scales sampled by the 
observations and models (from global to cloud resolving) explain 
the large range of daily and sub-daily precipitation scaling with 
temperature assessed in Figure 8.4.

Since AR5, advances in understanding the expected changes in 
intense rainfall at the sub-daily time scale (Section 11.4, Figure 8.4) 
are provided by idealized or high resolution model experiments and 
observations (Westra et al., 2014; Fowler et al., 2021). There is robust 

evidence from simplified calculations, convection resolving models and 
observations that thermodynamics drives an increase in convective 
available potential energy (CAPE) with warming and therefore the 
intensity of convective storms (Singh and O’Gorman, 2013; Romps, 
2016; Barbero et al., 2019). Also, declining relative humidity over land 
(Sections 2.3.1.3.2 and 8.2.2.1) increases lifting condensation level, 
thereby delaying but intensifying convective systems (Louf et al., 
2019; J. Chen et al., 2020a). Larger systems are linked with increasing 
tropopause height (Lenderink et al., 2017) that can also amplify storm 
precipitation (Prein et al., 2017). However, the heaviest rainfall is not 
necessarily associated with the most intense (deepest) storms based 
on satellite data (Hamada et al., 2015; Hamada and Takayabu, 2018). 
Precipitation intensification can exceed thermodynamic expectations 
where and when additional latent heating invigorates individual 
storms (Section  11.4.1) as implied by medium agreement across 
modelling and observational studies (Berg et al., 2013; Molnar et al., 
2015; Scoccimarro et al., 2015; Prein et al., 2017; Zhou and Wang, 
2017; Nie et al., 2018; Kendon et al., 2019; Z.  Zhang et al., 2019). 
This intensification depends on time of day, based on convection-
permitting simulations (E.P. Meredith et al., 2019).

Intensification of sub-daily rainfall is inhibited in regions and seasons 
where available moisture is limited (Prein et al., 2017). However, 
a fixed threshold temperature above which precipitation is limited 
by moisture availability is not supported by modelling evidence 
(Neelin et al., 2017; Prein et al., 2017). Enhanced latent heating 
within storms can also suppress convection at larger scales due to 
atmospheric stabilization as demonstrated with high resolution, 
idealized and large ensemble modelling studies (Loriaux et al., 2017; 
Chan et al., 2018; Nie et al., 2018; Tandon et al., 2018; Kendon et al., 
2019). Stability is also increased by the direct radiative heating effect 
of higher CO2 concentrations (Baker et al., 2018) and  influenced 
by aerosol effects on the atmospheric energy budget and cloud 
development (Box  8.1). Since AR5, modelling evidence shows 
increases in convective precipitation extremes are limited by droplet/
ice fall speeds (Singh and O’Gorman, 2014; Sandvik et al., 2018) 
but these processes are only crudely represented (Tapiador et al., 
2019a). Idealized regional and coupled global models combined 
with limited observational evidence shows that instantaneous 
precipitation extremes are sensitive to microphysical processes, while 
daily extremes are determined more by the degree of convective 
aggregation (Bao and Sherwood, 2019; Pendergrass, 2020a). 

Dynamical changes modify and can dominate thermodynamic drivers 
of local rainfall and flood hazard change (Box  11.1). For example, 
increased land–ocean temperature gradients (Section 8.2.2.2) explain 
more intense rain from convective systems over the Sahel based on 
satellite data since the 1980s (Taylor et al., 2017) and dynamical 
feedbacks can invigorate active to break phase transition over India 
(Karmakar et al., 2017; Roxy et al., 2017). Satellite data shows long-lived, 
organized mesoscale convective systems contribute disproportionally 
to extreme tropical precipitation (Roca and Fiolleau, 2020). Since AR5, 
the spatial variability in soil moisture has been linked with the timing 
and location of convective rainfall by altering the partitioning between 
latent and sensible heating. This was demonstrated for the Sahel, 
Europe and India in observations (C.M. Taylor et al., 2013; Taylor, 2015; 
Petrova et al., 2018; Barton et al., 2020; Klein and Taylor, 2020) but 
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depends on the moisture-convergence regime (Welty et al., 2020). Only 
high-resolution convection-permitting models can capture the sub-grid 
scale mechanisms for convective initiation (C.M. Taylor et al., 2013; 
H. Moon et al., 2019). There is medium evidence that greater tropical 
cyclone rainfall totals can be caused by dynamical feedbacks (Chauvin 
et al., 2017) and slower propagation speed as tropical circulation 
weakens (Kossin, 2018). These processes amplify the thermodynamic 
intensification of rainfall (Section 11.7.1.2), yet observational support 
is weak (Chan, 2019; Lanzante, 2019; I.J. Moon et al., 2019; Knutson 
et al., 2020). Slower decay following landfall, explained by larger stores 
of heat and moisture at higher SSTs, can also amplify rainfall amount 
based on observations and modelling (Li and Chakraborty, 2020). 
Rainfall intensity from the outer rain bands of tropical cyclones is also 
increased by aerosol–cloud interactions (Box 8.1).

The amount and intensity of rainfall within extratropical storms is 
expected to increase with atmospheric moisture. This is particularly 
evident for atmospheric rivers (see Glossary) and research since AR5 
has confirmed their link with flooding and terrestrial water storage 
(Froidevaux and Martius, 2016; Paltan et al., 2017; Waliser and 
Guan, 2017; Adusumilli et al., 2019; Ionita et al., 2020; Payne et al., 
2020). There is robust evidence based on simple physics and detailed 
modelling that extratropical cyclone rainfall, including atmospheric 
river events, will intensify through increased atmospheric moisture 
flux (Lavers et al., 2013; Ramos et al., 2016; Yettella and Kay, 2017; 
V. Espinoza et al., 2018; Algarra et al., 2020; Xu et al., 2020; Zavadoff 
and Kirtman, 2020; Zhao, 2020), although changes in dynamical 
aspects will modify responses regionally (Section  8.4.2.8). For 
example, stronger latitudinal temperature gradients in the high-
latitude upper troposphere drive increased extratropical storm 
speed around 30°N–70°N based on CMIP5 simulations (Dwyer and 
O’Gorman, 2017), causing reduced precipitation accumulation.

The response of flood hazard to changing rainfall characteristics 
depends on time and space scale and the nature of the land surface 
(Section 11.5.1 and FAQ 8.2). Sustained and heavy rainfall can lead 
to widespread flooding and landslides while intensification of short-
duration intense rainfall can increase the severity and frequency 
of flash flooding (Marengo et al., 2013; Chan et al., 2016; Gariano 
and Guzzetti, 2016; Sandvik et al., 2018). Flooding events in many 
tropical regions (e.g., north-western South America, southern Africa 
and Australasia) are associated with ENSO variability (Emerton et al., 
2017; Takahashi and Martínez, 2019; Pabón-Caicedo et al., 2020) and 
amplified by thermodynamic increases in water vapour. Flood hazard 
from heavy rainfall is modulated by snowmelt (Section  8.2.3.1), 
vegetation characteristics (Page et al., 2020; Murphy et al., 2021) and 
direct human intervention (Sections  8.2.3.4 and FAQ 8.2) but also 
can be compounded by sea level rise (Sections 4.3.2.2 and 9.6.4) in 
coastal and delta regions (Bevacqua et al., 2019; Ganguli and Merz, 
2019; Eilander et al., 2020). Antecedent soil moisture conditions are 
an important modulator of flooding (Section 11.5.1) but become less 
important for smaller catchments and for more severe floods (Wasko 
and Nathan, 2019). Depleted soil moisture after more intense dry 
seasons (Section  8.2.2.1) can allow greater uptake of wet season 
rainfall before soils saturate. Since AR5, evidence confirms that more 
intense rainfall increases the proportion of runoff and reservoir 
recharge relative to infiltration into the soil (Eekhout et al., 2018; Yin 

et al., 2018). More intense but less frequent storms (Kendon et al., 
2019) favour focused groundwater recharge through leakage from 
surface waters (R.G. Taylor et al., 2013a; Cuthbert et al., 2019a) and 
runoff and flash flooding where the percolation capacity of the soil is 
exceeded (Yin et al., 2018). 

Increased severity of flooding on larger, more slowly-responding rivers 
is expected as precipitation accumulations increase during persistent 
wet events over a season. This can occur where atmospheric blocking 
patterns repeatedly steer extratropical cyclones across large river 
catchments, as identified for NH mid-latitudes and Asia (Takahashi 
et al., 2015; Pfleiderer et al., 2018; Zhou et al., 2018; Blöschl et al., 
2019; Lenggenhager et al., 2019; Nikumbh et al., 2019; Zanardo et al., 
2019), although groundwater flooding and antecedent conditions 
including soil moisture and snowmelt also play a  role (Muchan 
et al., 2015; Berghuijs et al., 2019). Increased atmospheric moisture 
amplifies the severity of these events when they occur in a warmer 
climate, yet drivers of change in the occurrence of blocking patterns, 
stationary waves and jet stream position are not well understood 
(Section 8.2.2.2 and Cross-Chapter Box 10.1). 

In summary, there is very high confidence that heavy precipitation 
events will become more intense in a  warming climate. There is 
high confidence that increased moisture and its convergence within 
extratropical and tropical cyclones and storms will increase rainfall 
totals during wet events at close to the 7%  °C–1 thermodynamic 
response, with low confidence of higher rates for sub-daily intensities. 
There is medium confidence that more intense but less frequent 
rainfall increases the proportion of rainfall leading to surface runoff 
and focused groundwater recharge from temporary water bodies. 
There is low confidence in how the frequency of flooding will change 
regionally as it is strongly dependent on catchment characteristics, 
antecedent conditions and how atmospheric circulation systems 
respond to climate change, which is less certain than thermodynamic 
drivers (Section 11.5). However, there is high confidence that increases 
in precipitation intensity and amount during very wet events (from 
sub-daily up to seasonal time scales) will intensify severe flooding 
when these extremes occur.

8.2.3.3 Drivers of Aridity and Drought

Regional changes in aridity  – broadly defined as a  deficit of 
moisture  – are expected to occur in response to anthropogenic 
forcings as a consequence of shifting precipitation patterns, warmer 
temperatures, changes in cloudiness (affecting solar radiation), 
declining snowpack, changes in winds and humidity, and vegetation 
cover (Figure  8.6). Evapotranspiration (see Annex VII: Glossary) 
is a  key component of aridity, and is composed of two main 
processes: evaporation from soil, water and vegetation surfaces; 
and transpiration, the exchange of moisture between plants and 
atmosphere through plant stomata. On a  global level, warmer 
temperatures increase evaporative demand in the atmosphere, and 
thus (assuming sufficient soil moisture is available) increase moisture 
loss from evapotranspiration (high confidence) (Dai et al., 2018; 
Vicente-Serrano et al., 2020). On a  regional level, aridity is further 
modulated by seasonal rainfall patterns, runoff, water storage, and 
interactions with vegetation. 
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Vegetation is a crucial interface between subsurface water storage 
(in soil moisture and groundwater) and the atmosphere. Plants 
alter evapotranspiration and the surface energy balance, and 
thus can have a  large influence on regional aridity (Lemordant 
et al., 2018). SRCCL concluded there is high confidence that higher 
atmospheric CO2 increases the ratio of plant CO2 uptake to water 
loss (water-use efficiency; WUE) through the combined enhancement 
of photosynthesis and stomatal regulation (Section 5.4.1; De Kauwe 
et al., 2013; C.D. Jones et al., 2013; Deryng et al., 2016; Swann et al., 

2016; Cheng et al., 2017; Knauer et al., 2017; Peters et al., 2018; 
Guerrieri et al., 2019). Modelling studies suggest that increasing 
WUE can partly counteract water losses from increased evaporative 
demand in a warmer atmosphere, potentially mitigating aridification 
(Milly and Dunne, 2016; Bonfils et al., 2017; Cook et al., 2018; Y. Yang 
et al., 2018). However, observational studies suggest that this effect 
may be counter-balanced by the increase in plant growth in response 
to elevated CO2, which results in increased water consumption 
(De Kauwe et al., 2013; Donohue et al., 2013; Ukkola et al., 2016b; 
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Figure 8.6 | Climatic drivers of drought, effects on water availability, and impacts. Plus and minus signs denote the direction of change that drivers have on factors 
such as snowpack, evapotranspiration, soil moisture, and water storage. The three main types of drought are listed, along with some possible environmental and socio-economic 
impacts of drought (bottom). 
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Yang et al., 2016; Guerrieri et al., 2019; Mankin et al., 2019; A. Singh 
et al., 2020). In semi-arid regions, increased plant water consumption 
can reduce streamflow and exacerbate aridification (Ukkola et al., 
2016b; Mankin et al., 2019; A.  Singh et al., 2020). Thus, there is 
low confidence that increased WUE in plants can counterbalance 
increased evaporative demand (Cross-Chapter Box 5.1).

A drought is a period of abnormally dry weather that persists for long 
enough to cause a serious hydrological imbalance (Glossary; Wilhite 
and Glantz, 1985; Wilhite, 2000; Cook et al., 2018). Most droughts 
begin as persistent precipitation deficits (‘meteorological drought’) 
that propagate over time into deficits in soil moisture, streamflow, 
and water storage (Figure 8.6), leading to a reduction in water supply 
(‘hydrological drought’). Increased atmospheric evaporative demand 
increases plant water stress, leading to ‘agricultural and ecological 
drought’ (Williams et al., 2013; C.D. Allen et al., 2015; Anderegg et al., 
2016; McDowell et al., 2016; Grossiord et al., 2020). Evaporative 
demand affects plants in two ways. It increases evapotranspiration, 
depleting soil moisture and stressing plants through lack of water 
(Teuling et al., 2013; Sperry et al., 2016), and also directly affects plant 
physiology, causing a decline in hydraulic conductance and carbon 
metabolism, leading to mortality (Figure 8.6; Breshears et al., 2013; 
Hartmann, 2015; McDowell and Allen, 2015; Fontes et al., 2018). 
While droughts are traditionally viewed as ‘slow moving’ disasters 
that typically take months or years to develop, rapidly evolving and 
often unpredictable flash droughts can also occur (Otkin et al., 2016, 
2018). Flash droughts can develop within a  few weeks, causing 
substantial disruption to agriculture and water resources (Pendergrass 
et al., 2020). Conversely, droughts that persist for a long time (usually 
a decade or more) are called megadroughts. Droughts span a large 
range of spatial and temporal scales, arise through a  variety of 
climate system dynamics (e.g., internal atmospheric variability, ocean 
teleconnections), and can be amplified or alleviated by a variety of 
physical and biological processes. As such, droughts occupy a unique 
space within the framework of extreme climate and weather events, 
possessing no singular definition.

While the role of precipitation in droughts is obvious, other climatic 
drivers are also important, such as temperature, radiation, wind, 
and humidity (Figure  8.6). These factors have a  strong influence on 
atmospheric evaporative demand, which affects evapotranspiration 
and soil moisture (Figure  8.6). In snow-dominated regions, high 
temperatures increase the fraction of precipitation falling as rain 
instead of snow and advance the timing of spring snowmelt (high 
confidence) (Vincent et al., 2015; Mote et al., 2016, 2018; Berg and 
Hall, 2017; Solander et al., 2018). This can result in lower than normal 
snowpack levels (a ‘snow drought’), and thus reduced streamflow, even 
if total precipitation is at or above normal for the cold season (Harpold 
et al., 2017). Plants also affect the severity of droughts by modulating 
evapotranspiration (Figure  8.6). As discussed above, the  effect of 
elevated CO2 on plants has the potential to both increase and reduce 
water loss through evapotranspiration via enhanced WUE and plant 
growth, respectively (Figure 8.6), but there is low confidence in whether 
one process dominates over another at the global scale. 

Drought severity also depends on human activities and decision-
making (AghaKouchak et al., 2015; Van Loon et al., 2016; Pendergrass 

et al., 2020). Societies have developed a  variety of strategies to 
manipulate the water cycle to increase resiliency in the face of water 
scarcity, including irrigation, creation of artificial reservoirs, and 
groundwater pumping. While potentially buffering water resource 
capacity, in some cases these interventions may unexpectedly 
increase vulnerability (medium confidence). For example, while 
increased irrigation efficiency may ensure more water is available 
to crops, the corresponding reduction in runoff and subsurface 
recharge may exacerbate hydrologic drought (Grafton et al., 2018). 
Furthermore, while building dams and increasing surface reservoir 
capacity can boost water resources, they may actually increase 
drought vulnerability if demands rise to take advantage of the 
increased supply or if over-reliance on these surface reservoirs is 
encouraged (Di Baldassarre et al., 2018). Interactions between 
adaptation, vulnerability, and drought impacts are discussed further 
in WGII (Chapters 2 and 4).

In summary, there is high confidence that a warming climate drives 
an increase in atmospheric evaporative demand, decreasing available 
soil moisture. There is high confidence  that higher atmospheric 
CO2 increases plant water-use efficiency, but low confidence that 
this physiological effect can counterbalance water losses. Since 
drought can be defined in a number of ways, there are potentially 
different responses under a warming climate depending on drought 
type. Beyond a  lack of precipitation, changes in evapotranspiration 
are critical components of drought, because these can lead to soil 
moisture declines (high confidence). Under very dry soil conditions, 
evapotranspiration becomes restricted and plants experience water 
stress in response to increased atmospheric demand (medium 
confidence). Human activities and decision-making have a  critical 
impact on drought severity (high confidence).

8.2.3.4 Direct Anthropogenic Influence  
on the Regional Water Cycle

Human activities influence the regional water cycle directly through 
modifying and exploiting stores and flows from rivers, lakes and 
groundwater and by altering land cover characteristics. These 
actions alter surface energy and water balances through changes in 
permeability, surface albedo, evapotranspiration, surface roughness 
and leaf area. Direct redistribution of water by human activities for 
domestic, agricultural and industrial use of about 24,000  km3 yr–1 
(Figure 8.1) is equivalent to half the global river discharge or double 
the global groundwater recharge each year (Abbott et al., 2019). Since 
AR5, both modelling studies and observations have demonstrated 
that land use change can drive local and remote responses in 
precipitation and river flow by altering the surface energy balance, 
moisture advection and recycling, land–sea thermal contrast and 
associated wind patterns (Alter et al., 2015; Wey et al., 2015; De Vrese 
et al., 2016; Pei et al., 2016; Wang-Erlandsson et al., 2018; Vicente-
Serrano et al., 2019). There is robust evidence that a warming climate 
combined with direct human demand for groundwater will deplete 
groundwater resources in already dry regions (Wada and Bierkens, 
2014; D’Odorico et al., 2018; Jia et al., 2019).

The SRCCL presented evidence that extraction of water from the 
ground or river systems and intensive irrigation increases evaporation 
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and atmospheric water vapour locally (Jia et al., 2019; Mishra 
et al., 2020). Irrigation can explain declining groundwater storage 
in some regions, including north-western India and North America 
(Asoka et al., 2017; G. Ferguson et al., 2018). Simulations spanning 
1960–2010 indicate that approximately 30% of the present human 
water consumption is supplied from non-sustainable water resources 
(Wada and Bierkens, 2014). However, there is only limited evidence 
that groundwater extraction is lowering streamflow (Mukherjee 
et al., 2018; de Graaf et al., 2019). Model experiments show that 
irrigation can either aggravate or alleviate climate-induced changes 
of surface or subsurface water (Leng et al., 2015). Widespread 
extraction of water from rivers can reduce flows and decrease the 
level and area of inland seas and lakes (Wurtsbaugh et al., 2017; 
Torres-Batlló et al., 2020; X. Wang et al., 2020). Between 1985 and 
2015, about 139,000 km2 of inland water areas have become land, 
while creation of dams has converted about 95,000 km2 of land to 
water, particularly in the Amazon and Tibetan Plateau (Donchyts et al., 
2016). Direct management of river flow is comparable in magnitude 
to climate change effects for snow-fed rivers at a continental scale 
based on a global analysis and a study of 96 Canadian catchments 
(Tan and Gan, 2015; Arheimer et al., 2017). 

The SRCCL assessed with medium confidence that mean and extreme 
precipitation is increased over and downwind of urban areas (Jia 
et al., 2019). There is medium confidence that altered thermodynamic 
and aerodynamic properties of the land surface from urbanization 
affects evaporation and increases precipitation over or downwind of 
cities (Box 10.3) due to altered stability and turbulence (Han et al., 
2014; Pathirana et al., 2014; Jiang et al., 2016; D’Odorico et al., 2018; 
Sarangi et al., 2018; Boyaj et al., 2020). However, reduced biogenic 
aerosol, but increased anthropogenic aerosol emissions modify 
cloud microphysics and precipitation processes (Box  8.1; Schmid 
and Niyogi, 2017; D’Odorico et al., 2018; Fan et al., 2020; Zheng 
et al., 2020). Urbanization also decreases permeability of the surface, 
leading to increased surface runoff (Chen et al., 2017; Jia et al., 2019). 
Large-scale infrastructure, such as the construction and operation of 
dikes, weirs, and hydropower plants, also alters surface energy and 
moisture fluxes, potentially influencing the regional water cycle. 
Limited modelling evidence suggests that large-scale solar and wind 
farms can increase precipitation locally (over the Sahel and North 
America) when dynamic vegetation responses are represented 
(Y. Li et al., 2018; Pryor et al., 2020), with remote effects also possible 
(Lu et al., 2021). 

Changes in land use from forest to agriculture can exert profound 
regional effects on the water cycle (FAQ 8.1) by modifying the 
surface energy balance and moisture recycling (Krishnan et al., 2016; 
Paul et al., 2016; Llopart et al., 2018; Singh et al., 2019). There is 
medium evidence from modelling and observations over the Amazon 
and East Africa that deforestation drives increased streamflow 
(Dos Santos et al., 2018; Guzha et al., 2018; Levy et al., 2018) but 
limited evidence that increases in global runoff due to deforestation 
are counterbalanced by decreases resulting from irrigation (Hoegh-
Guldberg et al., 2018). Total Amazon deforestation drives reductions 
in precipitation but with a large 90% confidence range (–38 to +5 %) 
based on 44 primarily pre-AR5 climate model simulations (Spracklen 
and Garcia-Carreras, 2015) with smaller reductions (–2.3 to –1.3 %) 
attributed to observed Amazon deforestation up to 2010. Climate 
model development has reduced this uncertainty range but has not 
altered the median change (Lejeune et al., 2015). Large-scale global 
deforestation (20 million km2) simulated by 9 CMIP6 models confirms 
a large range in precipitation amount reduction of –37 ± 54 mm yr–1 
over the deforested regions (Boysen et al., 2020). However, small-
scale deforestation can increase precipitation locally (Lawrence and 
Vandecar, 2015). A 50–60% deforestation rate corresponded to a wet 
season delay of about one week and greater chance of dry spells 
of eight days or longer based on correlation analysis of rain gauge 
and land-use data for South America (Leite-Filho et al., 2019). Forest 
and grassland fires can also modify hydrological response at the 
watershed scale (Havel et al., 2018). Afforestation or reforestation 
aimed at removing CO2 from the atmosphere can also alter the water 
cycle at the regional scale (Section 8.4.3 and Cross-Chapter Box 5.1).

In summary, there is high confidence that land-use change and 
water extraction for irrigation drive local, regional and remote 
responses in the water cycle. Large-scale deforestation is likely to 
decrease precipitation over the deforested regions but there is low 
confidence in the effects of limited deforestation. There is medium 
confidence that deforestation drives increased streamflow relative to 
the responses caused by climate change. Urbanization can increase 
local precipitation (medium confidence) and resulting runoff intensity 
(high confidence). A warming climate combined with direct human 
demand for water is expected to deplete groundwater resources in 
dry regions (high confidence).

Box 8.1 | Role of Anthropogenic Aerosols in Water Cycle Changes

Aerosols affect precipitation in two major pathways, by altering the shortwave and longwave radiation and influencing cloud 
microphysical properties.

Aerosol radiative effects on precipitation
Aerosols scatter and absorb solar radiation which reduces the energy available for surface evaporation and subsequent precipitation. 
In addition, cooling is incurred by the radiation that is reflected back to space directly by the aerosols and indirectly by the aerosol 
effect on cloud brightening. Northern Hemisphere (NH) station data indicate decreasing precipitation trends during the 1950s to the 
1980s, which have since partially recovered (Wild, 2012; Bonfils et al., 2020). These changes are attributable with high confidence 
to anthropogenic aerosol emissions from North America and Europe causing dimming through reduced surface solar radiation.  
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This peaked during the late-1970s and partially recovered thereafter following improved air quality regulations (Section  6.2.1; 
Box 8.1, Figure 1).

Dimming over the NH causes a relative cooling, compared to the Southern Hemisphere (SH), which induces a southward shift of the 
northern edge of the tropical rain belt (Section 3.3.2.3; Allen et al., 2014; Brönnimann et al., 2015). CMIP5 simulations show that most of the 
cooling is caused by the aerosol cloud-mediated effect (Chung and Soden, 2017). Dimming also weakens monsoon fl ow and precipitation, 
offsetting or even overcoming the expected precipitation increase due to increased GHGs (Ayantika et al., 2021). The oceanic response to 
a weakened monsoon cross-equatorial fl ow can further weaken the South Asian monsoon through an amplifying feedback loop (Swapna 
et al., 2012; Krishnan et al., 2016; Patil et al., 2019). These processes partially explain (medium confi dence) the southward shift of the NH 
tropical edge of the tropical rain belt from the 1950s to the 1980s (Allen et al., 2014; Brönnimann et al., 2015) and the severe drought in 
the Sahel that peaked in the mid-1980s (Rotstayn et al., 2002; Undorf et al., 2018b). These processes also explain (high confi dence) the 
observed decrease of South East Asian monsoon precipitation during the second half of the 20th century (Figure 8.7; Bollasina et al., 2011; 
Sanap et al., 2015; Krishnan et al., 2016; Lau and Kim, 2017; Lin et al., 2018; Undorf et al., 2018b). 

Absorption of solar radiation by anthropogenic aerosols such as black carbon warms the lower troposphere and increases moist 
static energy, but also results in larger convection inhibition that suppresses light rainfall (Box 8.1, Figure 2; Y. Wang et al., 2013). 
Release of aerosol-induced instability, often triggered by topographical barriers, produces intense rainfall, fl ooding (Fan et al., 2015; 

Box 8.1 (continued)
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Box 8.1, Figure 1 | Northern Hemisphere surface downward radiation anomalies (W m–2; a) and precipitation anomalies (mm day–1; b) for 
1951–2014 for summer season (May–September) monsoon region (Polson et al., 2014) from CMIP6 DAMIP experiments. Observed solar radiation 
anomalies are from GEBA global data from 1961–2014 (Wild et al., 2017) and observed precipitation anomalies are from GPCC and CRU. CMIP6 multi-model mean 
anomalies are from all-forcings (ALL), greenhouse gas forcing (GHG) and anthropogenic aerosol forcing (AER) experiments. Anomalies are with respect to 1961–1990 
and smoothed with a 11-year running mean. Red shading shows the ensemble spread of ALL forcing experiment (5–95% range). Models are masked to the GPCC 
data set. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Lee et al., 2016) and severe convective storms (medium confi dence) (Saide et al., 2015). In particular, aerosols induce intense convection 
at the Himalaya foothills during the pre-monsoon season, which generates a  regional convergence there (medium confi dence).
This mechanism is termed the ‘elevated heat pump hypothesis’ (Lau and Kim, 2006; D’Errico et al., 2015).

Aerosol cloud microphysical effects
Cloud droplets nucleate on pre-existing aerosol particles which act as cloud condensation nuclei (CCN). Anthropogenic aerosols 
add CCN, compared to a pristine background, and produce clouds with more numerous and smaller droplets, slower to coalesce 
into raindrops and to freeze into ice hydrometeors at temperatures below 0°C. Adding CCN suppresses light rainfall from shallow 
and short-lived clouds, but it is compensated by heavier rainfall from deep clouds. Adding aerosols to clouds in extremely clean air 
invigorates them by more effi cient vapour condensation on the added drop surfaces (Koren et al., 2014; Fan et al., 2018). Clouds 
forming in more polluted air masses (hence with more numerous and smaller drops) need to grow deeper to initiate rain (Freud 
and Rosenfeld, 2012; Konwar et al., 2012; Campos Braga et al., 2017). This leads to larger amount of cloud water evaporating aloft 
while cooling and moistening the air there at the expense of the lower levels, which leads to convective invigoration (Dagan et al., 
2017; Chua and Ming, 2020), followed by convergence, air mass destabilization and added rainfall in an amplifying feedback loop 

Box 8.1 (continued)
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Box 8.1, Figure 2 | Schematic depiction of the atmospheric effects of light-absorbing aerosols on convection and cloud formation: (a) without 
and (b) with the presence of absorbing aerosols in the planetary boundary layer. The dashed and solid blue lines correspond to the vertical temperature 
profi les in the absence and presence of the absorbing aerosol layer, respectively, and the solid and dashed red lines denote the dry and moist adiabats, respectively. 
Absorbing aerosols result in an increasing temperature in the atmosphere but a  reduced temperature at the surface. The reduced surface temperature and the 
increased temperature aloft led to a larger negative energy associated with convective inhibition (–) and a higher convection condensation level (CCL) under the 
polluted conditions. On the other hand, the absorbing aerosol layer induces a larger convective available potential energy (+) above CCL, facilitating more intensive 
vertical development of clouds, if lifting is suffi cient to overcome the larger convective inhibition. Figure from Y. Wang et al. (2013).
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8.3 How Is the Water Cycle 
Changing and Why?

This section focuses on the evaluation and attribution of past and 
recent water cycle changes using observational datasets, theoretical 
understanding and model simulations. Paleoclimate records and 
historical observations provide evidence for past water cycle changes 
caused both by natural variability and human activities (Haug et al., 
2003; Buckley et al., 2010; Pederson et al., 2014). Key elements of 
the observed water cycle changes are assessed in this section, 
including flux and storage variations across the atmosphere, the 
continents and to a lesser extent the ocean and cryosphere, as well 
as related changes in large-scale atmospheric circulation and modes 
of variability. Particular emphasis is placed on assessing changes 
across regions and seasons (Box 8.2). Detailed regional assessments 
are presented in Chapters 10, 11, 12 and Atlas. Further information 
concerning large-scale observed water cycle changes and their 
attribution is available in Sections 2.3.1.3 and 3.3.2. 

8.3.1 Observed Water Cycle Changes Based 
on Multiple Datasets

This section provides a process-based evaluation and a comprehensive 
assessment of observed water cycle changes by integrating multiple 
lines of evidence including paleoclimate data, historical datasets, 
theoretical understanding (Section 8.2) and model simulations.

8.3.1.1 Global Water Cycle Intensity and P–E 
Over Land and Oceans

The human influence on the global water cycle is often summarized 
as an intensification (Huntington, 2006; DeAngelis et al., 2015; 
W. Zhang et al., 2019b) or an overall strengthening which has been 
observed since at least 1980 (high confidence) (see Chapter 2). There 
is, however, no unique definition of the global water cycle intensity 
(Trenberth, 2011; Ficklin et al., 2019; Sprenger et al., 2019). One 
simple metric is the global and annual mean amount of precipitation. 
Although an increase in global precipitation is consistent with 
physical expectations (Section 8.2.1), it has not yet been detected and 
attributed to human activities given large observational uncertainties 
and low signal-to-noise ratio (Section  3.3.2.2). Other metrics are 
more suitable to detect and attribute changes in the global water 
cycle, including the likely increase in global land precipitation since 
1950 (Section  2.3.1.4) which is likely due to a  human influence 
(Section 3.3.2.3).

The flux of freshwater between the ocean and atmosphere is 
determined by the difference between precipitation and evaporation 
(P–E). Evaporation is measured in very few locations across the 
global ocean, so that directly assessing P–E over the ocean is very 
challenging and relies on indirect reanalysis estimates (Robertson 
et al., 2020). The AR5 presented robust evidence of an amplified 
oceanic pattern in P–E since the 1960s from both regional and 
global surface and subsurface salinity measurements and reanalyses. 

 
Box 8.1 (continued)

(Abbott and Cronin, 2021). In addition, delaying rain initiation until greater altitudes are reached transports more cloud water above 
the 0°C altitude and leads to additional release of latent heat of freezing and/or vapour deposition, which in combination with the 
added latent heat of condensation enhances the cloud updrafts (Fan et al., 2018). The stronger updrafts invigorate mixed-phase 
precipitation and the resultant hail and cloud electrification (Rosenfeld et al., 2008; Thornton et al., 2017). This includes the outer 
convective rainbands of tropical cyclones. There is medium confidence that air pollution enhances flood hazard associated with the 
outer rain bands at the expense of the inner rain bands (Wang et al., 2014; C. Zhao et al., 2018; Souri et al., 2020).

The aerosol effect on invigoration and rainfall from deep convective clouds peaks at moderate levels (aerosol optical depth of 0.2 to 0.3), 
but reverses into suppression with more aerosols (H. Liu et al., 2019). More generally, the microphysical aerosol-related processes 
often compensate or buffer each other (Stevens and Feingold, 2009). For example, suppressed rain by slowing drop coalescence 
enhances mixed-phase precipitation. Therefore, despite the potentially large aerosol influence on the precipitation forming processes, 
the net outcome of aerosol microphysical effects on precipitation amount has generally low confidence, especially when evaluated 
with respect to the background of high natural variability in precipitation (Tao et al., 2012).

Ice nucleating particle (INP) initiate ice precipitation from persistent supercooled water clouds that have cloud droplets too small for 
efficient warm rain, or expedite mixed-phase precipitation in short-lived supercooled rain clouds (Creamean et al., 2013). Most INPs 
are desert and soil dust particles, rather than air pollution aerosols (DeMott et al., 2010). Biogenic particles from terrestrial and marine 
origin are more rare, but important at temperatures above about –15°C (Murray et al., 2012; DeMott et al., 2016). Dust particles 
from long-range transport across the Pacific were found to enhance snow-forming processes over the Sierra Nevada in California 
(Creamean et al., 2013; Fan et al., 2014). The impact of INPs was demonstrated by glaciogenic cloud seeding experiments, which 
enhanced orographic supercooled clouds with medium confidence of success (French et al., 2018; Rauber et al., 2019; Friedrich et al., 
2020). There are still major gaps in understanding the effects of INPs mainly on deep convective clouds (Kanji et al., 2017; Stanford 
et al., 2017; Korolev et al., 2020).
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This  pattern is consistent with our theoretical understanding of 
human-induced changes in the water cycle, leading to the conclusion 
that these changes are very likely the result of anthropogenic forcings 
(Section 9.2.2.2). 

In contrast, AR5 did not provide a  conclusive assessment of 
observed changes in P–E over land. Continental P–E estimated 
from reanalyses and data-driven land surface models indicate that 
interannual variations are linked to ENSO (Robertson et al., 2014, 
2020). Increasing trends in P–E since 1979 based on land models are 
not statistically significant. Observations and models show evidence 
that P–E increases in the wet parts and decreases in the dry parts 
of tropical circulation systems, which shift in location seasonally 
and from year to year, with increases in seasonality since 1979 (see 
Box 8.2; Chou et al., 2013; Liu and Allan, 2013; Fu and Feng, 2014).

In summary, a low signal-to-noise ratio, observational uncertainties 
and current data assimilation techniques limit the assessment of 
recent global trends in P–E over both land and ocean. It is likely 
that the global land P–E variations observed since the late 1970s 
were dominated by internal variability, mostly linked to ENSO 
teleconnections (medium confidence). In contrast, the attribution of 
changes in sea surface salinity (Section 3.5.2.2) suggests that it is 
extremely likely that human influence has contributed to the regional 
changes in P–E observed over the global ocean since the mid-
20th century.

8.3.1.2 Water Vapour and Its Transport

The AR5 presented evidence of increases in global near-surface and 
tropospheric specific humidity since the 1970s but with medium 
confidence of a  slowing of near-surface moistening trends over 
land associated with reduced relative humidity since the late 1990s. 
According to AR5, radiosonde, Global Positioning System (GPS) and 
satellite observations of tropospheric water vapour indicate very likely 
increases at near global scales since the 1970s occurring at a rate that 
is generally consistent with the Clausius–Clapeyron relation (about 
7%  °C–1 at low altitudes) and the observed atmospheric warming 
(Hartmann et al., 2013). 

Since AR5, it is very likely that increases in global atmospheric water 
vapour were observed based on in situ, satellite and reanalysis data 
(with medium confidence in the magnitude; Section 2.3.1.3). Satellite 
records show increases in upper tropospheric water vapour (constant 
relative humidity while temperatures have increased) since 1979 
(E.-S. Chung et al., 2014; Blunden and Arndt, 2020), to which human 
influence has likely contributed (Section 3.3.2.2). Combined satellite 
and reanalysis estimates and CMIP6 atmosphere-only simulations 
(1988–2014) show global mean precipitable water vapour increases 
of 6.7 ±  0.3 %  °C–1, very close to the Clausius–Clapeyron rate 
(Allan et al., 2020). Satellite-based products show increases close 
to the Clausius–Clapeyron rate over the ice-free oceans (about 7 to 
9 % °C–1; 1998–2008), but reanalysis estimates outside this range 
(Schröder et al., 2019) are an expected consequence of their changing 
observing systems (Allan et al., 2014; Parracho et al., 2018). Increases 
in precipitable water vapour are found over the central and sub-
Arctic based on multiple reanalyses with some corroboration from 

sparse, in situ data (Vihma et al., 2016; Rinke et al., 2019; Nygård 
et al., 2020). 

Declining near-surface relative humidity over land areas (e.g.,  the 
USA, Mediterranean, South Asia, South America and southern Africa) 
is evident in surface observations (Willett et al., 2014, 2020; Dunn 
et al., 2017). This is consistent with a  faster rate of warming over 
land than ocean (Sections 2.3.1.3 and 8.2.2.1; Byrne and O’Gorman, 
2018). CMIP5 simulations underestimate the observed decreases 
in relative humidity over much of global land during 1979–2015 
(Douville and Plazzotta, 2017; Dunn et al., 2017) even when observed 
SSTs are prescribed (–0.05 to –0.25% per decade compared with an 
observed rate of –0.4 to –0.8% per decade). It is not yet clear if this 
discrepancy is related to internal variability or can be explained by 
deficiencies in models (Vannière et al., 2019; Douville et al., 2020) 
or observations (Willett et al., 2014). Over the NH mid-latitude 
continents, there is medium confidence that human influence has 
contributed to a decrease in near-surface relative humidity in summer 
(Sections 2.3.1.3 and 3.3.2.3). 

Water vapour transport (or convergence) estimates from observations 
have substantial uncertainties even in regions of high quality 
radiosonde data. Consequently many studies use reanalyses for 
water transport estimates instead of instrumental observations. For 
example, increases in low-level (800–1000 hPa) moisture convergence 
into the tropical wet regime with a smaller outflow increase in the 
mid-troposphere (400–800 hPa) with warming was detected in one 
reanalysis (ERA-Interim; Allan et al., 2014). Modelling evidence 
combined with statistical analysis demonstrate consistency between 
reanalysis moisture convergence and P–E over land (Robertson et al., 
2016). Advances in reanalysis representation of atmospheric moisture 
and winds in addition to new observational isotope analysis have 
improved the ability to identify the main sources of water vapour for 
key continental regions and quantify the relative contributions from 
moisture advection and recycling (Gimeno et al., 2012; van Der Ent 
et al., 2014; Joseph et al., 2016). 

Observed changes in moisture transport can also arise from changes 
in atmospheric circulation as well as thermodynamics. For instance, 
moisture transport into the Arctic region estimated from reanalyses 
datasets is consistent with radiosonde data (Dufour et al., 2016), 
with increases since 1979 linked to atmospheric circulation (Nygård 
et al., 2020). Moisture transport into the Eurasian Arctic was 
identified to increase by 2.6% per decade during 1948–2008 based 
on a reanalysis estimate (X. Zhang et al., 2013). More intense moist 
intrusions associated with atmospheric rivers affecting the Arctic and 
Europe have been documented since 1979, but with a  substantial 
influence from decadal internal variability (Ummenhofer et al., 2017; 
Mattingly et al., 2018). A recent strengthening of tropical circulation 
and associated moisture convergence has been identified since 
around 2000 for the Amazon region (Arias et al., 2015; Barichivich 
et al., 2018; J.C. Espinoza et al., 2018; X.Y. Wang et al., 2018). This was 
also strenghtened by increased moisture transport from the North 
Atlantic, driving more abundant latent heat release (Segura et al., 
2020) and leading to an increased frequency of extreme floods in the 
northern Amazon (Barichivich et al., 2018; Heerspink et al., 2020). 
Overall, increased moisture transport has been linked to increased 
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precipitation over wet tropical land areas (Gimeno et al., 2020) and to 
more extreme and persistent wet and dry weather events (Konapala 
et al., 2020) in many regions worldwide. 

In summary, there is high confidence that human-caused global 
warming has led to an overall increase in water vapour and moisture 
transport throughout the troposphere, at least since the mid-1990s. 
In particular, there is high confidence that moisture transport into the 
Arctic has increased but only medium confidence in the attribution 
of such a  trend to a human influence. There is medium confidence 
that human influence has contributed to a decrease in near-surface 
relative humidity over the Northern Hemisphere mid-latitude 
continents during summer (see also Sections 2.3.1.3 and 3.3.2.3).

8.3.1.3 Precipitation Amount, Frequency and Intensity

This section assesses observed changes in precipitation at global 
and regional scales. Note that changes in precipitation seasonality 
are assessed in Box  8.2 and that changes in regional monsoons 
are assessed in section  8.3.2.4 where observed changes in both 
circulation and rainfall are considered. Further assessment of regional 
changes in precipitation is presented in Chapters 10, 12 and Atlas, 
while extreme precipitation is presented in Chapter 11.

The AR5 concluded that it is likely there has been an overall increase 
in annual mean precipitation amount over mid-latitude land areas in 
the NH, with low confidence since 1901, but medium confidence after 
1951. There is further evidence of a faster increase since the 1980s 
(medium confidence) (Sections 2.3.1.3.4 and 3.3.2.2). Precipitation 
has increased from 1950 to 2018 over mid-high latitude Eurasia, 
most of North America, south-eastern South America, and north-
western Australia, while it has decreased over most of Africa, eastern 
Australia, the Mediterranean region, the Middle East, and parts of 
East Asia, central South America, and the Pacific coasts of Canada, as 
simulated by the CMIP5 multi-ensemble mean (Dai, 2021). Since AR5, 
there have been updates of several precipitation datasets, including 
satellite estimates, reanalysis and merged products (Adler et al., 
2017; Roca, 2019). However, observational uncertainties remain 
an issue for assessing regional trends in seasonal or annual mean 
precipitation amount (Hegerl et al., 2015; Maidment et al., 2015; 
Sarojini et al., 2016; Beck et al., 2017), as well as the convective and 
stratiform types of precipitation (e.g., Ye et al., 2017). Precipitation 
trends at regional scales are dominated by internal variability across 
much of the world (Knutson and Zeng, 2018). Regional changes in 
precipitation amounts can also be obscured by contrasting responses 
to GHG compared with aerosol forcings (Wu et al., 2013; Hegerl 
et al., 2015; Xie et al., 2016; Zhao and Suzuki, 2019; Zhao et al., 
2020) and changes in precipitation intensity versus frequency (Shang 
et al., 2019). 

Global and regional changes in precipitation frequency and intensity 
have been observed over recent decades. An analysis of 1875 rain 
gauge records worldwide over the period 1961–2018 indicates that 
there has been a general increase in the probability of precipitation 
exceeding 50  mm  day–1, mostly due to an overall boost in rain 
intensity (Benestad et al., 2019). Such changes in precipitation 
intensity and frequency have not been formally attributed to human 

activities, but are consistent with the heating effect of increasing CO2 
levels on the distribution of daily precipitation rates (Section 8.2.3.2) 
and with a  distinct overall intensification of heavy precipitation 
events found in both observations and CMIP5 models, though with 
an underestimated magnitude (Fischer and Knutti, 2014). Beyond 
amplified precipitation extremes (Section  11.4.2), CMIP5 models 
also indicate that anthropogenic forcings have increased temporal 
variability of annual precipitation amount over land from 1950 to 
2005, which is most pronounced in annual mean daily precipitation 
intensity (Konapala et al., 2017). 

Anthropogenic aerosols can alter precipitation intensities 
both through radiative and microphysical effects (Box  8.1 and 
Section  8.5.1.1.2). Precipitation suppression through aerosol 
microphysical effects has been observed in shallow cloud regimes 
over South America and the south-eastern Atlantic, associated 
with local biomass burning (Andreae et al., 2004; Costantino and 
Bréon, 2010), and in industrial regions in Australia (Rosenfeld, 
2000; Hewson et al., 2013; Heinzeller et al., 2016). In contrast, 
precipitation intensification through aerosol microphysical effects 
in deep convective clouds is seen in many regions such as the 
Amazon, southern USA, India, and Korea. This is associated with 
anthropogenic aerosols from cities (Hewson et al., 2013; Fan et al., 
2018; S.S. Lee et al., 2018; Sarangi et al., 2018).

In the tropics, increases in precipitation amount are observed in 
convergence zones and decreases in the descending branches 
of the atmospheric circulation since 1979 (Chou et al., 2013; Liu 
and Allan, 2013; Gu et al., 2016; Polson et al., 2016; Polson and 
Hegerl, 2017), consistent with increased moisture transports with 
warming (Gimeno et al., 2020). Over tropical land areas, there is 
substantial variability in the ‘wet convergent regimes get wetter’ 
and ‘dry divergent regimes get drier’ pattern of trends observed 
since 1950 that are modulated by decadal changes in ENSO (Liu 
and Allan, 2013; Gu and Adler, 2018). CMIP6 models indicate an 
increased contrast between wet and dry regions in the tropics and 
subtropics (Figure 8.7; Schurer et al., 2020). This provides further 
evidence that rainfall has increased in wet regimes, and slightly 
decreased in dry regimes over the period 1988–2019 (Figure 3.14). 
This greater contrast is primarily attributable to greenhouse gas 
forcings, although the observed trends are statistically larger than 
the model responses (Section 3.3.2.3).

Over the African continent, there are distinct precipitation trends 
observed in multiple datasets since the 1980s (Figure 8.7; Maidment 
et al., 2015; P. Nguyen et al., 2018). Increases in intense convective 
storms affecting the Sahel have been attributed to increased 
land–ocean temperature gradients (Taylor et al., 2017), enhanced 
by intense heating of the Sahara (Dong and Sutton, 2015) rather 
than thermodynamics (Section  8.2.2). Changes in Sahel rainfall, 
with reduced precipitation amounts from the 1960s to the 1980s 
and a  subsequent recovery, are assessed in Sections  8.3.2.4.3 
and 10.4.2.1. In eastern Africa, decreasing precipitation amount 
(−2 to −7 % per decade for 1983–2010) was reported for the March 
to May ‘long rains’ season (Lyon and Dewitt, 2012; Viste et al., 2013; 
Liebmann et al., 2014; Maidment et al., 2015; Rowell et al., 2015) 
and evidence of a  recovery since, with internal variability playing 
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a  large role in these decadal changes (Wainwright et al., 2019). In 
contrast, the second ‘short rains’ season in eastern Africa (October to 
December) does not exhibit significant precipitation trends (Rowell 
et al., 2015). Increases in annual southern African rainfall of 6–7% 
per decade during 1983–2010 are linked with the Pacific Decadal 
Oscillation (PDO; Maidment et al., 2015).

Section  8.3.1.6 assesses changes in precipitation over the 
Mediterranean region and its connection with drought and aridity.

Rainfall increases have been observed over northern Australia since 
the 1950s, with most of the increases occurring in the north-west 
(Dey et al., 2019a, b; Dai, 2021) and decreases observed in the north-
east (J. Li et al., 2012) since the 1970s. In contrast, there has been 
a  decline in rainfall over southern Australia related to changes in 
the intensification and position of the subtropical ridge (CSIRO and 
BoM, 2015) and anthropogenic effects (Knutson and Zeng, 2018). 
The drying trend over south-west Australia is most pronounced 
during May to July, where rainfall has declined by 20% below the 
1900–1969 average since 1970 and by about 28% since 2000 (BoM 
and CSIRO, 2020). 

Over South America, there is observational and paleoclimate 
evidence of declining precipitation amount during the past 50 years 
over the Altiplano and central Chile, primarily explained by the PDO 
but with at least 25% of the decline attributed to anthropogenic 
influence (Morales et al., 2012; Neukom et al., 2015; Boisier et al., 
2016; Seager et al., 2019b; Garreaud et al., 2020). In contrast, 
a significant rainfall increase has been detected over the Peruvian–
Bolivian Altiplano (from observational data and satellite-based 
estimations) since the 1980s (Figure 8.7; Imfeld et al., 2020; Segura 
et al., 2020). Long-term (1902–2005) precipitation data indicate 
positive trends over south-eastern South America and negative 
trends over the southern Andes, with at least a partial contribution 
from anthropogenic forcing (Gonzalez et al., 2014; Vera and Díaz, 
2015; Díaz and Vera, 2017; Boisier et al., 2018; Knutson and Zeng, 
2018; see further assessment in Section 10.4.2.2 and Atlas.7.2.2). 
The Peruvian Amazon has exhibited significant rainfall decreases 
during the dry season since 1980 (Lavado et al., 2013; Ronchail 
et al., 2018). Increases in wet season rainfall in the northern and 
central Amazon since the 1980s and decreases during the dry 
season in the southern Amazon (Barreiro et al., 2014; Gloor et al., 
2015; Martín-Gómez and Barreiro, 2016; J.C. Espinoza et al., 2018; 
X.Y. Wang et al., 2018; Haghtalab et al., 2020) are not explained 
by radiative forcing based on CMIP6 experiments (Figure 8.7) and 
trends are insignificant over longer periods since 1930 (Kumar 
et al., 2013) or more recently, since 1973 (Almeida et al., 2017). 
See Section 8.3.2.4.5 for monsoon-related changes. For the tropical 
Andes region, trends in annual precipitation show heterogenous 
patterns, ranging between –4% per decade and +4% per decade 
in the northern and southern tropical Andes for a 30-year period at 
the end of the 20th century, although increases during 1965–1984 
and decreases since 1984 have been registered in Bolivia (Carmona 
and Poveda, 2014; Pabón-Caicedo et al., 2020). 

Over China, annual precipitation totals changed little from 1973 
to 2016, but precipitation intensity significantly increased at a rate 

of 0.12  mm  day–1 per decade, while the number of days with 
precipitation exceeding 0.1  mm  day–1 significantly decreased at 
a rate of 0.9 days per decade (Shang et al., 2019). There is consistency 
in trend estimates during 1998–2015 over mainland China among 
satellite-based products and station data, which show increased 
precipitation amounts in autumn and winter and decreases in summer 
(Chen and Gao, 2018), consistent with a decreased intensity of East 
Asian monsoon precipitation (Lin et al., 2014; Deng et al., 2018). 
Further assessment of precipitation changes over the South and 
South East Asian and the East Asian monsoon regions is presented in 
Section 8.3.2.4. An increasing trend in the frequency of heavy rainfall 
occurrences at the expense of low and moderate rainfall occurrences 
is found over central India (Krishnan et al., 2016; Roxy et al., 2017) 
and over eastern China with the latter due to increasing high aerosol 
levels (Qian et al., 2009; J. Guo et al., 2017; Xu et al., 2017; Day et al., 
2018), consistent with the effects of absorbing aerosol on stability 
and convective inhibition (Box 8.1).

Observed precipitation records since the early 1900s show 
increases in precipitation totals over central and north-eastern 
North America that are attributable to anthropogenic warming but 
larger in magnitude than found in CMIP5 simulations (Knutson and 
Zeng, 2018; Guo et al., 2019). Decreases in precipitation amount 
over the central and south-western USA and increases over the 
north-central USA during 1983–2015 (Cui et al., 2017; P. Nguyen 
et al., 2018), are not clearly associated with forced responses in 
CMIP6 simulations (Figure  8.7; see also Section  10.4.2.3). Over 
Europe, precipitation trends since 1979 do not show coherence 
across datasets (Zolina et al., 2014; P. Nguyen et al., 2018). Longer 
records since 1910 show increases for much of Scandinavia, north-
western Russia, and parts of north-western Europe/United Kingdom 
and Iceland (Knutson and Zeng, 2018). Records since 1930 show 
increases of annual preciptation amount over western Russia (see 
also Atlas.8.2). Widespread increases in daily precipitation intensity 
appear clearly over regions with a  high density of rain gauges, 
such as Europe and North America over the 1951–2014 period 
(Alexander, 2016). Observations during 1966–2016 over northern 
Eurasia show increases in the contribution of heavy convective 
showers to total precipitation by 1–2% on average (with local 
trends of up to 5%) for all seasons except for winter (Chernokulsky 
et al., 2019). Increases in convective precipitation intensity have 
been identified, particularly on sub-daily time scales, using a range 
of modelling and observational data (Berg et al., 2013; Kanemaru 
et al., 2017; Pfahl et al., 2017).

Snowfall is an important component of precipitation in high-latitude 
and mountain watersheds. Reanalysis data indicate significant 
reductions in annual mean potential snowfall areas over NH land by 
0.52 million km2 per decade, with the largest decline over the Alps, 
with snow water equivalent reductions of about 20 mm per decade 
(Tamang et al., 2020). In the Tibetan Plateau, region-wide winter 
snowfall has increased but summer snowfall has decreased during 
the 1960–2014 period (Deng et al., 2017). State-of-the-art model 
simulations indicate reduced mean annual snowfall in the Arctic, 
despite the strong precipitation increase, mainly in summer and 
autum, when temperatures are close to the melting point (Bintanja 
and Andry, 2017). 
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Figure 8.7 | Linear trends in annual mean precipitation (mm day–1 per decade) for 1901–1984 (left) and 1985–2014 (right): (a, e) observational dataset, 
and the CMIP6 multi-model ensemble mean historical simulations driven by: (b, f) all radiative forcings; (c, g) GHG-only radiative forcings; (d, h) aerosol-
only radiative forcings experiment. Colour shades without grey cross correspond to the regions exceeding 10% significant level. Grey crosses correspond to the regions 
not reaching the 10% statistically significant level. Nine CMIP6-DAMIP models have been used having at least three members. The ensemble mean is weighted per each model 
on the available and used members. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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In summary, regional changes in precipitation amounts can be 
obscured by the contrasting responses to GHG and aerosol forcings 
across much of the 20th century and can thus be dominated 
by internal variability at decadal to multi-decadal time scales 
(high confidence). There is, however, a  detectable increase in 
northern high-latitude annual precipitation over land which has 
been primarily driven by human-induced global warming (high 
confidence) (Section  3.3.2). Human influence has strengthened 
the zonal mean precipitation contrast between the wet tropics 
and dry subtropics since the 1980s (medium confidence), although 
regional studies suggest a more complex precipitation response to 
evolving anthropogenic forcings. There is high confidence that daily 
mean precipitation intensities have increased since the mid-20th 
century in a majority of land regions with available observations 
and it is likely that such an increase is mainly due to GHG forcing 
(see Section 11.4). Section 8.3.2.4 assesses monsoon precipitation 
changes in detail.

8.3.1.4 Evapotranspiration 

The AR5 assessed that there was medium confidence that pan 
evaporation declined in most regions over the last 50 years, yet 
medium confidence that evapotranspiration increased from the early 
1980s to the late 1990s. Since AR5, these conflicting observations 
have been attributed to internal variability and by the fact that 
evapotranspiration is less sensitive to trends in wind speed and is partly 
controlled by vegetation greening (K.  Zhang et al., 2015; Y.  Zhang 
et al., 2016; Z.  Zeng et al., 2018b). Observation-based estimates 
show a robust positive trend in global terrestrial evapotranspiration 
between the early 1980s and the early 2010s (Miralles et al., 2014b; 
Z.  Zeng et al., 2014, 2018b; K.  Zhang et al., 2015; Y.  Zhang et al., 
2016). The rate of increase varies among datasets, with an ensemble 
mean terrestrial average rate of 7.6 ± 1.3 mm yr–1 per decade for 
1882–2011 (Z. Zeng et al., 2018a). In addition, a decreasing trend 
in pan evaporation plateaued or reversed after the mid-1990s 
(C.M. Stephens et al., 2018) has been reported as due to a shift from 
a dominant influence of wind speed to a dominant effect of water 
vapour pressure deficit, which has increased sharply since the 1990s 
(Yuan et al., 2019). The absence of a  trend in evapotranspiration 
in the decade following 1998 was shown to be at least partly an 
episodic phenomenon associated with ENSO variability (Miralles 
et al., 2014b; K. Zhang et al., 2015; Martens et al., 2018). Thus, there 
is medium confidence that the apparent pause in the increase in 
global evapotranspiration from 1998 to 2008 is mostly due to internal 
variability. In contrast to AR5, there are now consistent trends in 
pan evaporation and evapotranspiration at the global scale, given 
the recent increase in both variables since the mid-1990s (medium 
confidence). Given the growing number of quantitative studies, there 
is high confidence that global terrestrial annual evapotranspiration 
has increased since the early 1980s.

Since AR5, the predominant contribution of transpiration to the 
observed trends in terrestrial evapotranspiration has been revisited 
and confirmed (Good et al., 2015; Wei et al., 2017). Using satellite 
and ecosystem models, Zhu et al. (2016) found a positive trend in 
leaf area index during 1982–2009, indicating that greening could 
contribute to the observed positive trend of evapotranspiration, in 

line with similar studies that focused on the 1981–2012 (Y. Zhang 
et al., 2016) and 1982–2013 (K.  Zhang et al., 2015) periods. Zeng 
et al. (2018) determined that the 8% global increase in satellite-
observed leaf area index between the 1980s and the 2010s may 
explain an increase in evapotranspiration of 12.0 ±  2.4  mm yr–1 
(about 55 ±  25% of the total observed increase). Forzieri et al. 
(2020) estimated that the recent increase in leaf area index led to 
3.66 ± 0.45 W m–2 in latent heat flux (about 51 ± 6 mm yr–1) and 
that the sensitivity of energy fluxes to leaf area index increased by 
about 20% over the 1982–2016 period. Overall, there is medium 
confidence that greening has contributed to the global increase in 
evapotranspiration since the 1980s.

Plant water use efficiency (WUE) is expected to rise with CO2 levels 
(high confidence) (Section 8.2.3.3 and Box 5.2), and can in theory 
counteract rising evapotranspiration in a  warmer atmosphere 
(Section  8.2.3.3). However, observational studies suggest that this 
may not be the case in some ecosystems. For example, Frank et al. 
(2015) found that while the WUE increased in European forests across 
the 20th century, transpiration also increased due to more plant 
growth, a  lengthened growing season, and increased evaporative 
demand. Likewise Guerrieri et al. (2019) observed that while WUE 
and photosynthesis increased in North American forests, stomatal 
conductance experienced only modest declines that were restricted 
to moisture-limited forests. Other studies further suggest that in 
many ecosystems increased WUE will not compensate for increased 
plant growth, amplifying declines in surface water availability 
(De Kauwe et al., 2013; Ukkola et al., 2016b; A. Singh et al., 2020), 
while drought conditions can also offset the CO2 fertilization effect 
and lead to a  decline in WUE (N.  Liu et al., 2020). There is low 
confidence regarding the impact of plant physiological effects on 
observed trends in evapotranspiration.

An increasing number of studies have identified signals of attribution 
in the recent observed trends in evapotranspiration. Douville 
et al. (2013) found that the post-1960 rise in evapotranspiration in 
both the mid-latitudes and northern high latitudes was related to 
anthropogenic radiative forcing. An analysis of CMIP5 simulations 
suggests that anthropogenic forcing accounts for a  large fraction 
of the global mean evapotranspiration trend from 1982 to 2010 
(Dong and Dai, 2017). Padrón et al. (2020) determined that 
increases in evapotranspiration were responsible for the majority 
of the anthropogenic pattern in dry-season water availability that 
dominates global trends since 1984. These findings are further 
supported by CMIP6 model results (Figure  8.8) that show that 
the recent summer increase in evapotranspiration in the northern 
mid- and high latitudes is due to GHG forcing and decreasing 
anthropogenic aerosol emissions over Europe. 

In summary, there is high confidence that terrestrial evapotranspiration 
has increased since the 1980s. There is medium confidence that 
this trend is driven by both increasing atmospheric water demand 
and vegetation greening, and high confidence that it can be partly 
attributed to anthropogenic forcing. There is low confidence about 
the extent to which increases in plant water use efficiency have 
influenced observed changes in evapotranspiration. 
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Trend in annual mean Evapotranspiration 
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Figure 8.8 | Linear trends in annual mean evapotranspiration (mm day–1 per decade) for 1901–1984 (left) and 1985–2014 (right): (a, e) Land Model 
Intercomparison Project (LMIP) and observational dataset, and the CMIP6 multi-model ensemble mean historical simulations driven by (b, f) all radiative 
forcings, (c, g) GHG-only radiative forcings, (d, h) aerosol-only radiative forcings experiment. Colour shade without grey cross correspond to the regions exceeding 
10% significant level. Grey crosses correspond to the regions not reaching the 10% statistically significant level. Nine CMIP6-DAMIP models have been used having at least 
three members. The ensemble mean is weighted per each model on the available and used members. The Global Land Data Assimilation System (GLDAS) was not available over 
the early 20th century so was replaced by a multi-model off-line reconstruction, LMIP, which is consistent with GLDAS over the recent period but may be less reliable over the 
early 20th century given larger uncertainties in the atmospheric forcings. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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8.3.1.5 Runoff, Streamflow and Flooding

The AR5 reported low confidence in the assessment of trends in 
global river discharge during the 20th century. This is because many 
streamflow observations have been impacted by land use and dam 
construction, and the largest river basins worldwide differ in many 
characteristics, including geography and morphology. In regions 
with seasonal snow storage, AR5 WGII assessed that there is robust 
evidence and high agreement that warming has led to earlier spring 
discharge maxima and robust evidence of earlier breakup of Arctic 
river ice, as well as indications that warming has led to increased 
winter flows and decreased summer flows where streamflows are 
lower and that the observed increases in extreme precipitation led 
to greater probability of flooding at regional scales with medium 
confidence. The SROCC found robust evidence and high agreement 
that discharge due to melting glaciers has already reached its 
maximum point and has begun declining with smaller glaciers, but 
only low confidence that anthropogenic climate change has already 
affected the frequency and magnitude of floods at the global scale. 

Significant trends in streamflow and continental runoff were observed 
in 55 out of 200 large river basins during 1948–2012, with an even 
distribution of increasing and decreasing trends (Section 2.3.1.3.6; 
Dai, 2016). A global detection and attribution study shows that the 
simulation of spatially heterogeneous historical trends in streamflow 
is consistent with observed trends only if anthropogenic forcings are 
considered (Gudmundsson et al., 2019). Section  3.3.2.4 assesses 
with medium confidence that anthropogenic climate change has 
altered regional and local streamflows, although a significant trend 
has not been observed in the global average (Sections 2.3.1.3.6 and 
3.3.2.3). Multiple human-induced and natural drivers have been 
shown to play an important but variable role in observed regional 
trends of streamflow for several different areas (Fenta et al., 2017; 
Ficklin et al., 2018; Glas et al., 2019; Vicente-Serrano et al., 2019). 
For instance, decreasing runoff during the dry season has been 
observed over the Peruvian Amazon since the 1980s (Lavado et al., 
2013; Ronchail et al., 2018). Up to 30–50% of the recent multi-
decadal decline in streamflow across the Colorado River Basin can 
be attributed to anthropogenic warming and its impacts on snow and 
evapotranspiration (Woodhouse et al., 2016; McCabe et al., 2017; 
Udall and Overpeck, 2017; Xiao et al., 2018; Milly and Dunne, 2020). 
In the Upper Missouri River basin, Martin et al. (2020) found that 
warming temperatures have contributed to streamflow reductions 
since at least the late 20th century. Cold regions in the NH have 
experienced an earlier occurrence of snowmelt floods, an overall 
increase in water availability and streamflow during winter, and 
a  decrease in water availability and streamflow during the warm 
season (Aygün et al., 2019). 

Some studies have suggested that dam construction and water 
withdrawals can be the dominant drivers in observed trends in 
streamflow amount (Wada et al., 2013). Regionally, land-use and 
land cover changes have been identified as important factors for 
streamflow (H.  Chen et al., 2020). The impact of surface dimming 
from aerosol emissions on evaporation was identified as a discernible 
influence in NH streamflows (Gedney et al., 2014). While changes 
in annual mean streamflow present a  complicated picture, recent 

studies of changes in the timing of streamflow in snow-influenced 
basins continue to support a  prominent influence from warming 
(Kang et al., 2016; Dudley et al., 2017; Kam et al., 2018). Global 
land runoff variations correlate significantly with ENSO variability 
(Miralles et al., 2014b; Schubert et al., 2016).

Observed changes in flooding are assessed in Section  11.5.2 and 
are summarized as follows. For changes in the magnitude of peak 
flow, recent studies show strong spatial heterogeneity in the sign, 
size and significance of trends. For changes in timing of peak flows, 
recent studies further support observed changes in snowmelt-driven 
rivers. Observed changes in runoff and flood magnitude cannot be 
explained by precipitation changes alone given the possible season- 
and region-dependent decreases in antecedent soil moisture and 
snowmelt, which can partly offset the increase in precipitation 
intensity (Sharma et al., 2018), or the expected effect of urbanization 
and deforestation which can, on the contrary, amplify the runoff 
response (Chen et al., 2017; Abbott et al., 2019; Cavalcante et al., 
2019). Simulations of mean and extreme river flows are consistent 
with the observations only when anthropogenic radiative forcing is 
considered (Gudmundsson et al., 2021). 

In summary, the assessment of observed trends in the magnitude 
of runoff, streamflow, and flooding remains challenging, due to the 
spatial heterogeneity of the signal and to multiple drivers. There is, 
however, high confidence that the amount and seasonality of peak 
flows have changed in snowmelt-driven rivers due to warming. There 
is also high confidence that land-use change, water management 
and water withdrawals have altered the amount, seasonality, 
and variability of river discharge, especially in small and human-
dominated catchments. 

8.3.1.6 Aridity and Drought

The AR5 reported low confidence that changes in drought since the 
mid-20th century could be attributed to human influence, owing to 
observational uncertainties and difficulties in distinguishing decadal-
scale variability from long-term trends. Changes in soil moisture, 
a metric of aridity, were not assessed thoroughly in AR5. Since AR5, 
new satellite products, land surface reanalyses, and land surface 
models have been used to document recent changes in soil moisture 
at the global scale. The science of detection and attribution has also 
progressed considerably (Trenberth et al., 2015; Easterling et al., 
2016; Stott et al., 2016). Attribution efforts have further benefited 
from the increased use of paleoclimate information, which provides 
an important constraint on natural variability that is insufficiently 
sampled by short observational record (Cook et al., 2018; Kageyama 
et al., 2018).

Several studies have identified a  persistent ‘fingerprint’ of 
anthropogenic forcing in global trends in aridity spanning the last 
120 years. Using a  combination of tree ring data, CMIP5 model 
simulations, and reanalysis products, Marvel et al. (2019) determined 
that the dominant trend in aridity since 1900, characterized by 
drying in North and Central America and the Mediterranean, is 
detectable and attributable to external forcing from 1900 to 1949. 
This trend weakens from 1950 to 1975, possibly due to aerosol 
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forcing (Marvel et al., 2019), but then emerges again from 1981 to 
present, although it is not detectable in the GLEAM nor MERRA-2 
soil moisture reanalysis products. Likewise, Bonfils et al. (2020) 
investigated changes in precipitation, temperature and continental 
aridity in CMIP5 historical simulations and found that the dominant 
multivariate fingerprint, an amplification of wet–dry latitudinal 
patterns and progressive continental aridification, was associated 
with greenhouse gas emissions (Figure  8.9a,d), and the second 
leading fingerprint was associated with anthropogenic aerosols 
(Figure 8.9e,h). This study found that the anthropogenic greenhouse 
gas signal is statistically detectable in reanalyses over the 1950–2014 
period (signal-to-noise ratio above 1.96). Gu et al. (2019) found that 
a global trend in declining soil moisture is detectable in the GLDAS-2 
reanalysis product and is attributable to greenhouse gas forcing. 
Padrón et al. (2020) reconstructed the global patterns of dry season 
water availability from 1902–2014, and found it extremely likely 
(99% range) that trends in the last three decades of the analysis 
period could be attributed to anthropogenic forcing, mainly due to 
increases in evapotranspiration. It is very likely (>90% range) that 
anthropogenic forcing has affected global patterns of soil moisture 
over the 20th century.

On a regional scale, the robustness of trend attribution for drought 
and aridity varies widely. Key trends and their attributions are 
summarized here, while a complete regional assessment of observed 
trends in drought and aridity is in Chapter 11 (Sections 11.6.2, 12.3.2 
and 12.4).

Several studies have analyzed CMIP5 and land surface models and 
detected a significant summer drying trend in the NH across the late 
20th century that is attributable to anthropogenic forcings (Mueller 
and Zhang, 2016; Douville and Plazzotta, 2017). This trend is mainly 
driven by dryland areas such as the western USA and west-central 
Asia, where both reanalysis products and satellite data confirm 
there has been a persistent decline in soil moisture since 1990 (Y. Liu 
et al., 2019a). In the western USA, snow deficits have very likely 
contributed to recent drying (Mote et al., 2018). Spring snow water 
equivalent across the Sierra Nevada Mountains reached a  record 
low in 2015 (Margulis et al., 2016; Mote et al., 2016), possibly the 
lowest of the last five hundred years (Belmecheri et al., 2016). Over 
the longer California drought (2011–2015) anthropogenic warming 
alone reduced snowpack levels in the Sierras by 25% (Berg and Hall, 
2017). The north-western USA also experienced snow drought in 
2015, despite near-normal levels of total cold season precipitation 
(Mote et al., 2016; Marlier et al., 2017). There is high confidence that 
anthropogenic warming contributed to these recent snow droughts 
(Belmecheri et al., 2016; Mote et al., 2016). 

In the western USA, anthropogenic warming is amplifying drought 
and aridity by increasing evaporative demand and water loss to the 
atmosphere (Weiss et al., 2009; Overpeck, 2013; Cook et al., 2014; 
Griffin and Anchukaitis, 2014; Williams et al., 2020). For the California 
drought between 2012 –2014, Griffin and Anchukaitis (2014) 
used paleoclimate reconstructions to determine that while rainfall 
deficits were not unprecedented, record-high temperatures drove an 
exceptional decline in soil moisture relative to the last millennium. 
Williams et al. (2015) concluded that anthropogenic warming 

accounted for 8–27% of these soil moisture deficits. Robeson (2015) 
estimated that the California drought was a 1-in-10,000 year event. 
Tree ring reconstructions indicate that prolonged megadroughts 
have occurred in the western USA throughout the last 1200 years 
(Cook et al., 2004, 2010; B.I. Cook et al., 2015), forced by internal 
variability (Coats et al., 2016; Cook et al., 2016b). However, Williams 
et al. (2020) determined that 2000–2018 drought across the south-
western USA was the second driest 19-year period since 800 CE, and 
attributed nearly half the magnitude of this event to anthropogenic 
forcing (see also Section  10.4.2.3). Evidence for human signals in 
drought can also be found in western North American streamflow 
records, as noted above in Section 8.3.1.5. There is high confidence 
that anthropogenic forcing has contributed to recent droughts and 
drying trends in western North America.

Large areas of east-central Asia experienced drying in the early 2000s 
as a  result of warmer temperatures, lower humidity, and declining 
soil moisture (Wei and Wang, 2013; Z.  Li et al., 2017; Hessl et al., 
2018). Paleoclimate data from the Mongolian plateau suggest that 
this recent central Asian drought exceeds the 900-year return interval, 
but is not unprecedented in the last 2060 years (Hessl et al., 2018). 
There is low confidence due to limited evidence that recent droughts 
in central Asia can be attributed to anthropogenic forcing.

The Mediterranean region has experienced notable changes 
in drought and aridity. A number of studies have identified a decline 
in precipitation since 1960 and attributed this to anthropogenic 
forcing (Hoerling et al., 2012; Gudmundsson and Seneviratne, 2016; 
Knutson and Zeng, 2018; Seager et al., 2019b). Kelley et al. (2015) 
showed that climate change caused a  three-fold increase in the 
likelihood of the 2007–2010 meteorological drought in the eastern 
Mediterranean. However, historical trends in precipitation across 
the Mediterranean are spatially variable and contain substantial 
decadal variability, such that an anthropogenic influence may not 
be detectable in all areas (Zittis, 2018; Vicente-Serrano et al., 2021). 
Records of soil moisture provide a  clearer signal, indicating that 
higher temperatures and increased atmospheric demand have played 
a strong role in driving Mediterranean aridity (Vicente-Serrano et al., 
2014). Hydrological modeling suggests that the recent decline in 
soil moisture in the Mediterranean is unprecedented in the last 
250 years (Hanel et al., 2018). Paleoclimate evidence extends this 
view, additionally indicating that dryness in the Mediterranean is 
approaching an extreme condition compared to the last millennium 
(Markonis et al., 2018) and that the 15-year drought in the Levant 
(1998–2012) has an 89% likelihood of being the driest of the last 
900 years (Cook et al., 2016a). Marvel et al. (2019) found that the 
Mediterranean region contributes strongly to the anthropogenic 
warming component of the global trend in aridity. There is high 
confidence that anthropogenic forcings are causing increased aridity 
and drought severity in the Mediterranean region.

Both central and north-eastern Africa have experienced a  decline 
in rainfall since about 1980 (high confidence) (Lyon and Dewitt, 
2012; Lyon, 2014; Hua et al., 2016; Nicholson, 2017). In Central 
Africa, the decline has been attributed to atmospheric responses to 
Indo-Pacific sea surface temperature variability (Hua et al., 2018). 
In north-eastern Africa, droughts have become longer and more 
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Figure  8.9 |  Spatial expressions (a–c, e–g) of the leading multivariate fingerprints of temperature (°C), precipitation (mm day–1), and aridity (CMI;  
the Climate Moisture Index) in CMIP5 historical simulations and the corresponding temporal evolution in both CMIP5 and reanalysis products (d, h).
The first leading fingerprint is associated with greenhouse gas forcing (a–d) and the second leading fingerprint is associated with aerosol forcing (e–h). CMI is a dimensionless 
aridity indicator that combines precipitation and atmospheric evaporative demand. Figure after Bonfils et al. (2020). Further details on data sources and processing are available 
in the chapter data table (Table 8.SM.1).
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intense in recent decades, continuing across rainy seasons (Hoell 
et al., 2017b; Nicholson, 2017), and this trend appears to be unusual 
in the context of the last 1500 years (Tierney et al., 2015). Knutson 
and Zeng (2018) attribute decreased annual precipitation over the 
Sudan to anthropogenic forcing, but other studies argue that the 
recent trend cannot yet be distinguished from natural variability, at 
least over parts of this region (Hoell et al., 2017b; Philip et al., 2018). 
There remains low confidence due to limited evidence that drying 
the north-eastern Africa is attributable to human influence. In the 
Western Cape region of South Africa, human influence increased 
the likelihood of the severe 2015–2017 drought by a  factor of 
3–6, depending on the analysis (Otto et al., 2018; Pascale et al., 
2020). Anthropogenic forcing also contributed to the 2018 drought, 
mainly by increasing evapotranspiration (Nangombe et al., 2020). 
While some analysis of instrumental precipitation data in this region 
detect a slight long-term drying trend consistent with the simulated 
anthropogenic response (Seager et al., 2019b), there is strong 
multi-decadal variability in the data (Wolski et al., 2021). However, 
a  study of streamflow in southern Africa detected a  significant 
decline (Gudmundsson et al., 2019; see also Section 10.6.2). There 
is medium confidence in the long-term drying trend in this region 
and its attribution to anthropogenic forcing, and medium confidence 
that anthropogenic warming has contributed to recent severe 
drought events.

Several subtropical, semi-arid regions in the Southern Hemisphere 
have experienced long-term drying trends in the late 20th century. 
South-western South America (central Chile) experienced a  multi-
decadal decline in precipitation and streamflow culminating in 
a  post-2010 megadrought that has been partly attributed to 
anthropogenic GHG emissions and ozone depletion (Boisier et al., 
2016, 2018; Saurral et al., 2017; Knutson and Zeng, 2018; Seager 
et al., 2019b; Garreaud et al., 2020). There is medium confidence that 
drying in central Chile can be attributed to human influence. The tree-
ring paleoclimate record demonstrates that the mid-century increase 
in exteme drought events in southern South America is unusual in 
the context of the last 600 years, suggesting an emerging influence 
of anthropogenic forcing (Morales et al., 2020). 

There has been a 20% decrease in winter (May to July) rainfall in 
south-western Australia since 1970, with the decline increasing to 
around 28% since 2000 (Delworth and Zeng, 2014; BoM and CSIRO, 
2020). There has also been a  significant increase in the average 
intensity of seasonal droughts in the region since 1911in response 
to both lower precipitation and increased atmospheric evaporative 
demand (Gallant et al., 2013). Several studies attribute the 
precipitation declines in south-western Australia to anthropogenic 
changes in GHG and ozone (Delworth and Zeng, 2014; Knutson 
and Zeng, 2018; Seager et al., 2019b). There is high confidence that 
the observed drying in south-western Australia can be attributed to 
anthropogenic forcing. 

In south-eastern Australia, the average length of droughts have 
increased significantly, lasting between 10 and 69% longer than 
droughts during the first half of the 20th century (Gallant et al., 
2013). Paleoclimate reconstructions indicate a  97.1% probability 
that the decadal rainfall anomaly recorded during the 1997–2009 

Millennium drought in south-eastern Australia was the worst 
experienced since 1783 (Gergis et al., 2012), and that the spatial 
extent and duration of cool season (April to September) rainfall 
anomalies were either very much below average or unprecedented 
over at least the last 400 years (Freund et al., 2017). Other 
paleoclimate studies suggest that the Millennium drought in 
eastern Australia was not unusual in the context of natural 
variability reconstructed over the past millennium (Palmer et al., 
2015; Cook et al., 2016c; Kiem et al., 2020). While there is currently 
low confidence that recent droughts in eastern Australia can be 
clearly attributed to human influence (Cai et al., 2014; Delworth 
and Zeng, 2014; Rauniyar and Power, 2020), there is emerging 
evidence that declines in April to October rainfall in south-eastern 
Australia since the 1990s would not have been as large without the 
influence of increasing levels of atmospheric GHGs (Rauniyar and 
Power, 2020). 

In summary, it is very likely that anthropogenic factors have 
influenced global trends in aridity, mainly through competing 
changes in evapotranspiration and/or atmospheric evaporative 
demand due to anthropogenic emissions of GHG and aerosols. There 
is high confidence that the frequency and the severity of droughts has 
increased over the last decades in the Mediterranean, western North 
America, and south-western Australia and that this can be attributed 
to anthropogenic warming. There is medium confidence that recent 
drying and severe droughts in southern Africa and south-western 
South America can be attributed to human influence. In some regions 
of western North America and the Mediterranean, paleoclimate 
evidence suggests that recent warming has resulted in droughts that 
are of similar or greater intensity than those reconstructed over the 
last millennium (medium confidence).

8.3.1.7 Freshwater Reservoirs

8.3.1.7.1 Glaciers

The AR5 and SROCC found, with very high confidence, a  general 
decline in glaciers due to climate change in recent decades. There 
is very high confidence that during the decade 2010–2019 glaciers 
lost more mass than in any other decade since the beginning of the 
observational record (Sections 2.3.2.3 and 9.5.1). Human influence 
is very likely the main driver of the global, near-universal retreat of 
glaciers since the 1990s (Section 3.4.3.1). In Table 9.5, the contribution 
of glaciers to sea level rise for different periods is presented; in 
1971–2018 glacier mass loss contributed 20.9 [10.0  to 31.7] mm 
or 22.2% of the sea level rise during that period. The highest mass 
loss rates are observed in the southern Andes, New Zealand, Alaska, 
Central Europe and Iceland while the largest mass loss are observed in 
Alaska, the periphery of Greenland and Arctic Canada (Section 9.5.1 
and Figure 9.20). Predominantly, runoff from small glaciers such as in 
Canada has decreased because of glacier mass loss, while runoff from 
larger glaciers such as in Alaska has typically increased (Bolch et al., 
2010; Thomson et al., 2011; Tennant et al., 2012; WGMS, 2017; Huss 
and Hock, 2018). Asia contains the largest concentration of glaciers 
outside the polar regions where the total glacier mass change is 
–16.3 ± 3.5 Gt yr–1 over 2000–2016 with considerable intra-regional 
variability (Brun et al., 2017). Mass losses of glaciers in Asia between 
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2000 and 2018 are –19.0 ± 2.5 Gt yr–1 (Shean et al., 2020). The most 
negative changes were found in Nyainqentanglha with −4.0 ± 1.5 
Gt yr–1, while glaciers in Kunlun, northern Tibetan Plateau, slightly 
gained mass at 1.4 ± 0.8 Gt yr–1.

There is some evidence that an increase of precipitation over high 
mountains can offset glacier ablation (melt; Farinotti et al., 2020). 
However, this process has only been described from the Karakoram 
region in the north-western Himalaya, where it is thought to be 
partly responsible to the advances of glacier changes in the last two 
decades, referred to as the ‘Karakoram Anomaly’ (Farinotti et al., 
2020). In the Himalaya, Maurer et al. (2019) observed faster ice 
loss during 2000–2016 (7.5 ± 2.3 Gt yr–1) compared to 1975–2000 
(–3.9  ±  2.2 Gt yr–1). In the Southern Hemisphere, the rate of 
glacier mass lost in South America is estimated at 19.4 ± 0.6 Gt 
yr–1 based on surface elevation changes over 2000–2011, which 
include the North and South Patagonian Icefields of South America 
(Braun et al., 2019), and at −22.9 ± 5.9 Gt yr–1 over 2000–2018 
(Dussaillant et al., 2019).

In summary, human-induced global warming has been the primary 
driver of a  global glacier recession since the early 20th century 
(high confidence). Most glaciers have lost mass more rapidly since 
the 1960s and in an unprecedented way over the last decade, 
thereby contributing to increased glacier runoff, especially from 
larger glaciers until a maximum is reached, which tends to occur 
later in basins with larger glaciers and higher ice-cover fractions 
(high confidence).

8.3.1.7.2 Seasonal snow cover

The AR5 assessed that Northern Hemisphere (NH) snow cover 
extent (SCE) has decreased since the late 1960s, especially in 
spring (very high confidence). This is confirmed by recent studies 
(Section 2.3.2.2; Kunkel et al., 2016). AR6 assesses that NH spring 
snow cover has been decreasing since 1978 (very high confidence) 
and  that this trend extends back to 1950 (high confidence) 
(Section  9.5.3). Human-caused global warming is the dominant 
driver of this observed decline (Section 3.4.2; Estilow et al., 2015). 
Model simulations suggest that surface temperature responses at 
hemispheric/regional scales explain between 40% and 85% of the 
SCE trend variability (Mudryk et al., 2017). A decreasing trend in 
snowfall has also been detected in the NH (Figure 8.1; Rupp et al., 
2013). Snowfall as a  proportion of precipitation has decreased 
significantly in recent years (Berghuijs et al., 2014). However, a late-
20th-century increase in snowfall in West Antarctica observed in ice 
cores has been linked to a  combination of factors including the 
anthropogenically forced deepening of the Amundsen Sea Low 
(Thomas et al., 2015, 2017).

Observations show a  rapid recent decrease of spring SCE in NH, 
mostly in Eurasia and North America, closely linked to temperature 
change, for example, March to April SCE is decreasing at 3.4% ± 1.1 
% per decade (1979–2005; Brown and Robinson, 2011; Hernández-
Henríquez et al., 2015). An overall increasing annual trend of the 
NH SCE since the late 1980s has been observed, in contrast to 
decreasing trends over 1960s to 1980s that are dominated by the 

autumn and winter seasons (Barry and Gan, 2020). Such recent 
positive trends in snow cover extent are however at odds with 
other surface and satellite datasets and with the negative trends 
simulated by most CMIP5 and CMIP6 models (Mudryk et al., 2017, 
2020). Hernández-Henríquez et al. (2015) also detected positive 
trends in October to November SCE in in the NOAA SCE Climate 
Data Record (NOAA-CDR), which are not replicated in other datasets 
(Section 9.5.3). Wu et al. (2018) found slower snowmelt rates over 
the NH in 1980–2017, with higher ablation rates in locations with 
deep snow water equivalent (SWE), but due to the reduction of 
SWE in deep snowpacks, moderate/high ablation rates showed 
decreasing trends. Santolaria-Otín and Zolina (2020) reported 
weak but significant decline in SCE in autumn over northern 
Eurasia and North America during 1979–2005, and similarly for 
spring, except for northern Siberia which showed higher spring 
SCE.  Kapnick and Hall (2012) detected significant loss of spring 
mountain snowpack in western USA in 1950–2008. For Canada, 
extensive decreasing snow depths, SCE and duration were detected 
since mid-1970s, especially in western Canada during winter and 
spring (DeBeer et al., 2016). Berghuijs et al. (2014) show that across 
the continental USA, catchments with more snowfall than rainfall 
generally have higher mean streamflow, which will probably 
decrease with smaller fractions of precipitation falling as snow 
because of climate warming.

In summary, a  decline in the spring NH snow cover extent, snow 
depth and duration has been observed since the late 1960s and has 
been attributed to human influence (high confidence). Depending 
on the region and season, there is low-to-medium confidence in the 
main drivers of snow cover changes, although various regions exhibit 
a  shortening of the snow cover season which is consistent with 
global warming. A more detailed assessment of observed changes in 
seasonal snow cover is provided in Section 9.5.3.

8.3.1.7.3 Wetlands and lakes

Wetlands and lakes affect the climate through their impact on carbon 
and methane budgets (Section 5.2.2; e.g., Saunois et al., 2016; Zhan 
et al., 2019) and on surface heat fluxes, with coupled weather and 
climate effects (e.g., Zhan et al., 2019). Although these features are 
also affected by human activities and by climate change, AR5 did not 
specifically report on wetlands and lakes.

Inventories of surface water bodies are not systematically produced 
at national or regional levels. However, assessments are undertaken 
at the global scale (Ramsar Convention on Wetlands, 2018). Merging 
observations from multiple satellite sensors makes it possible to 
detect surface water even under vegetation and clouds over about 
25 years, but with low spatial resolution (Prigent et al., 2016). 
Most recent multi-satellite products from visible, infrared, and 
microwave measurements, estimate a  surface water area of about 
12 to 14 million km2 (including permanent and transitory surfaces, 
e.g., Aires et al., 2018; Davidson et al., 2018), which is much higher 
than those provided by optical imagery (about 3  million km2). 
Inventories show a strong decrease in natural surface water of about 
0.8% yr–1 in total from 1970 to the present (Ramsar Convention 
on Wetlands, 2018) but the sites are not evenly distributed. Multi-
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satellite estimates show a  strong interannual variability in surface 
water extent over the period 1992–2015 with no clear long-term 
trend (Prigent et al., 2020). 

Human-made water bodies represent approximately 10% of the 
total continental water surfaces (Figure 8.1; Ramsar Convention on 
Wetlands, 2018) and consist mainly of reservoirs and rice paddies. 
High resolution optical imagery over the period 1984–2015 
(Donchyts et al., 2016; Pekel et al., 2016) shows a net increase of 
about 0.1 million km2 in artifical water surfaces, mainly due to the 
construction of reservoirs. Surfaces of rice paddies are also increasing, 
especially in South East Asia (Davidson et al., 2018). 

In summary, there is high confidence that the extent of human-made 
surface water has increased over the 20th and early 21st centuries. 
In contrast, due to low agreement in the observational records at the 
global scale, there is only low confidence in the observed decline of 
the natural surface water extent in recent years (see also SRCCL).

8.3.1.7.4 Groundwater

As the world’s most widespread store of freshwater (R.G.  Taylor 
et al., 2013a), groundwater is estimated to supply between a quarter 
and a  third of the world’s annual freshwater withdrawals to meet 
agricultural, industrial and domestic demands (Döll et al., 2012; Wada 
et al., 2014; Hanasaki et al., 2018).

Attribution of changes in groundwater storage, observed locally 
through piezometry (Figure  8.10; R.G.  Taylor et al., 2013a) or 
estimated from GRACE satellite measurements (Rodell et al., 2018) at 
regional scales (>100,000 km2), is often complicated by non-climate 
influences that include land-use change (Favreau et al., 2009) and 
human withdrawals (Bierkens and Wada, 2019). 

Following a  global review of groundwater and climate change 
(R.G. Taylor et al., 2013a) and AR5 WGII, evidence of an association 
between heavy or extreme precipitation and groundwater recharge 
has continued to grow, especially in tropical (Asoka et al., 2018; 
Cuthbert et al., 2019a; Kotchoni et al., 2019) and subtropical regions 
(Meixner et al., 2016). Stable-isotope ratios of oxygen and hydrogen 
at 14 of 15 sites across the tropics trace groundwater recharge to 
intensive monthly rainfall, commonly exceeding the 70th intensity 
percentile, approximately (Jasechko and Taylor, 2015). Further, heavy 
rainfall recharging groundwater resources is often influenced by 
climate variability such as ENSO and PDO (R.G. Taylor et al., 2013b; 
Kuss and Gurdak, 2014; Asoka et al., 2017; Cuthbert et al., 2019b; 
Kolusu et al., 2019; Shamsudduha and Taylor, 2020). Additionally, 
increases in groundwater storage estimated from GRACE for 37 
of the world’s large-scale aquifer systems from 2002 to 2016 are 
generally found to result from episodic recharge associated with 
extreme (>90th percentile) annual precipitation. 

The overall underestimation of precipitation intensities in global 
climate models (Wehner et al., 2010, 2020; Goswami and Goswami, 
2017) and of their sensitivity to warming temperatures (Borodina 
et al., 2017) may lead to underestimates of their recharging effect 
on groundwater (Mileham et al., 2009; Cuthbert et al., 2019b). The 

limited ability of global climate models to represent key controls 
on regional rainfall variability like ENSO (Technical Annex VI and 
Section 3.7.3; R. Chen et al., 2020) may also underestimate observed 
recharge from such events that are of particular importance in 
drylands (R.G. Taylor et al., 2013b; Cuthbert et al., 2019b). Numerical 
representations of the impact of precipitation intensification on 
groundwater recharge in large-scale models remain constrained by 
the challenges of including key recharge pathways that consider 
preferential flowpaths in soils (Beven, 2018) and focused recharge 
through leakage from surface waters (Döll et al., 2014).

Increasing global freshwater withdrawals, primarily associated 
with the expansion of irrigated agriculture in drylands, have led 
to global groundwater depletion that has an estimated range of 
about 100 and about 300 km3 yr–1 from hydrological models and 
volumetric-based calculations (Bierkens and Wada, 2019). The 
magnitude of this change is such that its estimated contribution 
to global sea level rise is in the order of 0.3 to 0.9 mm yr−1 (Wada 
et al., 2010; Konikow, 2011; Döll et al., 2014; Pokhrel et al., 2015; 
de Graaf et al., 2017; Hanasaki et al., 2018). Groundwater depletion 
has been observed regionally in The USA High Plains, California’s 
Central Valley (Scanlon et al., 2012), north-west India (Rodell et al., 
2009; Asoka et al., 2017), Upper Ganges in India (MacDonald 
et al., 2016), North China Plain (Feng et al., 2013), north-central 
Middle East region of Tigris–Euphrates–Western Iran (Voss et al., 
2013), Central Asia (Hu et al., 2019), and North Africa (Bouchaou 
et al., 2013). The regional contribution of agricultural irrigation to 
groundwater depletion was previously highlighted by SRCCL but 
no formal assessment of observed changes in global or regional 
groundwater featured in AR5. 

Quantification of changes in groundwater storage from GRACE is 
currently constrained by uncertainty in the estimation of changes 
in other terrestrial water stores using uncalibrated, global-scale 
Land Surface Models (Döll et al., 2014; Scanlon et al., 2018) and 
the limited duration of the period of GRACE observations (2002 to 
2016). Centennial-scale piezometry in north-west India reveals that 
recent groundwater depletion traced by GRACE (Rodell et al., 2009; 
Chen et al., 2014), follows more than a  century of groundwater 
accumulation through canal leakage (MacDonald et al., 2016). 
Further, groundwater depletion is often localized occurring below the 
footprint (200,000 km2) of GRACE, as has been well demonstrated by 
detailed modelling studies in the California Central Valley (Scanlon 
et al., 2012) and North China Plain (Cao et al., 2016).

Climate variability and drought affect groundwater depletion 
mainly due to amplified groundwater withdrawals. For instance, the 
depletion rate in Central Valley aquifer in the USA from 2006 to 2010 
is estimated to range from 6 to 8 km3 yr–1 using GRACE data (Scanlon 
et al., 2012). In India, Asoka et al. (2017) show contrasting trends in 
groundwater storage in the north (declining at 2 cm yr–1) and south 
(increasing at 1–2 cm yr–1) that is explained by variations in human 
withdrawals and precipitation linked to Indian Ocean sea surface 
temperature variability.

Changes in meltwater regimes from glaciers and seasonal snow 
packs tend to reduce the seasonal duration and magnitude of 
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recharge (Tague and Grant, 2009). Aquifers in mountain valleys 
show shifts in the timing and magnitude of: (i) peak groundwater 
levels due to an earlier spring melt; and (ii) low groundwater levels 
associated with lower baseflow periods (Allen et al., 2010; Dierauer 
et al., 2018; Hayashi, 2020). The effects of receding alpine glaciers on 
groundwater systems are not well understood but long-term loss of 
glacier storage is estimated to reduce summer baseflow (Gremaud 
et al., 2009). In permafrost regions, coupling between surface water 
and groundwater systems may be particularly enhanced by warming 
(Lamontagne-Hallé et al., 2018; Lemieux et al., 2020). In areas of 
seasonal or perennial ground frost, increased recharge is expected 
despite a  decrease in absolute snow volume (Okkonen and Kløve, 
2011; Walvoord and Kurylyk, 2016).

Coastal aquifers are the interface between the oceanic and terrestrial 
hydrological systems. Global sea level rise (SLR) causes interfaces 
between freshwater and saline-water to move inland. The extent 
of seawater intrusion into coastal aquifers depends on a variety of 
factors including coastal topography, recharge, and groundwater 
abstraction from coastal aquifers (Comte et al., 2016). Modelling 
results suggest that the impact of SLR on seawater intrusion is 
negligible compared to that of groundwater abstraction (Ferguson 
and Gleeson, 2012; Yu and Michael, 2019). Coastal aquifers under 
very low hydraulic gradients, such as the Asian mega-deltas, are 
theoretically sensitive to SLR but, according to evidence from Akter 

et al. (2019) in the Ganges-Brahmaputra-Megna basin, may be more 
severely and widely affected by changes in upstream river discharge. 
They argue further that saltwater inundation from storm surges will 
have the greatest localized effects.

In summary, there is medium confidence that increased precipitation 
intensities, partly due to human influence, have enhanced groundwater 
recharge, most notably in the tropics. There is high confidence that 
groundwater depletion has occurred since at least the start of the 
21st century as a  consequence of groundwater withdrawals for 
irrigation in some of the world’s most productive agricultural areas 
in drylands (e.g., southern High Plains and California Central Valley in 
the USA, the North China Plain, north-west India).

8.3.2 Observed Variations in Large-scale Phenomena 
and Regional Variability

Observed changes in large-scale circulation indicators (Cross-Chapter 
Box 2.2) are assessed in Chapters 2 and 3 (Sections 2.3.1.4 and 3.3.3). 
In this chaper we focus on the influence of regional scale teleconnection 
variabililty on the water cycle and the attribution of these circulation 
changes. While observed changes in modes of variability are assessed 
in Chapters 2 and 4 (Sections 2.4 and 4.3.3), here focus on hydrological 
teleconnections of relevance to the water cycle.

Figure 8.10 | Trends in Terrestrial Water Storage (TWS; in centimetres per year, cm yr–1) obtained on the basis of GRACE observations from April 2002 
to March 2016. The cause of the trend in each outlined study region is briefly explained and colour-coded by category. The trend map was smoothed with a 150 km radius 
Gaussian filter for the purpose of visualization. However, all calculations were performed at the native 3° resolution of the data product. Figure from Rodell et al. (2018). Further 
details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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8.3.2.1 Inter-tropical Convergence Zone and Tropical 
Rain Belts

The AR5 concluded it is likely that the tropical belt, as delimited by 
the Hadley circulation, has widened since the 1970s. Observations 
in the satellite era indicate precipitation increases in the core of 
the Pacific Inter-tropical Convergence Zone (ITCZ) and decreases on 
the ITCZ margins (Gu et al., 2016; Su et al., 2017). As the satellite 
period has lengthened, observations have increasingly been used to 
assess trends in the ITCZ and tropical rain belt. Since AR5, significant 
narrowing and strengthening of the Pacific ITCZ after 1979 have been 
identified in atmospheric reanalyses (Wodzicki and Rapp, 2016), but 
no change in the ITCZ location (Byrne et al., 2018). Atmospheric 
model simulations suggest that with a narrower ITCZ, the subtropical 
jet becomes baroclinically unstable at a  lower latitude and allows 
mid-latitude eddies to propagate farther equatorward (Watt-Meyer 
and Frierson, 2019). Observational analyses also show that the 
ITCZ narrowing (Zhou et al., 2020) is associated with increased 
precipitation in the ITCZ core region that is strongly coupled to 
increasing Outgoing Longwave Radiation (OLR) in the expanding 
dry zones, particularly over land regions in the subtropics and mid-
latitudes (Lau and Tao, 2020). In addition, an eastward movement of 
the South Pacific Convergence Zone (SPCZ) between 1977 and 1999 
has been reported, with associated significant precipitation trends in 
the South Pacific regions (Salinger et al., 2014). 

ITCZ trends seen in satellites, precipitation measurements and 
reanalysis data are further supported by ocean surface-salinity 
observations. Long-term salinity observations show a  freshening in 
the cores of the Atlantic and Pacific ITCZs and increased salinity on 
the ITCZ margins (Durack and Wijffels, 2010; Durack et al., 2012; 
Terray et al., 2012; Skliris et al., 2014). By investigating simultaneous 
changes in precipitation, temperature and continental aridity in CMIP5 
historical simulations, Bonfils et al. (2020) found a  secondary signal 
(Figure 8.9, right column) characterized by a robust inter-hemispheric 
temperature contrast (Section 3.3.1.1), a  latitudinal shift in the ITCZ 
(in accordance with the theory of cross-equatorial energy transport; 
Section 8.2.2.2), and changes in aridity in the Sahel (Section 8.3.1.6). 
These forced changes are statistically detectable in reanalyses datasets 
over the 1950–2014 period at the 95% confidence level.

Reconstructions in the Sahel (Carré et al., 2019) and Belize (Ridley 
et al., 2015) support the southward displacement of the tropical 
rain belt since 1850 and the narrowing trend of the tropical rainbelt 
detected in observations (Rotstayn et al., 2002; Hwang et al., 2013). 
Decreasing precipitation trends in the NH during the 1950s to 1980s 
have been attributed to anthropogenic aerosol emissions from North 
America and Europe, which peaked during the late1970s and declined 
thereafter following improved air quality regulations, causing dimming 
(brightening) through reduced (increased) surface solar radiation 
(Box 8.1 Figure 1), in agreement with model simulations (Chiang et al., 
2013; Hwang et al., 2013). This is consistent with energetic constraints 
where tropical precipitation shifts are anti-correlated with cross-
equatorial energy transport (Section 6.3.3, Box 8.1). It also provides 
a physical mechanism for the severe drought in the Sahel that peaked 
in the mid-1980s (Sections 8.3.2.4.3 and 10.4.2.1) and the southward 
shift of the NH tropical edge from the 1950s to the 1980s (Allen et al., 

2014; Brönnimann et al., 2015). However, CMIP5 and CMIP6 models still 
exhibit strong biases in representing the ITCZ, such as the simulation 
of a double ITCZ (Oueslati and Bellon, 2015; Adam et al., 2018; Tian 
and Dong, 2020). The impacts of aerosols and volcanic activity on the 
position of the ITCZ have been investigated but changes are difficult to 
characterize from observations (Section 6.3.3.2; Friedman et al., 2013; 
J.M. Haywood et al., 2013; Iles and Hegerl, 2014; Colose et al., 2016; 
Chung and Soden, 2017). Such systematic shifts of the ITCZ can have 
important regional impacts like changes in precipitation (Figure 8.9).

In summary, there is medium confidence that the tropical rain belts 
over the oceans have been narrowing and strengthening in recent 
decades, leading to increased precipitation in the ITCZ core region 
(Section 8.2.2.2). Decreasing precipitation trends in the NH during 
the 1950s–1980s have been attributed to anthropogenic aerosol 
emissions from North America and Europe (high confidence).

8.3.2.2 Hadley Circulation and Subtropical Belt

The AR5 reported low confidence in trends in the strength of the 
Hadley circulation (HC) due to uncertainties in reanalyses but high 
confidence on the widening of the tropical belt since 1979. In AR6, 
Chapter  2  (Section  2.3.1.4.1) states that the HC has very likely 
widened and strengthened since at least the 1980s, mostly in the NH 
(medium confidence). 

The poleward shift of the HC is closely related to migration of the 
location of tropical cyclone trajectories in both hemispheres (Sharmila 
and Walsh, 2018; Studholme and Gulev, 2018), with a  very likely 
poleward shift over the western North Pacific Oceans since the 1940s 
(Section  11.7.1.2). Moreover, the Western North Pacific Subtropical 
High has extended westward since the 1970s, resulting in a monsoon 
rain band shift over China, with excessive rainfall along the middle 
and lower reaches of the Yangtze River valley along about 30°N over 
eastern China. At the same time, the effect of anthropogenic aerosols 
dominated the response to GHG increases over East Asia, resulting in 
a weakening of the East Asian summer monsoon and causing a drying 
trend in north-eastern China (Hu, 2003; Yu and Zhou, 2007; T. Wang 
et al., 2013; Z. Li et al., 2016b; Lau and Kim, 2017) and northern parts of 
South Asia (Section 8.3.2.4.2; Preethi et al., 2017). During 1977–2007, 
the precipitation variability over the eastern USA increased due to 
changes in the intensity and position of the western ridge of the North 
Atlantic Subtropical High (Li et al., 2011; Diem, 2013). 

In the Southern Hemisphere (SH), the HC expansion has 
been  associated with both the intensification and poleward shift 
of the subtropical high pressure belt (Nguyen et al., 2015), with 
consequences for precipitation amount over Africa, Australia, 
South  America, and subtropical Pacific islands (Cai et al., 2012; 
Grose et al., 2015; Nguyen et al., 2015; Sharmila and Walsh, 2018; 
McGree et al., 2019). The subtropical ridge in Australia has intensified 
significantly since 1970, with marked declines observed in April to 
October rainfall across south-eastern and south-western Australia 
(Timbal and Drosdowsky, 2013). 

The local tropical edges of the meridional overturning cells (as 
diagnosed from the horizontally divergent wind) are more closely 
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associated with hydroclimate variations than the subtropical ridge 
(Staten et al., 2019). Poleward expansion of the tropical belt strongly 
contributes to precipitation decline in the poleward edge of the 
subtropics (Cai et al., 2012; Scheff and Frierson, 2012; Timbal and 
Drosdowsky, 2013; He and Soden, 2017; H.  Nguyen et al., 2018; 
Tang et al., 2018), although recent modelling evidence suggests 
that subtropical precipitation declines are a response to direct CO2 
radiative forcing mainly over ocean, irrespective of the HC expansion 
(He and Soden, 2017). Both reanalyses datasets and climate model 
simulations suggest that the HC expansion is not associated with 
widespread, zonally symmetric subtropical drying over land (Schmidt 
and Grise, 2017). 

Since AR5, an improved understanding of the key drivers of the 
recent HC expansion has been achieved, identifying the role of 
both internal variability and anthropogenic climate change. Part of 
the recent expansion (1979–2005) of the HC has been driven by 
a swing from warm to cold phase of the Pacific Decadal Variability 
(PDV; Meehl et al., 2016; Grise et al., 2019). The presence of large 
multi-decadal variability in 20th-century reanalyses means there 
is limited evidence on the human influence on the recent HC 
strengthening, yet the southward shift of the southern edge and 
widening of the SH HC appeared as robust features in all reanalysis 
datasets, and their trends have accelerated during 1979–2010 
(D’Agostino and Lionello, 2017). As assessed in Section  3.3.3.1, 
GHG increases and stratospheric ozone depletion have contributed 
to the expansion of the zonal mean HC in the SH since around 
1980, and the expansion of the NH HC has not exceeded the range 
of internal variability (medium confidence). Moreover, Antarctic 
ozone depletion can cause a poleward shift in the SH mid-latitude 
jet and HC (Sections 3.3.3 and 6.3.3.2). Further assessment of the 
attribution of recently observed changes in the HC extent and 
intensity is found in Section 3.3.3.1.

In summary, it is very likely that the recent HC expansion was 
associated with poleward shifts of tropical cyclone tracks over the 
western North Pacific Ocean since the 1940s, and of extratropical 
storm tracks in the SH since the 1970s. Changes to the HC in the 
NH may have contributed to subtropical drying and a  poleward 
expansion of aridity during the boreal summer, but there is 
low confidence due to limited evidence. GHG increases and 
stratospheric ozone depletion have contributed to expansion of the 
zonal mean HC in the SH since around 1970, while the expansion 
of the NH  HC has not exceeded the range of internal variability 
(medium confidence).

8.3.2.3 Walker Circulation

The AR5 concluded that the long-term weakening of the Pacific Walker 
circulation (WC) from the late 19th century to the 1990s has been 
largely offset by a  recent strengthening (high confidence), though 
with low confidence in trends of the WC strength due to reanalysis 
uncertainties and large natural variability. The observed trends in the 
WC since 1980 are consistent with a very likely WC strengthening in  
the Pacific, similar to a  La Niña pattern, with medium confidence 
in  the magnitude of these changes due to differences between 
satellite observations and reanalyses. 

The causes of the observed strengthening of the WC during 1980–2014 
are not well understood due to competing influences from individual 
external forcings and since this strengthening is outside the range 
of variability simulated in coupled models (medium confidence), as 
assessed in Chapter 3 (Section 3.3.3.1). Recent strengthening in the WC 
has been linked with internal variability (Chung et al., 2019), although 
one study argues that it could be a  response forced by GHG that 
models do not capture because of common sea surface temperature 
(SST) biases in the equatorial Pacific (Seager et al., 2019a). It could 
be also related to an interbasin thermostat mechanism whereby 
the human-induced Indian Ocean warming emerged earlier than in 
the tropical Pacific (L.  Zhang et al., 2018) and induced a  transient 
strengthening of the zonal sea level pressure gradient and easterly 
trades in the tropical Pacific (L. Zhang et al., 2019).

The weakening of the PWC observed during most of the 20th 
century is associated with reductions in land rainfall over the 
Maritime Continent during 1950–1999 (Tokinaga et al., 2012; 
Yoden et al., 2017). In contrast, the recent strengthening of the WC 
has been associated with an intensification of extreme flooding 
(Barichivich et al., 2018) and an increased frequency of wet days 
(J.C.  Espinoza et al., 2016, 2018) over the north-western Amazon, 
increased precipitation in South America (Yim et al., 2017), reduced 
precipitation over eastern Africa (Williams and Funk, 2011; Lyon and 
Dewitt, 2012), and increased rainfall in southern Africa (Maidment 
et al., 2015). Internal variability has been shown to have a dominant 
role in the recent strengthening of the WC (Chung et al., 2019).

In summary, there is high confidence that changes in the WC are 
associated with changes in the water cycle over regions like the 
Maritime Continent, South America and Africa. It is very likely 
that the WC has strengthened in the Pacific since the 1980s, with 
medium confidence that this strengthening is within the range of 
internal variability. 

8.3.2.4 Monsoons

The AR5 reported low confidence in the attribution of changes in 
monsoons to human influence, although a  detailed attribution 
assessment of the observed changes in the regional monsoons was 
not presented. 

Large human populations in the monsoon regions of the world 
heavily depend on freshwater supply for agriculture, water resources, 
industry, transport and various socio-economic activities. The effects 
of GHG forcing combined with water vapour feedback (R.J. Allen et al., 
2015; Dong and Sutton, 2015; Evan et al., 2015; Dunning et al., 2018) 
and cloud feedbacks (Stephens et al., 2015; Potter et al., 2017) are 
fundamental to monsoon precipitation changes in a warming world. 
Since AR5 there has been improved understanding of precipitation 
changes associated with regional monsoons. Sections  2.3.1.4.2 
and 3.3.3.2 provide an assessment of observed changes and 
attribution for the global monsoon. Here we provide an assessment 
of the observed changes in regional monsoons (see Annex V  and 
Figure 8.11) and underlying causes. In AR6, the definition of regional 
monsoons slightly differs from AR5 and the rationale for it is provided 
in Annex V (see Glossary). Specific examples of regional monsoons 
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Figure 8.11 | Regional monsoon precipitation changes from observations and model attribution. Precipitation changes during 1951–2014 are shown as least-
square linear trends in box-whisker plots (fi rst and fourth rows) over the six regional monsoons, for example, North American monsoon (NAmerM, July–August–September, JAS), 
West African monsoon (WAfriM, June–July–August–September, JJAS), South and South East Asian monsoon (SAsiaM, June–July–August–September, JJAS), East Asian monsoon 
(EAsiaM, June–July–August), South American monsoon (SAmerM, December–January–February, DJF), Australian and Maritime Continent monsoon (AusMCM, December–
January–February, DJF), and over the two land domains, for example, equatorial America (EqAmer, June–July–August, JJA) and South Africa (SAfri, December–January–February, 
DJF), as identifi ed in the map shown in the middle and as described in Annex V. Precipitation changes are computed from observations and from Detection and Attribution Model 
Intercomparison Project (DAMIP) CMIP6 experiments over the historical period with all-forcing (ALL), GHG-only forcing (labelled GHG), Aerosol-only (AER) and Natural (NAT) 
forcings prescribed. Observations are based on the CRU (light green) and GPCC (light blue) datasets and the APHRODITE (light orange) dataset for SAsiaM and EAsiaM. CMIP6 
simulations are taken from nine CMIP6 models contributing to DAMIP, with at least three members. Ensembles are weight-averaged for the respective model ensemble size. 
Observed trends are shown as coloured circles and the simulated trends from the CMIP6 multi-model experiments are shown as box-whisker plots. Precipitation anomaly time-
series are shown in the second and third row. The thick black line is the multi-model ensemble-mean precipitation anomaly time-series from the ALL experiment and the grey 
shading shows the spread across the multi-model ensembles. An 11-year running mean has been applied on the precipitation anomaly time-series prior to calculating the 
multi-model ensemble mean. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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are discussed further in Section  10.4.2, from the perspective of 
climate change attribution and in Section 10.6.3, from the viewpoint 
of constructing regional climate messages.

8.3.2.4.1 South and South East Asian Monsoon

The AR5 reported a  decreasing trend of global land monsoon 
precipitation over the last half-century, with primary contributions 
from the weakened summer monsoon systems in the Northern 
Hemisphere (NH). Since AR5, several studies have documented 
long-term variations and changes in the South and South East 
Asian summer monsoon (SAsiaM) rainfall. The SAsiaM strengthened 
during past periods of enhanced summer insolation in the NH, 
such as the early-to-mid Holocene warm period around 9000 to 
6000 years before the present (BP) (Masson-Delmotte et al., 2013; 
Mohtadi et al., 2016; Braconnot et al., 2019) and weakened during 
cold periods (high confidence), such as the Last Glacial Maximum 
(LGM) and Younger Dryas (Shakun et al., 2007; Cheng et al., 2012; 
Dutt et al., 2015; Chandana et al., 2018; Hong et al., 2018; E. Zhang 
et al., 2018). These long-time scale changes in monsoon intensity are 
tightly linked to orbital forcing and changes in high-latitude climate 
(Braconnot et al., 2008; Battisti et al., 2014; Araya-Melo et al., 2015; 
Rachmayani et al., 2016; Bosmans et al., 2018; E. Zhang et al., 2018). 
A weakening trend of the SAsiaM during the last 200 years has been 
documented based on tree ring oxygen isotope chronology from the 
northern Indian subcontinent (Xu et al., 2018) and South East Asia 
(Xu et al., 2013), oxygen isotopes in speleothems from northern India 
(Sinha et al., 2015), and tree ring width chronologies from the Indian 
core monsoon region (Shi et al., 2017). Nevertheless, the detection 
of century-long decreases in regional monsoon rainfall is obscured 
by the presence of multi-decadal time scale precipitation variations 
(Turner and Annamalai, 2012; Knutson and Zeng, 2018) which are 
evident in long-term rain guage records extending back to the early 
1800s (Sontakke et al., 2008) and emerge in long-term climate 
simulations (Braconnot et al., 2019).

A significant decline in summer monsoon precipitation is observed 
over India since the mid-20th century, which is accompanied by 
a weakening of the large-scale monsoon circulation (Mishra et al., 
2012; Abish et al., 2013; Krishnan et al., 2013, 2016; Saha et al., 2014; 
Roxy et al., 2015; Guhathakurta et al., 2017; Samanta et al., 2020). 
This precipitation decline is corroborated by a  decreasing trend in 
the frequency of monsoon depressions that form over Bay of Bengal 
(Prajeesh et al., 2013; Vishnu et al., 2016), an increasing trend in 
the frequency and duration of monsoon breaks or ‘dry spells’ (Singh 
et al., 2014), significant decreases in soil moisture and increases in 
drought severity across different parts of India post-1950 (Niranjan 
Kumar et al., 2013; Ramarao et al., 2015, 2019; Krishnan et al., 2016; 
Ganeshi et al., 2020; Mujumdar et al., 2020). While recent studies 
have reported an apparent recovery of the Indian summer monsoon 
over a relatively short period since 2003 (Jin and Wang, 2017; Hari 
et al., 2020), long-term trends for the period 1951–2015 indicate 
an overall decrease in the regional monsoon precipitation (Kulkarni 
et al., 2020; Ayantika et al., 2021). A case study on the Indian summer 
monsoon is provided in Section 10.6.3.

Evidence from several climate modelling studies indicates that the 
observed decrease in the regional monsoon precipitation during the 
second half of the 20th century is dominated by the radiative effects 
of NH anthropogenic aerosols, with smaller contributions due to 
volcanic aerosols from the Mount Pinatubo (1991) and El Chichón 
(1982) eruptions (Bollasina et al., 2011; Polson et al., 2014; Sanap 
et al., 2015; Krishnan et al., 2016; Liu et al., 2016; Lau and Kim, 2017; 
Lin et al., 2018; Takahashi et al., 2018; Undorf et al., 2018a, b; Patil 
et al., 2019; M. Singh et al., 2020; see Box 8.1, Figure 1 and Figure 8.11). 
Land-use changes over South and South East Asia and  the rapid 
warming trend of the equatorial Indian Ocean during the recent few 
decades also appear to have contributed to the observed decrease 
in monsoon precipitation (Roxy et al., 2015; Krishnan et al., 2016; 
Singh, 2016). Overall, the magnitude of the precipitation response 
to anthropogenic forcing exhibits large spread across CMIP5 models 
pointing to the strong internal variability of the regional monsoon 
(Saha et al., 2014; Salzmann et al., 2014; Sinha et al., 2015), 
including variations linked to phase changes of the Pacific Decadal 
Variability (Section AVI.2.6; X. Huang et al., 2020a), uncertainties in 
representing aerosol–cloud interactions (Takahashi et al., 2018), and 
the effects of local compared with remote aerosol forcing (Bollasina 
et al., 2014; Polson et al., 2014; Undorf et al., 2018b). CMIP3 and 
CMIP5 models do not accurately reproduce the observed seasonal 
cycle of precipitation over the major river basins of South and South 
East Asia, limiting the attribution of observed regional hydroclimatic 
changes (Hasson et al., 2014, 2016; Biasutti, 2019). While warm 
rain processes and organized convection are known to dominate 
the heavy orographic monsoon rainfall over the Western Ghats 
mountains (Shige et al., 2017; Choudhury et al., 2018), in various 
parts of India (Konwar et al., 2012) and East Asia (Section 11.7.3.1), 
there are uncertainties in representing the regional physical processes 
of the monsoon environment, including cloud–aerosol interactions 
(Sarangi et al., 2017), land–atmosphere (e.g., Barton et al., 2020) and 
ocean–atmosphere coupling (Annamalai et al., 2017), in state-of-
the-art climate models (see also Section 8.5.1).

In summary, there is high confidence in observational evidence for 
a weakening of the SAsiaM in the second half of the 20th century. 
Results from climate models indicate that anthropogenic aerosol 
forcing has dominated the recent decrease in summer monsoon 
precipitation, as opposed to the expected intensification due to GHG 
forcing (high confidence). On paleoclimate time scales, the SAsiaM 
strengthened in response to enhanced summer warming in the NH 
during the early-to-mid Holocene, while it weakened during cold 
intervals (high confidence). These changes are tightly linked to orbital 
forcing and changes in high-latitude climate (medium confidence).

8.3.2.4.2 East Asian Monsoon

The AR5 reported low confidence in the observed weakening of the 
East Asian monsoon (EAsiaM) since the mid-20th century. Since 
AR5, there has been improved understanding of changes in the 
EAsiaM, based on paleoclimatic evidence, instrumental observations 
and climate modeling simulations. Rainfall reconstructions from 
the Loess Plateau in China indicate that the northern extent of the 
monsoon rain belts migrated at least 300 km to the north-west from 
the LGM to the mid-Holocene (Yang et al., 2015). Similarly, Pliocene 
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reconstructions indicate stronger intensity of the EAsiaM with a more 
northward penetration of the monsoon rain belt (S.  Yang et al., 
2018a). EAsiaM variability has been related to Atlantic Meridional 
Overturning Circulation (AMOC) dynamics, especially during the last 
glacial period, but whether the relationship is negative or positive 
remains uncertain (Sun et al., 2012; Cheung et al., 2018; Kang 
et al., 2018).

Long-term precipitation observations from China indicate a trend of 
drying in the north and wetting in the central-eastern China along 
the Yangtze river valley since the 1950s (Qian and Zhou, 2014; Zhou 
et al., 2017b; Day et al., 2018), with a weakened EAsiaM low-level 
circulation that penetrates less far into northern China, increased 
surface pressure over north-east China and southward shift of the 
jet stream (Song et al., 2014). The southward shift and enhancement 
of the jet stream explains the increase of rainfall especially from the 
Meiyu front (Day et al., 2018) at the expense of drying over north-
east China. 

Anthropogenic factors such as GHGs and aerosols had an influence 
on the EAsiaM changes (Figure 8.11; T. Wang et al., 2013; Song et al., 
2014; Xie et al., 2016; Chen and Sun, 2017; Ma et al., 2017; L. Zhang 
et al., 2017; Day et al., 2018; Tian et al., 2018). Increased precipitation 
in the southern region has been linked to increased moisture flux 
convergence driven by GHG forcing while changes in anthropogenic 
aerosols have weakened the EAsiaM and reduced precipitation in 
the northern regions (Tian et al., 2018). Aerosol-induced cooling, 
associated atmospheric circulation changes and sea surface 
temperature (SST) feedbacks weaken the EAsiaM and favour the 
observed dry-north and wet-south pattern of rainfall anomalies 
(T. Wang et al., 2013; Song et al., 2014; L. Zhang et al., 2017; G. Chen 
et al., 2018; X. Chen et al., 2018; Undorf et al., 2018b). 

Internal variability and volcanic eruptions also contributed to the 
weakened EAsiaM (Hsu et al., 2014; Qian and Zhou, 2014; Zhou et al., 
2017a; Knutson and Zeng, 2018). Since the late 1970s, the EAsiaM 
weakening has been also linked to SST changes in the Pacific Ocean 
with warm conditions in the central-eastern tropical part and cold 
ones in the north, similar to a positive phase of the Pacific Decadal 
Variability (PDV; Section AVI.2.6; Z. Li et al., 2016b; Zhou et al., 2017a). 
In the late 1990s the transition from a positive to a negative PDV has 
been associated with the recent recovery observed in the EAsiaM 
strength (Zhou et al., 2017a). Atlantic Multi-decadal Variability (AMV) 
also has an influence on the EAsiaM via the global teleconnection 
pattern propagating from the North Atlantic through the westerly jet 
(Zuo et al., 2013; Wu et al., 2016a, b). This North Atlantic influence 
has contributed to the increase of precipitation over the Huaihe-
Huanghe valley since the late 1990s (Y. Li et al., 2017). When PDV 
and AMV are in opposite phase, the former has a larger influence in 
driving the southern flooding and northern drought pattern over the 
region (Q. Yang et al., 2017).

In summary, there is strong evidence of a  stronger EAsiaM and 
northward migration of the rainbelt during warmer climates based 
on paleoclimate reconstructions. There is high confidence that 
anthropogenic forcing has been influencing historical EAsiaM 
changes with drying in the north and wetting in the south observed 

since the 1950s, but there is low confidence in the magnitude of the 
anthropogenic influence. The transition towards a positive PDV phase 
has been one of the main drivers of the EAsiaM weakening since the 
1970s (high confidence).

8.3.2.4.3 West African Monsoon

Since AR5, there has been improved understanding of the West 
African monsoon (WAfriM) response to natural and anthropogenic 
forcing. On paleoclimate time scales, enhanced summer insolation in 
the Northern Hemisphere (NH) intensified the WAfriM precipitation 
during the early-to-mid Holocene (high confidence), as seen in rainfall 
proxy records and climate model simulations (Masson-Delmotte 
et al., 2013; Mohtadi et al., 2016; Braconnot et al., 2019). Despite 
improvements in model simulations of the present-day monsoons, 
CMIP5 and CMIP6 models underestimate mid-Holocene changes 
in the amount and spatial extent of the WAfriM precipitation 
(Section 3.3.3.2; Brierley et al., 2020). 

During the recent past, long-term rain gauge observations display 
substantial variability in the WAfriM precipitation over the 
20th century (Section 10.4.2.1). The WAfriM experienced the wettest 
decade of the 20th century during the 1950s and early 1960s (high 
confidence), over much of the western and central Sahel region, 
followed abruptly by the driest years during 1970–1989 (Ali and 
Lebel, 2009; Nicholson, 2013; Descroix et al., 2015). The percentage 
deficit in the annual rainfall during 1970–1989, relative to the long-
term mean, ranged from 60% in the north of Sahel to 25–30% in 
the south (Le Barbé et al., 2002; Lebel et al., 2003). The long decline 
in annual rainfall is related to a decrease of rain occurrence over the 
Sahel (Le Barbé and Lebel, 1997; Frappart et al., 2009; Bodian et al., 
2016) and the Soudano-Guinean sub-region of West Africa (Le Barbé 
et al., 2002), even though the interannual variability pattern is 
more complex (Balme et al., 2006). Decrease of rainfall occurrences 
resulted from decreases in large convective events in the core of the 
rainy season (Bell et al., 2006), that modulate interannual variability 
of the WAfriM (Panthou et al., 2018).

Wetter conditions of the WAfriM prevailed later from the mid-to-late 
1990s, although the positive trend in precipitation started since the 
late 1980s (see also Section 10.4.2.1) over the Sahel (high confidence) 
and in the Guinean coastal region (medium confidence), indicating 
the geographical variation in the wetting recovery (Descroix et al., 
2015; Sanogo et al., 2015; Bodian et al., 2016; Nicholson et al., 2018). 
While the interannual and decadal variability of annual rainfall is not 
homogeneous over the entire Sahel, the rainfall recovery was stronger 
in the east than in the west of the region (Section 10.4.2.1; Nicholson 
et al., 2018). A  shift in the seasonality of the Sahelian rainfall, 
including delayed cessation has also been reported (Section 10.4.2.1; 
Nicholson, 2013; Dunning et al., 2018). 

In the Sahel region, the emergence of this new rainfall regime is 
reflected in increased number of heavy and extreme events, compared 
to the 1970s–1980s, still not exceeding the values registered in the 
1950s to 1960s (Descroix et al., 2013, 2015; Panthou et al., 2014, 
2018; Sanogo et al., 2015), and in higher interannual variability 
(W. Zhang et al., 2017b; Akinsanola and Zhou, 2020) associated with 
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SST variations in the tropical Atlantic, Pacific and Mediterranean Sea 
(Rodríguez-Fonseca et al., 2015; Diakhaté et al., 2019). Increased 
frequency of extreme rainfall events impacts high flow occurrences 
of the large Sahelian rivers as well as small to meso-scale catchments 
(Wilcox et al., 2018). Overall, extreme intense precipitation events are 
more frequent in the Sahel since the beginning of the 21st century 
(Giannini et al., 2013; Panthou et al., 2014, 2018; Sanogo et al., 
2015; Taylor et al., 2017). Intensification of mesoscale convective 
systems associated with extreme rainfall in the WAfriM is favoured 
by enhancement of meridional temperature gradient by the warming 
of the Sahara desert (Taylor et al., 2017) at a pace that is two to four 
times greater than that of the tropical-mean temperature (K.H. Cook 
et al., 2015; Vizy et al., 2017). Periods of monsoon-breaks and the 
persistence of low rainfall events are still prominent, particularly 
after the onset, thus exposing West Africa simultaneously to the 
potential impacts of dry spells (W.  Zhang et al., 2017b) and also 
extreme localized rains and floods (Engel et al., 2017; Lafore et al., 
2017). Occurrence of extreme events is compounded by land use and 
land cover changes leading to increased runoff (Bamba et al., 2015; 
Descroix et al., 2018). 

The Sahel drought from the 1970s until the early 1990s was related to 
anthropogenic emissions of sulphate aerosols in the Atlantic, which 
led to an inter-hemispheric pattern of SST anomalies and associated 
regional precipitation changes (Section 6.3.3.2 and Box 8.1). Also the 
combined effects of anthropogenic aerosols and GHG forcing appear 
to have contributed to the late twentieth century drying of the Sahel 
through their effect on SST, by cooling the North Atlantic and warming 
the tropical oceans (Giannini and Kaplan, 2019; Hirasawa et al., 
2020). Subsequent aerosol removal led to SST warming of the North 
Atlantic, shifting the ITCZ further northward and strengthening the 
WAfriM (Giannini and Kaplan, 2019). The recent recovery has been 
ascribed to prevailing positive SST anomalies in the tropical North 
Atlantic potentially associated with a positive phase of the Atlantic 
Multi-decadal Oscillation (Diatta and Fink, 2014; Rodríguez-Fonseca 
et al., 2015). The Sahel rainfall recovery has also been attributed to 
higher levels of GHG in the atmosphere and increases in atmospheric 
temperature (Dong and Sutton, 2015). 

In summary, most regions of West Africa experienced a wet period 
in the mid-20th century followed by a very dry period in the 1970s 
and 1980s that is attributed to aerosol cooling of the NH (high 
confidence). Recent estimates provide evidence of a WAfriM recovery 
from the mid-to-late 1990s, with more intense extreme events partly 
due to the combined effects of increasing GHG and decreasing 
anthropogenic aerosols over Europe and North America (high 
confidence). On paleoclimate time scales, there is high confidence 
that the WAfriM strengthened during the early-to-mid Holocene 
in response to orbitally-forced enhancement of summer warming 
in the NH.

8.3.2.4.4 North American Monsoon

Since AR5, there have been updates on the observed long-term 
variations and changes in the North American monsoon (NAmerM). 
During the Last Glacial Maximum (LGM; 21,000–19,000 years ago), 
the NAmerM was substantially weaker due to cold, dry mid-latitude 

air associated with the Laurentide Ice Sheet (T. Bhattacharya et al., 
2017, 2018). The NAmerM strengthened until the mid-Holocene 
period, in response to ice-emsheet retreat and rising summer 
insolation, but probably did not exceed the strength of the modern 
system (low confidence), as indicated by model simulations (Metcalfe 
et al., 2015) and paleoclimatic reconstructions (Bhattacharya et al., 
2018). Paleoclimatic evidence from proxy datasets and mid-Pliocene 
(PlioMIP1) simulations suggest a wetter south-western USA during 
that warmer period (A.M. Haywood et al., 2013; Pound et al., 2014; 
Ibarra et al., 2018) but it is not clear whether this is due to increases 
of precipitation associated with the monsoon or occurring during the 
winter season. 

During 1948–2010, trends of boreal summer precipitation amount 
were significantly positive over New Mexico and the core NAmerM 
region, but significantly negative over south-western Mexico (Hoell 
et al., 2016). In addition, diverse datasets like CRU, CHIRPS and GPCP 
show significant decreases of precipitation in parts of the south-
western USA and north-western Mexico, including the NAmerM 
region (Cavazos et al., 2020; Ashfaq et al., 2021). Other studies 
suggest a  strengthening of the NAmerM upper level anticyclone 
since the mid-1970s, with a more frequent northward location (Diem 
et al., 2013). Between 1910–2010, the number of precipitation 
events increased across the northern Chihuahuan desert, within 
the NAmerM domain, despite a  decrease in their magnitude, and 
the length of extreme dry and wet periods also increased (Petrie 
et al., 2014). 

An increase in intense rainfall and severe weather events has been 
observed in several locations, especially in south-western Arizona 
since 1991, resulting from increases in atmospheric moisture content 
and instability; a  change that has been confirmed by convective-
permitting model simulations (Luong et al., 2017; Pascale et al., 
2019). A dense network of 59 rain gauges located in south-eastern 
Arizona suggests an intensification of monsoon sub-daily rainfall 
since the mid-1970s (Demaria et al., 2019), as expected by a stronger 
global warming signature for sub-daily rather than daily or monthly 
precipitation accumulation (Section 11.4). Section 10.4.2.3 provides 
further details on changes in precipitation in south-western North 
America. Evidence from multiple reanalyses suggests that increases 
in NAmerM rainfall have contributed to the increasing trend of global 
monsoon precipitation (Section 2.3.1.4.2; Lin et al., 2014). In addition, 
more frequent occurrence of earlier retreats of the NAmerM since 
1979 is documented (Arias et al., 2012, 2015), in association with the 
positive phase of the Atlantic Multi-decadal Variability (AMV) and 
a westward expansion of the North Atlantic Subtropical High (W. Li 
et al., 2011, 2012). 

Analyses from a 50-km resolution GCM indicate that the NAmerM 
response to CO2 is very sensitive to SST biases, showing reductions 
in summer NAmerM precipitation with increased CO2 when the SST 
biases are small (Pascale et al., 2017) in contrast to CMIP5 models 
(Cook and Seager, 2013; Maloney et al., 2014; Torres-Alavez et al., 
2014; Hoell et al., 2016). The NAmerM has been shown to be also 
sensitive to sulphur dioxide (SO2) emissions (García-Martínez 
et al., 2020). 
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In summary, both paleoclimate evidence and observations indicate 
an intensification of the NAmerM in a  warmer climate (medium 
confidence). The intensification recorded since about the 1970s has 
been partly driven by GHG emissions (medium confidence). 

8.3.2.4.5 South American Monsoon

Since AR5, there has been improved understanding of changes in the 
South American monsoon (SAmerM) as evidenced from paleoclimate 
records, instrumental observations and climate model simulations. 
However, general circulation models (GCMs) still exhibit difficulties 
in reproducing SAmerM precipitation amount (Rojas et al., 2016; 
D’Agostino et al., 2020b). Paleoclimate evidence suggests a relatively 
stronger SAmerM during the 1400–1600 period (Bird et al., 2011b; 
Vuille et al., 2012; Ledru et al., 2013; Apaéstegui et al., 2014; Novello 
et al., 2016; Wortham et al., 2017). Last millennium GCM simulations 
are able to reproduce stronger SAmerM during the 1400–1600 
period in comparison with warmer epochs such as the 900–1100 
period (Rojas et al., 2016) or the current warming period (Díaz and 
Vera, 2018). PMIP3/CMIP5 simulations indicate a consistent weaker 
SAmerM during the mid-Holocene (6000 years ago; see Cross-
Chapter Box  2.1) in comparison to current conditions (Bird et al., 
2011a; Mollier-Vogel et al., 2013; Prado et al., 2013a; D’Agostino 
et al., 2020b), thus favouring savannah/grassland-like vegetation 
(Smith and Mayle, 2018), in agreement with climate reconstructions 
from different proxies (Prado et al., 2013b). Signals of weak and 
strong SAmerM during mid-Holocene and LGM, respectively, are 
evident also in high-resolution long-term (i.e., more than about 
22,000 years) rainfall reconstructions based on oxygen isotopes in 
speleothems from Brazil (Novello et al., 2017; Stríkis et al., 2018; 
Campos et al., 2019).

Isotope records from caves in the central Peruvian Andes show 
that the late Holocene (<3000 years ago) was characterized by 
multi-decadal and centennial-scale periods of significant decline in 
intensity of the SAmerM (Bird et al., 2011a; Vuille et al., 2012). This 
could be partly due to a reduction in the zonal SST gradient of the 
Pacific Ocean, favouring El Niño-like conditions (Kanner et al., 2013). 
Other studies suggest increased SAmerM precipitation amount 
during the Late Holocene, in association with the expansion of the 
tropical forest (Smith and Mayle, 2018). Well-dated equilibrium lines 
of glaciers during the deglaciation suggest that the AMOC enhances 
Atlantic moisture sources and precipitation amount increase over the 
tropical and southern Andes (Beniston et al., 2018). 

Observations during 1979–2014 suggest that poleward shifts in the 
South Atlantic Convergence Zone (SACZ) noted in recent decades 
(Talento and Barreiro, 2018; Zilli et al., 2019), are associated with 
precipitation amount decrease along the equatorward margin and 
increase along the poleward margin of the convergenze zone (Zilli 
et al., 2019). Several observational studies identified delayed onsets of 
the SAmerM after 1978 related to longer dry seasons in the southern 
Amazon (Fu et al., 2013; Yin et al., 2014; Arias et al., 2015; Debortoli 
et al., 2015; Arvor et al., 2017; Giráldez et al., 2020; Haghtalab et al., 
2020; Correa et al., 2021). In contrast, other studies indicate a trend 
toward earlier onsets of the SAmerM (Jones and Carvalho, 2013). 
These discrepancies are explained by the methodology used and 

the domain considered for the SAmerM, confirming the occurrence 
of delayed onsets of the SAmerM since 1978 (Correa et al., 2021). 
CMIP5 simulations show trends toward delayed onsets of the 
SAmerM in association with anthropogenic forcing, although the 
simulated trends underestimate the observed trends (Fu et al., 2013). 
Total rainfall reductions are observed in the southern Amazon during 
September–October–November after 1978 (Fu et al., 2013; Bonini 
et al., 2014; Debortoli et al., 2015, 2016; Espinoza et al., 2019), 
consistent with reductions in river discharge in the region (Molina-
Carpio et al., 2017; Espinoza et al., 2019; Heerspink et al., 2020).

Significant increases in precipitation have been observed over 
south-eastern Brazil during 1902–2005 while non-significant 
decreases have been found over central Brazil (Vera and Díaz, 
2015). In Bolivia, increases were observed during 1965–1984, while 
reductions have occurred since then (Seiler et al., 2013). However, 
the Peruvian Amazon does not reveal significant changes in mean 
rainfall during 1965–2007 (Lavado et al., 2013; Ronchail et al., 2018). 
Historical simulations from CMIP5 ensembles adequately capture 
the observed summer precipitation amount over central and south-
eastern Brazil, thereby providing high confidence in interpreting the 
observed variability of SAmerM for the period 1960–1999 (Gulizia 
and Camilloni, 2015; Pascale et al., 2019). Also, CMIP5 simulations 
indicate that the anthropogenic forcing associated with increased 
GHG emissions is necessary to explain the positive trends in upper-
troposphere zonal winds observed over the South American Altiplano 
(Vera et al., 2019). However, the detection of anthropogenically-
induced signals for precipitation is still ambiguous in monsoon 
regions, like the SAmerM (Hoegh-Guldberg et al., 2018).

In summary, there is high confidence that the SAmerM onset has 
been delayed since the late 1970s. This is reproduced by CMIP5 
simulations that consider anthropogenic forcing. There is also 
high confidence that precipitation during the dry-to-wet transition 
season has been reduced over the southern Amazon. Paleoclimate 
reconstructions and simulations suggest a weaker SAmerM during 
warmer epochs such as the Mid-Holocene or the 900–1100 period, 
and stronger monsoon during colder epochs such as the LGM or the 
1400–1600 period (high confidence). 

8.3.2.4.6 Australian and Maritime Continent Monsoon

Since AR5, several studies have examined observed variability 
and changes in the Australian and Maritime Continent monsoon 
(AusMCM) using paleoclimate records, instrumental observations 
and modeling studies (Denniston et al., 2016; Zhang and Moise, 
2016). Paleoclimate reconstructions and modelling indicate that 
the Indo–Australian monsoon may vary in or out of phase with the 
EAsiaM, depending on whether there is a meridional displacement or 
expansion of the tropical rainfall belt (Ayliffe et al., 2013; Denniston 
et al., 2016). For instance, mid-Holocene simulations suggest that the 
AusMCM weakens and contracts due to a decreased net energy input 
and a weaker dynamic component (D’Agostino et al., 2020b). 

Rainfall increases have been observed over northern Australia since 
the 1950s, with most of the increases occurring in the north-west 
(Dey et al., 2019a, b; Dai, 2021) and decreases observed in the north-

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1100

Chapter 8 Water Cycle Changes

8

east (J. Li et al., 2012) since the 1970s. There is also a trend towards 
more intense convective rainfall from thunderstorms over northern 
Australia (Dowdy, 2020). There is no consensus on the cause of the 
observed Australian monsoon rainfall trends, with some studies 
suggesting changes are due to altered circulation driving increased 
moisture transport or increased frequency of the wettest synoptic 
regimes (Catto et al., 2012; Clark et al., 2018). Other studies find 
that model simulations that include anthopogenic aerosols (Rotstayn 
et al., 2012; Dey et al., 2019a) are better able to capture observed 
Australian monsoon rainfall trends than simulations with natural or 
GHG forcing only (Knutson and Zeng, 2018). 

The Maritime Continent (MC) experiences the influence of both the 
Asian and the Australian monsoons, with rainfall peaking during 
boreal winter/austral summer (Robertson et al., 2011). Reductions in 
land rainfall and marine cloudiness over the MC and weakening of 
surface moisture flux convergence have been observed in the period 
1950–1999 (Tokinaga et al., 2012; Yoden et al., 2017). These trends 
are indicative of a slowdown of the Walker Circulation, with positive 
sea level pressure trends over the MC and negative trends over 
the central equatorial Pacific (Tokinaga et al., 2012). More recently 
(1981–2014), a trend of increasing annual rainfall over large areas 
of the MC has been identified (Hassim and Timbal, 2019). Given the 
large variability in MC rainfall on interannual time scales, the choice 
of time period may influence the calculated rainfall trend (Hassim 
and Timbal, 2019).

During 1951–2007 daily rainfall extremes did not increase over 
the MC, in contrast to the rest of South East Asia (Section 11.4.2; 
Villafuerte and Matsumoto, 2015). Rainfall extremes in Indonesia 
increased in austral summer, as evidenced from station weather 
observations for the period 1983–2012 (Supari et al., 2018). 

In summary, notable rainfall increases have been observed in parts of 
northern Australia since the 1970s, although there is low confidence 
in the human contribution to these changes. Rainfall changes have 
been observed over the MC region but there is low confidence in 
the identification of trends because of large variability at interannual 
time scales.

8.3.2.5 Tropical Cyclones

The AR5 assessed low confidence in centennial changes in tropical 
cyclone (TC) activity globally, and in the attribution of observed 
changes in TCs to anthropogenic forcing. Since AR5, there has been 
considerable progress in understanding the observed changes of TCs 
and an overall improved knowledge of the sensitivity of TCs to both 
GHG and aerosol forcing (Knutson et al., 2019; Sobel et al., 2019). 

Although observational data limitations (Lau and Zhou, 2012) 
tend to limit detection of anthropogenic forced increases in TC 
precipitation (Knutson et al., 2019), there is medium confidence that 
anthropogenic forcing has contributed to observed heavy rainfall 
events over the USA associated with TCs (Kunkel et al., 2012) and 
other regions with sufficient data coverage (Section 11.7.1.2; Bindoff 
et al., 2013). There has been increased frequency of TC heavy rainfall 
events over several areas in the USA since the late 19th century that 

is greater than what would be expected solely from changes in US 
landfall frequency, suggesting the increasing role of TCs have in 
causing heavy rainfall events (Kunkel et al., 2010). For example, there 
is evidence for an anthropogenic contribution to the extreme rainfall 
of Hurricane Harvey in 2017 (Emanuel, 2017; Risser and Wehner, 
2017; van Oldenborgh et al., 2017; Trenberth et al., 2018; S.-Y.S. Wang 
et al., 2018). 

While TCs cause extreme local rainfall and flooding, they can be also 
an important contributor to annual precipitation and regional fresh 
water resources (Hristova-Veleva et al., 2020). Transport of moisture 
by TCs is an important contributor for precipitation over the coastal 
areas of East Asia mostly from July through October, with the TC 
rainfall accounting for nearly 10% to 30% of the total rainfall in 
the region (L. Guo et al., 2017). Local TC rainfall totals depend on 
rain-rate and translation speed (the speed of TC movement along 
the storm track) with slow TCs such as Hurricane Harvey (2017), 
providing a clear example of the effect of slow translation speed on 
local rainfall accumulation, with urbanization exacerbating the storm 
total rainfall and flooding (Section 11.7.1; W. Zhang et al., 2018). 

In addition to evidence that rain-rates have increased, there is 
evidence that TC translation speed has slowed globally (Kossin, 
2018) thus amplifying thermodynamic intensification of rainfall 
and may be linked to anthropogenic forcing (Gutmann et al., 2018). 
This is limited evidence however, so there is medium confidence of 
a detectable change in TC translation speed over the US. Since the 
1900s, and there is low confidence for a  global signal because of 
limited agreement among models and due to data heterogeneity. 
However, the slowdown is consistent with theoretical and modelling 
studies that indicate a general weakening of the tropical circulation 
with warming that reduces the speed of the TC system (Chauvin 
et al., 2017), though there is limited observational evidence 
(Sections 8.2.3.5 and 11.7.1). 

In summary, there is medium confidence of an observed increase in 
TC precipitation intensity in regions with sufficient data coverage 
Robust physical understanding (Section 8.2.3.2) and detailed singular 
event attribution studies provide evidence that tropical cyclone 
rainfall has increased with a  warming climate (high confidence, 
Section 11.7.1.4).

8.3.2.6 Stationary Waves

Stationary waves are planetary-scale waves that are approximately 
stable (stationary) in terms of geographic position, as opposed to 
propogating planetary waves, and are important both as part of the 
climatological general circulation and seasonal and shorter-term 
anomalies. They are related to surface features including land–
ocean contrasts and major mountain ranges, as well as atmospheric 
features including the jet stream, storm tracks, and blocking, which 
are considered separately in the following sections. While zonal mean 
changes in P–E (precipitation minus evaporation) are dominated 
by thermodynamic effects (Section  8.2.2.1), changes in stationary 
waves are of key importance in understanding zonal asymmetries 
in the water cycle response to global warming (Wills and Schneider, 
2015; Wills et al., 2019). The AR5 did not explicitly assess stationary 
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waves, but noted changes in related circulation features such as 
a likely poleward shift of the Northern Hemisphere (NH) storm tracks 
and an increase in frequency and eastward shift in North Atlantic 
blocking anticyclones, although there was low confidence in the 
global assessment of blocking.

Since AR5, several studies have demonstrated a  link between 
stationary wave amplitude and wet and dry extremes in several 
different regions of the NH (Liu et al., 2012; Coumou et al., 2014; 
Screen and Simmonds, 2014; Yuan et al., 2015) with changes in 
moisture transport playing an important role (Yuan et al., 2015). 
A  ‘resonance mechanism’ has been proposed for an increasing 
amplitude of stationary waves (Petoukhov et al., 2013, 2016; Coumou 
et al., 2014; Kornhuber et al., 2017) and several studies have linked 
increasing amplitude of stationary waves to Arctic warming (Francis 
and Vavrus, 2012, 2015; Liu et al., 2012; Tang et al., 2014) as well 
as to global warming (Mann et al., 2017). However, other studies 
have not identified an increase in stationary wave amplitude (Barnes, 
2013; Screen and Simmonds, 2013a, b). 

There has been considerable work on linkages (teleconnections) 
between Arctic warming and the mid-latitude circulation (see also 
Cross-Chapter Box 10.1). The limited amount of research on Southern 
Hemisphere (SH) stationary waves suggests changes in high-latitude, 
mid-tropospheric stationary waves which influence Antarctic 
precipitation (Turner et al., 2017) and changes in stratospheric 
stationary waves that are associated with ozone depletion rather than 
increases in GHGs (L. Wang et al., 2013). The observed climatology 
of NH winter stationary waves is well-represented in the CMIP5 
multi-model mean (Wills et al., 2019) but individual models have 
important deficiencies in reproducing stationary wave variability (Lee 
and Black, 2013). In the SH, the observed climatology of stationary 
waves in CMIP5 models has considerable bias in both phase and 
amplitude (Garfinkel et al., 2020). A comprehensive assessment is not 
yet available for CMIP6 models.

In summary, there is low confidence in strengthened winter stationary 
wave activity over the North Atlantic, associated with increased 
poleward moisture fluxes east of North America There is medium 
confidence in a recent amplification of the NH stationary waves in 
summer, but no formal attribution to anthropogenic climate change.

8.3.2.7 Atmospheric Blocking

Atmospheric blocking refers to persistent, semi-stationary weather 
patterns characterized by a high-pressure (anticyclonic) anomaly that 
interrupts the westerly flow in the mid-latitudes of both hemispheres. 
By redirecting the pathways of mid-latitude cyclones, blocking can 
affect the water cycle and lead to negative precipitation anomalies 
in the region of the blocking anticyclone and positive anomalies in 
the surrounding areas (Sousa et al., 2017). In this way, blocking can 
also be associated with extreme events such as heavy precipitation 
(Lenggenhager et al., 2019), drought (Schubert et al., 2014) and 
heatwaves (Miralles et al., 2014a). The AR5 reported low confidence in 
global-scale changes in blocking, due to methodological differences 
between studies.

Currently no consensus exists on observed trends in blocking during 
1979–2013. (Horton et al., 2015) identified increasing trends in 
anticyclonic circulation regimes based on geopotential height 
fields in the mid-troposphere, which may be partly related to the 
tropospheric warming itself and thus not represent real changes 
in the statistics of weather (Horton et al., 2015; Woollings et al., 
2018). Hanna et al. (2018) and (Davini and D’Andrea, 2020) reported 
a  significant increase in the frequency of summer blocking over 
Greenland. A weakening of the zonal wind, eddy kinetic energy and 
amplitude of Rossby waves in summer in the NH (Coumou et al., 
2015, Kornhuber et al., 2019) and an increased ‘waviness’ of the jet 
stream associated with Arctic warming (Francis and Vavrus, 2015; 
Pfahl et al., 2015; Luo et al., 2019) have also been identified, which 
may be linked to increased blocking. 

In contrast, it has been shown that observed trends in blocking are 
sensitive the choice of the blocking index, and that there is a large 
internal variability that complicates the detection of forced trends 
(Barnes et al., 2014; Cattiaux et al., 2016; Woollings et al., 2018), 
compromising the attribution of any observed changes in blocking. 
Many climate models still underestimate the occurrence of blocking, 
at least in winter over north-eastern Atlantic and Europe (Dunn-
Sigouin and Son, 2013), which leads to caution in the interpretation 
of their results for these regions. However, over the Pacific Ocean 
there have been large improvements in the simulation of blocking 
for the last 20 years (Davini and D’Andrea, 2016; Patterson et al., 
2019). In the SH, increases in blocking frequency have occurred in the 
South Atlantic in austral summer (Dennison et al., 2016) and in the 
southern Indian Ocean in austral spring (Schemm, 2018). A reduced 
blocking frequency has been found over the south-western Pacific 
in austral spring (Sections 2.3.1.4.3 and 3.4.1.3.3; Schemm, 2018).

In summary, no robust trend in atmospheric blocking has been 
detected in modern reanalyses and in CMIP6 historical simulations 
(medium confidence). The lack of trend is explained by strong 
internal variability and/or the competing effects of low-level Arctic 
amplification and upper-level tropical amplification of the equator-
to-pole temperature gradient (medium confidence).

8.3.2.8 Extratropical Cyclones, Storm Tracks 
and Atmospheric Rivers

8.3.2.8.1 Extratropical cyclones and storm tracks

The AR5 indicated low confidence in long-term changes in the 
intensity of extratropical cyclones (ETC) over the 20th century derived 
from centennial reanalyses and storminess proxies based upon sea 
level pressure. This was confirmed by the SREX assessment that the 
main Northern Hemisphere (NH) and Southern Hemisphere (SH) 
extratropical storm tracks likely experienced a poleward shift during 
the last 50 years (Seneviratne et al., 2012) with low confidence, and 
inconsistencies within reanalysis datasets remain.

Since AR5 there has been considerable progress in quantifying 
storm track activity using multiple reanalysis products and different 
methodologies (Hodges et al., 2011; Neu et al., 2013; Tilinina et al., 
2013; X.L. Wang et al., 2016). Over the NH increases in the total 
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Figure 8.12 | Annual anomalies (with respect to the reference period 1979–2018) of the total number of extratropical cyclones (a, b) and of the number 
of deep cyclones (<980 hPa) (c, d) over the Northern (a, c) and the Southern (b, d) Hemispheres in different reanalyses (shown in colours in the legend). 
Note different vertical scales for panels (a, b) and (c, d). Thin lines indicate annual anomalies and bold lines indicate five-year running averages. (e, f) The number of reanalyses 
(out of five) simultaneously indicating statistically significant (90% level) linear trends of the same sign during 1979–2018 for JFM (January–February–March) over the Northern 
Hemisphere (e) and over the Southern Hemisphere (f). Updated from Tilinina et al. (2013). Further details on data sources and processing are available in the chapter data table 
(Table 8.SM.1).
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number of cyclones from 1979 show a large spread of trends across 
different estimates (Section 2.3.1.4.3; Neu et al., 2013; Z.  Li et al., 
2016a; Grieger et al., 2018) resulting in low confidence in any clear 
increase of in the total number of cyclones. However, starting from 
the early 1990s, most reanalyses show increases in the total cyclone 
number by about 2–5% per decade (Figure 8.12). Increasing trends 
in the total number of cyclones are dominated by the increase in 
the number of shallow and moderate cyclones (which are more 
dependent on the datasets and identification methods used) than 
with decreasing number of deep cyclones since the early 1990s 
(Tilinina et al., 2013; Chang, 2018). In the SH the variability of the 
total number of cyclones is characterized by strong inter-decadal 
variability preventing a  clear assessment of trends. However, in 
contrast to the NH,there is a  significant increasing trend in the 
number of deep cyclones (about 10% over 1979–2018) in ERA5, 
ERA-Interim, JRA55 and MERRA, and in the CFSR dataset after 2000 
(Figure 8.12; Reboita et al., 2015; X.L. Wang et al., 2016).

Changes in the number of deep storms, which are often associated 
with heavier precipitiation over the North Atlantic and North 
Pacific, exhibit strong seasonal differences and decadal variability 
(Colle et al., 2015; Chang et al., 2016; Matthews et al., 2016; Priestley 
et al., 2020a). An increase in the number of summer cyclones over the  
Atlantic-European sector (Tilinina et al., 2013) is consistent with 
the  increase in the strength of the strongest fronts over Europe 
(Schemm et al., 2018). Chang et al. (2016) reported a decrease in the 
number of strong summer storms in the latitudinal band 40°N–75°N 
over the last decades, however, the assessment of seasonal trends in 
the Atlantic-European sector is complicated by the choice of region, 
attribution of tracks to the region selected, and thresholds used to 
identify trajectories, leading to low confidence on regional seasonal 
trends. For the SH, Grieger et al. (2018) reported a growing number 
of cyclones over sub-Antarctic region in the austral-summer during 
1979–2010, while statistically significant trends were absent 
during the austral winter. 

Analysis of storm track activity over longer periods suffers from 
uncertainties associated with changing data assimilation and 
observations before and during the satellite era, resulting in in 
homogeneities and discontinuities in centennial reanalyses (Krueger 
et al., 2013; X.L. Wang et al., 2013, 2016; Chang and Yau, 2016; 
Varino et al., 2019). Feser et al. (2015) reviewed multiple storm track 
records for the Atlantic-European sector and demonstrated growing 
storm activity north of 55°N from the 1970s to the mid-1990s with 
declining trend thereafter, sugesting strong inter-decadal variability 
in storm track activity. This was also confirmed by Krueger et al. 
(2019) from the analysis of geostrophic winds derived from sea level 
pressure gradients. 

Poleward deflection of mostly oceanic winter storm tracks since 
1979 was reported in both the North Atlantic and North Pacific 
(Tilinina et al., 2013; J. Wang et al., 2017). This large-scale tendency 
has regional variations and may be seasonally dependent. Wise and 
Dannenberg (2017) reported a  southward shift in the east Pacific 
storm track from the 1950s to mid-1980s followed by northward 
deflection in the later decades. (King et al., 2019) reported an 
association of Atlantic storm track migrations with SSW events with 

Central and South European precipitation anomalies. Over centennial 
time scales, Gan and Wu (2014) reported an intensification of storm 
tracks in the poleward and downstream regions of the North Pacific 
and North Atlantic upper troposphere using the NOAA–CIRES–DOE 
Twentieth Century Reanalysis. Poleward migration of the SH storm 
tracks (Grise et al., 2014; X.L. Wang et al., 2016; Dowdy et al., 2019) 
was identified during the austral summer and is closely associated 
with cyclone-associated frontal activity (Solman and Orlanski, 2014, 
2016) and cloud cover (Bender et al., 2012; Norris et al., 2016).

The representation of ETCs in both climate models and reanalyses 
is resolution-dependent, hence changes must be assessed with 
caution (Section  3.3.3.3). In particular, CMIP5 models show 
a  systematic underestimation of the intensity of ETCs (Zappa 
et al., 2014), a  feature that is partially related to their relatively 
coarse resolution or other possible deficiencies such as an excess 
of dissipation (Chang et al., 2013). The best representation of ETCs 
and their intensity in the  North Atlantic are provided by relatively 
high horizontal resolution CMIP5 models (Zappa et al., 2014). Using 
a single high-resolution climate model, (Hawcroft et al., 2016) showed 
that precipitation amount associated with ETCs was generally well 
simulated, though with too much precipitation during the strongest 
ECTs compared with observed estimations.

In summary, there is low confidence in recent changes in the total 
number of extratropical cyclones over both hemispheres. It is as likely 
as not that the number of deep cyclones over the NH has decreased 
after 1979 and it is likely that the number of deep extratropical 
cyclones increased over the same period in the SH.  It is likely that 
extratropical cyclone activity in the SH has intensified during austral 
summer with no significant changes in austral winter. There is 
medium confidence that boreal-winter storm tracks during the last 
decades experienced poleward shifts over the NH and SH oceans. 
There is low confidence of changes in extratropical cyclone activity 
prior 1979 due to inhomogeneities in the intrumental records and 
modern reanalyses. 

8.3.2.8.2 Atmospheric rivers 

Atmospheric rivers (ARs) are long, narrow (up to a  few hundred 
kilometres wide), shallow (up to few kilometres deep) and transient 
corridors of strong horizontal water vapour transport that are typically 
associated with a low-level jet stream ahead of the cold front of an 
extratropical cyclone (Ralph et al., 2018). Atmospheric rivers were 
not assessed in AR5. ARs are associated with atmospheric moisture 
transport from the tropics to the mid- and high latitudes  (Zhu 
and Newell, 1998), although the drivers of moisture transport 
relative to the different airstreams within extratropical cyclones 
remains a subject of current study (Dacre et al., 2019). While much 
previous research has focused on the west coast of North America, 
ARs occur throughout extratropical and polar regions (e.g.,  Guan 
and Waliser, 2015) and are often associated with locally-heavy 
precipitation, including a  substantial fraction of all mid-latitude 
extreme precipitation events (e.g., Waliser and Guan, 2017). ARs 
also affect East Asia strongly during the period from late spring to 
summer (Kamae et al., 2017). ARs can be related to warming/melt 
events trough the intrusions of warm and moist air in Antarctica, 
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Greenland and New Zealand (Bozkurt et al., 2018; Mattingly et al., 
2018; Little et al., 2019), contributing about 45–60% of total annual 
precipitation in subtropical South America (Viale et al., 2018). They 
also transport moisture from South America to the western and 
central South Atlantic, feeding the ARs that reach the west coast 
of South Africa (Ramos et al., 2019). However, the estimation of 
precipitation rate from ARs can have large uncertainties, especially 
as ARs hit topographically complex coastal regions (Behrangi 
et al., 2016), which can cause complexities in quantifying AR-related 
precipitation.

Analysis of observed trends in the characteristics of ARs has been 
limited. Gershunov et al. (2017) and Sharma and Déry (2019) have 
shown a rising trend in land-falling AR activity over the west coast 
of North American since 1948. (Gonzales et al., 2019) have also 
documented a  seasonally-asymmetric warming of ARs affecting 
the West Coast of the USA since 1980, which has hydrological 
implications for the timing and magnitude of regional runoff. Longer-
term paleoclimate analysis of ARs is even more limited, although 
Lora et al. (2017) reported that in the last glacial maximum, AR 
landfalls over the North American west coast were shifted southward 
compared to the present conditions. 

In summary, it is likely that there was an increasing trend in the 
AR activity in the eastern North Pacific since the mid-20th century. 
However, there is low confidence in the magnitude of this trend 
and no formal attribution, although such an increase in activity is 
consistent with the expected and observed increase in precipitable 
water associated with human-induced global warming. 

8.3.2.9 Modes of Climate Variability  
and Regional Teleconnections

Following on from the assessment in Chapters 2 and 3, this section 
considers changes in modes of variability at seasonal to interannual 
time scales in terms of their implications on recent water cycle 
changes. These modes are described in details in Technical Annex IV.

8.3.2.9.1 Tropical modes

The amplitude of the El  Niño–Southern Oscillation (ENSO; Section 
AIV.2.3) variability has increased since 1950 (Section 2.4.2) but there 
is no clear evidence of human influence (Sections 2.4.2 and 3.7.3). 

ENSO influences precipitation and evaporation dynamics, river flow 
and flooding at a global scale (Figure 3.37; Ward et al., 2014, 2016; 
Martens et al., 2018). Reconstruction (1804–2005) of Thailand’s 
Chao Praya River peak season streamflow displays a  strong 
correlation with ENSO (Xu et al., 2019). Based on water storage 
estimates from 2002 to 2015, drought conditions over the Yangtze 
River basin followed La Niña events and flood conditions followed 
El Niño events (Z.  Zhang et al., 2015). Strong correlation between 
ENSO and terrestrial water storage has been identified mostly in the 
subtropics but with diverse intensities and time lags depending on 
the region (Ni et al., 2018). The likelihood of increased/decreased 
flood hazard during ENSO events has a complex spatial pattern with 
large uncertainties (Emerton et al., 2017). 

Tropical SSTs and associated global circulation may increase rainfall 
in West Africa, as observed in some years during 1950–2015, despite 
the presence of El  Niño (Pomposi et al., 2020). During an El  Niño 
summer, equatorial convective systems and the associated Walker 
circulation tend to shift eastward, leading to decreases in Indian 
summer monsoon rainfall (Li and Ting, 2015; Roy et al., 2019). This 
teleconnection is modulated by Indian Ocean Variability (Terray et al., 
2021), as observed during the extreme positive IOD event in 2019 
(Ratna et al., 2021). Since the end of the 19th century, synchronous 
hydroclimate changes (medium confidence) have been identified 
over south-eastern Australia and South Africa (Gergis and Henley, 
2017) modulated by ENSO, as well as other regional fluctuations like 
the Botswana High over southern Africa (Driver and Reason, 2017). 
Over southern South America, the ENSO influence on precipitation 
(Cai et al., 2020; Poveda et al., 2020) interacts with the influence of 
SAM (Pedron et al., 2017), exhibiting large multi-decadal variations 
because of changes in the correlation between the two large-scale 
modes (Vera and Osman, 2018). Other processes underlying ENSO 
teleconnections of relevance for water cycle changes include water 
vapour and moisture transports, like over the Middle East (Sandeep 
and Ajayamohan, 2018), south-eastern China (S.  Yang et al., 
2018b), or central Asia (X. Chen et al., 2018), south-eastern South 
America (Martin-Gomez et al., 2016; Martín-Gómez and Barreiro, 
2016), Australia (Rathore et al., 2020) and southern USA (Okumura 
et al., 2017). 

There is no evidence of a trend in the Indian Ocean Dipole (IOD; Section 
AIV.2.4) mode and associated anthropogenic forcing (Sections 2.4.3 
and 3.7.4). The AR5 concluded that the IOD is likely to remain active, 
affecting climate extremes in Australia, Indonesia and East Africa. 
Since the AR5, IOD teleconnections have been identified extending 
further to the Middle East (Chandran et al., 2016), to the Yangtze 
river (Xiao et al., 2015), where in boreal summer and autumn positive 
IOD events tend to increase the precipitation in the south-eastern 
and central part of the basin, and to the southern Africa extreme 
wet seasons (Hoell and Cheng, 2018). During the last millenium, 
the combined effect of a positive IOD and El Niño conditions have 
caused severe droughts over Australia (Abram et al., 2020). In the 
satellited period, it is found more effective in inducing significant 
decrease of rainfall over Indonesia, with the opposite occurring for 
negative IOD events (As-syakur et al., 2014; Nur’utami and Hidayat, 
2016; Pan et al., 2018). Similarly, over the Ganges and Brahmaputra 
river basins major droughts have been recorded during co-occurring 
El Niño and positive IOD, while floods occurred during La Niña and 
negative IOD conditions (Pervez and Henebry, 2015). Over equatorial 
East Africa the IOD affects the short rain season (medium confidence) 
exacerbating flooding and inundations independently of ENSO 
(Behera et al., 2005; Conway et al., 2005; Ummenhofer et al., 2009; 
Hirons and Turner, 2018). Extreme conditions, like the 2019 Australian 
bushfires and African flooding, have been associated with strong 
positive IOD conditions (Cai et al., 2021).

Intraseasonal variability, like the Madden Julian Oscillation (MJO, 
Section AIV.2.8) and the Boreal Summer Intraseasonal Oscillation 
(BSISO), are highly relevant to the water cycle (Maloney and Hartmann, 
2000; Lee et al., 2013; Yoshida et al., 2014; Nakano et al., 2015). Since 
AR5, studies on MJO teleconnections within the tropics and from 
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the tropics to higher latitudes have continued (Guan et al., 2012;  
Mundhenk et al., 2018; Tseng et al., 2019; Aberson and Kaplan, 
2020; Finney et al., 2020b; Fowler and Pritchard, 2020; Fromang and 
Rivière, 2020). 

The strength and frequency of the MJO have increased over the past 
century (medium confidence) (Oliver and Thompson, 2012; Maloney 
et al., 2019; Cui et al., 2020) because of global warming (Arnold 
et al., 2015; Carlson and Caballero, 2016; Wolding et al., 2017; 
Maloney et al., 2019). A 20th century reconstruction suggests a 13% 
increase of the MJO amplitude (Oliver and Thompson, 2012), with 
differences in seasonal variability (Tao et al., 2015; Z. Wang et al., 
2020). However, up to half of changes recorded during the second 
half of the 20th century could be due to internal variability (Schubert 
et al., 2013). Other observed changes in MJO characteristics include 
a  decrease (by three to four days) in the residence time over the 
Indian Ocean but an increase (by five to six days) over the Indo-
Pacific and Maritime Continent sectors (Roxy et al., 2019). 

Consequences of these changes are increased rainfall over South 
East Asia, northern Australia, south-west Africa and the Amazon, 
and drying over the west coast of the USA and Equador (Roxy et al., 
2019). During the austral summer, air–sea interactions and location 
of the MJO active phase are important to modulate the strength of 
the rainfall response in the South Atlantic Convergence Zone (Shimizu 
and Ambrizzi, 2016; Alvarez et al., 2017), including its southward 
shift (Barreiro et al., 2019). In the austral winter, the intraseasonal 
variability is mostly influential over regions of the Amazonian basin 
(Mayta et al., 2019). Some MJO phases are particularly effective in 
conjuction with tropical cyclones in enhancing westerly moisture 
fluxes towards East Africa (Finney et al., 2020b).

Simulated changes in MJO precipitation amplitude are extremely 
sensitive to the pattern of SST warming (Takahashi et al., 2011; 
Maloney and Xie, 2013; Arnold et al., 2015) and ocean–atmosphere 
coupling (DeMott et al., 2019; Klingaman and Demott, 2020). In 
agreement with results from previous model generations, most 
CMIP5 models still underestimate MJO amplitude, and struggle 
to generate a  coherent eastward propagation of precipitation 
and wind (Hung et al., 2013; Jiang et al., 2015; Ahn et al., 2017), 
affecting regional surface climate in the tropics and extratropics. 
In addition, most CMIP5 models simulate an MJO that propagates 
faster compared with observations, with a poorly represented intra-
seasonal precipitation variability (Ahn et al., 2017). Over the Indian 
Ocean, the propagation speed of convection in some CMIP5 models 
tends to be slower than observed due to a  strong persistence of 
equatorial precipitation (Hung et al., 2013; Jiang et al., 2015). Among 
other processes, improving the moisture-convection coupling, 
the  representation of moist convection, the interaction between 
lower tropospheric heating and boundary layer convergence, and the  
topography of the Maritime Continent improve simulations of 
the MJO (Ahn et al., 2017, 2020a; Kim and Maloney, 2017; Yang 
and Wang, 2019; H. Tan et al., 2020; Y.-M. Yang et al., 2020). In 
fact, CMIP6 models reproduce the amplitude and propagation of 
the MJO better than CMIP5 models due to increased horizontal 
moisture advection over the Maritime Continent (Ahn et al., 2020b). 
Despite the diverse theories of MJO evolution and processes that 

have been developed since its discovery, a better understanding of 
its dynamics is still needed (Jiang et al., 2020; Zhang et al., 2020). 
Furthermore, metrics based on dynamical processes are needed to 
assess model simulations of these events (Stechmann and Hottovy, 
2017; B.  Wang et al., 2018) as well as related teleconnections 
(J. Wang et al., 2020).

In summary, multiple water cycle changes related to ENSO and IOD 
teleconnections have been observed across the 20th century (high 
confidence), mostly dominated by interannual to multi-decadal 
variations. The MJO amplitude has increased in the second half of 
the 20th century partly because of anthropogenic global warming 
(medium confidence) altering regional precipitation signals.

8.3.2.9.2 Extratropical modes

A positive trend has been observed in the Northern Annular Mode 
(NAM; Section AIV.2.1) in the second half of the 20th century, which 
partially reversed since the 1990s (Section 2.4.5.1), but the detection 
and attribution of these changes remain difficult (Section  3.7.1). 
The linkages of the NAM with weather and climate extremes in the 
northern extratropics are still unclear in models and observations 
(Vihma, 2014; Overland et al., 2016; Screen et al., 2018). However, 
robust links are identified between precipitation trends and 
variability in Europe and the phases of the Atlantic component of 
the NAM, that is, the NAO (Moore et al., 2013; Comas-Bru and 
McDermott, 2014). Reduced winter precipitation is well correlated 
with the NAO over Southern Europe and Mediterranean countries 
(Kalimeris et al., 2017; Corona et al., 2018; Vazifehkhah and Kahya, 
2018; Neves et al., 2019). NAO teleconnections in those regions 
include influences on groundwater and streamflow (Zamrane et al., 
2016; Massei et al., 2017; Jemai et al., 2018). Remote teleconnections 
of the NAO have been identified over Northern China, the Yangtze 
River valley and India (Jin and Guan, 2017; Di Capua et al., 2020). The 
summer phase of the NAO is significantly correlated with variations 
in summer rainfall in East China, with the thermal forcing of the 
Tibetan Plateau providing a  link to this Eurasian teleconnection 
(Z. Wang et al., 2018). 

In the Southern Hemisphere (SH), an observed positive trend is 
identified in the strength of the Southern Annular Mode (SAM, 
Section AIV.2.2) since 1950, especially in austral summer (high 
confidence, Section  2.4.1.2). While stratospheric ozone depletion 
and GHG increases largely contributed to this change, climate 
models still have trouble simulating the SAM and its response to 
ozone and GHGs (Section 3.7.2). Shifts in the south-westerly winds 
(Fletcher et al., 2018) and the expansion of the SH Hadley cell (Kang 
and Polvani, 2011; H.  Nguyen et al., 2018) influence SAM-related 
rainfall anomalies in in southern South America and southern 
Australia during the austral spring–summer. Over New Zealand, 
large-scale SLP and zonal wind patterns associated with SAM 
phases modulate regional river flow (Li and McGregor, 2017). The 
SAM also influences precipitation and water vapour changes over 
Antarctica via moisture fluxes (Marshall et al., 2017; Oshima and 
Yamazaki, 2017; Grieger et al., 2018) but CMIP5 models are limited 
in their ability to simulate these regional teleconnections (Marshall 
and Bracegirdle, 2015; Palerme et al., 2017). SAM and its interaction 
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with other large-scale modes of climate variability, like ENSO (Fogt 
et al., 2011) and the Indian Ocean Dipole (Hoell et al., 2017a), are 
responsible for fluctuations in southern African rainfall (Nash, 2017) 
and southern South America (Gergis and Henley, 2017). In May, the 
SAM can trigger a southern Indian Ocean Dipole SSTA favoring more 
or less precipitation over the Indian sub-continent and adjacent 
areas (Dou et al., 2017), also affecting subsequent summer monsoon 
in the South China Sea (T.  Liu et al., 2018). Over South America, 
a positive SAM is associated with dry conditions (Holz et al., 2017) 
due to reduced frontal and orographic precipitation and weakening 
of moisture convergence. Regions particularly affected include Chile 
(Boisier et al., 2018) and the rivers of central Patagonia (Rivera 
et al., 2018). 

In summary, while the attribution of 20th century variations of 
the NAM/NAO is still unclear, there is a  strong relationship with 
precipitation changes over Europe and in the Mediterranean region 
(high confidence). SAM teleconnections are associated with changes 
in moisture transport and extend to South America, Australia and 
Antarctica (high confidence) with documented drying occurring as 
a result of the very likely human-induced SAM trend toward its positive 
phase observed from the 1970s until the 1990s (Section 3.7.2).

8.4 What Are the Projected Water 
Cycle Changes?

We consider global and regional climate projections of the 
water  cycle, assessing projected changes in each component of 
the water cycle  (Section  8.4.1) and the global-scale and regional 
phenomena that directly impact it (Section 8.4.2). 

8.4.1 Projected Water Cycle Changes 

Most projected changes in the water cycle are not expected to be 
uniform in space or time. They are driven by both dynamical and 
thermodynamical processes (Section  8.2) and have not necessarily 
emerged yet in the recent observational record (Section 8.3) as they 
are superimposed on substantial natural fluctuations in weather and 
climate. Therefore, projecting regional water cycle changes remains 
challenging. However, a number of physically understood responses 
can be evaluated using both CMIP5 and CMIP6 models, which are 
important for guiding decision making that anticipates, prepares for, 
and responds to water cycle changes. In this section, global maps of 
projected changes in water cycle variables are assessed using the 
WGI AR6 ‘simple method’ (see Cross-Chapter Box Atlas1), which uses 
hatching to highlight where less than 80% of the models agree on 
the sign of projected changes. This choice differs from Section 4.2.6 
for a  number of reasons. These include the weak signal-to-noise 
ratio of projected hydrological changes in low to medium emissions 
scenarios, the sensitivity of their statistical significance to the 
baseline reference period, and the non-Gaussian distribution of many 
water cycle variables (see Cross-Chapter Box Atlas.1 for more details 
on strengths and limitations of the hatching methods implemented 
within AR6).

8.4.1.1 Global Water Cycle Intensity and P–E  
Over Land and Oceans

As discussed in 8.3.1.1, the definition of global water cycle intensity 
varies from the simple metric of increases in global mean precipitation 
to broader joint considerations of water vapour and its transport, 
precipitation minus evaporation (P–E) rates and continental runoff 
(Figure 8.1). The AR5 determined that globally averaged precipitation 
is virtually certain to increase with temperature and that there is high 
confidence that the contrast of annual mean precipitation between 
dry and wet regions and seasons will increase over most of the globe 
as temperatures and moisture transports increase (Collins et al., 
2013). The AR5 also highlighted that continued ocean warming for 
a  few decades after GHG forcing stabilizes or begins to decrease 
will also lead to further increases in global mean precipitation 
and evaporation.

In this Report, Chapter 4 provides an updated assessment of global 
annual precipitation (Section 4.3.1), finding that it is very likely that 
annual precipitation averaged over all land regions continuously 
increases as global surface temperatures increase in the 21st 
century (high confidence). CMIP6 projections for long-term changes 
in P–E (Figure 8.13) show that, for all scenarios, P–E increases over 
the tropics and high latitudes and decreases over the subtropics, 
resulting from a  thermodynamically driven amplification of P–E 
patterns (Section  8.2.2.1). Both the intensity of changes and the 
spread among the models is larger for the higher emissions scenarios. 
A  less coherent latitudinal pattern and smaller magnitude of P–E 
changes over land reflect the complex influence of land–ocean 
warming contrast, atmospheric circulation change and vegetation 
feedbacks (Section  8.2.2.1). However, stronger atmospheric 
moisture transport, increases in precipitation and evaporation over 
global land and ocean and larger continental runoff that is in part 
fed by melting of glaciers characterizes a more intense water cycle 
with global warming.

Global and global land mean water cycle changes from CMIP6 
projections are shown in Table 8.1. Increases in global and continental 
precipitation, P–E and runoff in both the mid-term and long-term 
illustrate the future intensification of the water cycle, with the 
magnitude of change increasing with emissions scenarios. Consistent 
with AR5, CMIP6 simulations of global mean precipitation show 
a systematic multi-model mean increase of 1.6 to 2.9 % °C–1 warming 
(apparent hydrological sensitivity; Section  8.2.1) by 2081–2100 
relative to present day across the new SSP scenarios (using global 
surface air temperature change from Table 4.1). It is well understood 
that rising concentrations of CO2 drive a long-term increase in global 
precipitation with warming, but with the increase partly offset by 
rapid atmospheric adjustments to the direct atmospheric heating 
from radiative forcing agents (Section  8.2.1). The largest apparent 
hydrological sensitivity is found for SSP1-1.9, where the suppressing 
effects on precipitation from atmospheric heating by greenhouse 
gases (GHGs) rapidly reduce as their concentration falls. Additional 
warming due to reduced aerosol loadings under the SSP scenarios 
(Lund et al., 2019) further increases global precipitation (Rotstayn 
et al., 2013; Wu et al., 2013; Salzmann, 2016; T.B. Richardson et al., 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1107

Water Cycle Changes  Chapter 8

8

2018b; Samset et al., 2018b; Westervelt et al., 2018), with particularly 
strong contributions from increased monsoon rainfall over East 
and South Asia (Levy et al., 2013; Westervelt et al., 2015; Dwyer and 
O’Gorman, 2017).

Over global land there is a  small range in global mean multi-
model mean precipitation increase across scenarios in the mid-
term (2.6–4.0  %), which widens (to 2.6–8.8 %) in the long-term 
(Table  8.1). The long-term projections are consistent with the 
Chapter 4 assessment that global annual precipitation over land is 
projected to increase on average by 2.4 [–0.2 to +4.7] % (likely range) 
in the SSP1-1.9 low-emissions scenario and by 8.3 [0.9 to 12.9] % in 
the SSP5-8.5 high emissions scenario by 2081–2100 relative to 
1995–2014. Small differences in assessed model mean changes in 
Chapter  4, Table  4.2 result from a  slightly different set of models 
considered for Table 8.1. Over land, P–E increases by around 2–3% 
in the mid-term (apart from SSP5-8.5 where increases are almost 
5%) and around 1–12% in the long-term, determined by increased 
moisture transport from the ocean to land (Section 8.4.1.2). Runoff 
increases are larger and less certain due to additional inputs from 
glacier melt and changes in groundwater storage (Section 8.4.1.7). 
Overall, precipitation and runoff are very likely to increase over the 
global land in all scenarios in the mid- and long term. P–E is likely to 
increase over global land in the mid- and long term and very likely in 
SSP1-1.9, SSP3-7.0 and SSP5-8.5 pathways. The mid-term consistency 
in projections across scenarios is not apparent for precipitable water 
vapour, which increases over land by around 6–15% in the mid-term 
and 5–36% in the long-term across all scenarios. This implies that 
increases in extreme precipitation (closely related to atmospheric 
water vapour content; Section 8.2.3.2) are dependent on mitigation 

pathway, even in the mid-term (Section  11.4.5).  Water vapour 
residence time (computed as the ratio of precipitable water vapour 
to precipitation from values in Table 8.1) increases from eight days in 
the present to nine days in mid-term and up to about ten days in the 
long-term over land in SSP3-7.0, indicating a longer time to moisten 
the atmosphere between precipitation events. The CMIP6 projections 
are therefore consistent with an intensification but not acceleration 
of the global water cycle.

In summary, it is virtually certain that global water cycle intensity, 
considered in terms of global and continental mean precipitation, 
evaporation and runoff, will increase with continued global warming. 
Global annual precipitation over land is projected to increase on 
average by 2.4 [–0.2 to +4.7] % (likely range) in the SSP1-1.9 low-
emissions scenario and by 8.3 [0.9 to 12.9] % in the SSP5-8.5 high 
emissions scenario by 2081–2100 relative to 1995–2014.

8.4.1.2 Water Vapour and Its Transport

Globally, AR5 assessed that by the end of the 21st century, the 
average quantity of water vapour in the atmosphere could increase 
by 5–25%, depending on emissions. The AR5 assessed that increases 
in near-surface specific humidity over land are very likely, but that it 
was also likely that near-surface relative humidity would decrease 
over many land areas, although with only medium confidence. In 
terms of moisture transport, AR5 assessed that it was likely that 
moisture transport into the high latitudes would increase and 
that there was high confidence that, over the ocean, atmospheric 
moisture transport from the evaporative regions to the wet regions 
would increase. 

Table 8.1 | Global and global land annual mean water cycle projections in the mid-term (2041–2060) and long term (2081–2100) relative to present day 
(1995–2014), showing present day mean and 90% confidence range across CMIP6 models (historical experiment) and projected mean changes and the 
90% confidence range across the same set of models and a range of Shared Socio-economic Pathway scenarios. Note that the exact value of changes can 
vary slightly based on the number of models assessed, but not sufficiently to affect the assessment. Further details on data sources and processing are available in the chapter 
data table (Table 8.SM.1).

Mid-term: 2041–2060 Minus Reference Period Long Term: 2081–2100 Minus Reference Period

1995–2014 
reference 

period
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Global Annual

Precipitation 
(mm day–1)

2.96 [2.76 
to 3.17]

0.06 [0.03 
to 0.11]

0.07 [0.03 
to 0.12]

0.07 [0.04 
to 0.12]

0.06 [0.03 
to 0.11]

0.08 [0.03 
to 0.14]

0.06 [0.02 
to 0.11]

0.09 [0.04 
to 0.17]

0.12 [0.07 
to 0.21]

0.15 [0.08 
to 0.24]

0.2 [0.1 
to 0.33]

Precipitable Water 
(kg m2)

24.79 [23.06 
to 26.82]

1.42 [0.7 
to 2.26]

1.84 [1.03 
to 2.62]

2.29 [1.6 
to 3.09]

2.7 [1.92 
to 3.92]

3.15 [2.13 
to 4.38]

1.11 [0.28 
to 2.13]

2.11 [0.98 
to 3.15]

3.76 [2.41 
to 5.08]

6.2 [4.24 
to 8.83]

7.92 [5.21 
to 10.69]

Global Land Annual

Precipitation 
(mm day–1)

2.27 [1.98  
to 2.58]

0.07 [0.02 
to 0.11]

0.07 [–0.0 
to 0.13]

0.06 [0.01 
to 0.13]

0.06 [0.02 
to 0.12]

0.09 [0.01 
to 0.16]

0.06 [0.01 
to 0.1]

0.08 [0.02 
to 0.16]

0.11 [0.02 
to 0.19]

0.14 [0.03 
to 0.22]

0.2 [0.07 
to 0.32]

Precipitation – 
Evaporation 
(mm day–1)

0.87 [0.49 
to 1.26]

0.02 [0.0 
to 0.03]

0.02 
[–0.01 to 
+0.05]

0.02 
[–0.02 to 
+0.06]

0.03 
[–0.0 to 
+0.06]

0.04 [0.0 
to 0.1]

0.01 [–0.0 
to +0.03]

0.03 
[–0.01 to 
+0.08]

0.04 
[–0.01 to 
0.07]

0.07 [0.0 
to 0.12]

0.1 [0.01 
to 0.22]

Runoff (mm day–1)
0.79 [0.54 
to 1.0]

0.02 [0.0 
to 0.05]

0.04 [–0.0 
to +0.1]

0.04 
[–0.0 to 
+0.11]

0.04 [0.01 
to 0.08]

0.06 [0.01 
to 0.14]

0.02 
[–0.0 to 
+0.03]

0.04 
[–0.0 to 
+0.13]

0.06 [0.0 
to 0.17]

0.1 [0.02 
to 0.2]

0.15 [0.04 
to 0.27]

Precipitable Water 
(kg m2)

18.86 [17.12 
to 21.28]

1.23 [0.57 
to 1.96]

1.58 [0.77 
to 2.42]

1.96 [1.34 
to 2.76]

2.33 [1.63 
to 3.46]

2.72 [1.79 
to 3.84]

0.95 [0.19 
to 1.95]

1.78 [0.8 
to 2.77]

3.18 [2.04 
to 4.34]

5.33 [3.57 
to 7.5]

6.81 [4.35 
to 9.32]
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Figure 8.13 | Zonal and annual-mean projected long-term changes in the atmospheric water budget. Zonal and annual mean projected changes (mm day–1) 
in P  (precipitation, left column), E  (evaporation, middle column), and P–E (right column) over both land and ocean areas (coloured lines) and over land only (black lines) 
averaged across available CMIP6 models (number provided at the top left of each panel) in the SSP1-2.6 (top row), SSP2-4.5 (middle row) and SSP5-8.5 (bottom row) scenario, 
respectively. Shading denotes confidence intervals estimated from the CMIP6 ensemble under a normal distribution hypothesis. Colour shading denotes changes over both land 
and ocean. Grey shading represents internal variability derived from the pre-industrial control simulations. All changes are estimated for 2081–2100 relative to the 1995–2014 
base period. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).

CMIP6 climate models continue to project a  steady increase in 
global mean column-integrated water vapour by around 6–13% 
by 2041–2060 and 5–32% by 2081–2100, depending on scenario 
(Table  8.1). This is consistent with projected atmospheric warming 
(Section  4.5.1.2) and the Clausius–Clapeyron relationship 
(Section 8.2.1) where every degree Celsius of warming is associated 
with an approximate 7% increase in atmospheric moisture in the lower 
atmospheric layers where most of the water vapour is concentrated. 
This increase sustains a positive feedback on anthropogenic global 
warming (Section  7.4.2.2). In contrast, the response of clouds is 

much more spatially heterogeneous, microphysically complex, and 
model-dependent so that the projected cloud feedbacks remain a key 
uncertainty for constraining climate sensitivity (Section 7.4.2.4). 

CMIP6 models project an overall decrease in near-surface relative 
humidity over land, although with some regional and seasonal 
variations in their response (Figure 4.26). Regional changes in near-
surface humidity over land are dominated by thermodynamic processes 
and are primarily controlled by moisture transport from the warming 
ocean (Chadwick et al., 2016a). Increases in specific humidity lower 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1109

Water Cycle Changes  Chapter 8

8

than the thermodynamic rate are explained by greater warming over 
land than ocean and modulated by land–atmosphere feedbacks such 
as soil moisture and plant stomatal changes (Section 8.2.2.1; Berg 
et al., 2017; Douville et al., 2020). This explains why climate models 
continue to project a  contrasting response of near-surface relative 
humidity, with a  slight and possibly overestimated increase over 
the oceans and a consistent but possibly underestimated decrease 
over land (Byrne and O’Gorman, 2016; Douville and Plazzotta, 2017; 
R. Zhang et al., 2018).

While projections of water vapour are well understood due to the 
constraints of the Clausius–Clapeyron relationship, projections 
of water vapour transport are complicated regionally by the role of  
changes in the wind field, which is influenced by a  wide variety 
of  factors. Additionally, there has been relatively little general 
evaluation of moisture transport in models. In CMIP5 models, 
both the mean and variability of the vertically-integrated moisture 
transport is projected to increase, largely due to increases in water 
vapour (Lavers et al., 2015), with substantial regional differences 
(Levang and Schmitt, 2015). Single-model studies have illustrated 
projected increases in low-altitude moisture transport into 
convergence regions (Allan et al., 2014) and from ocean to land 
(Zahn and Allan, 2013) that are consistent with present day trends. 
Increases in moisture transport have been linked to increases in large 
precipitation accumulations over land (Norris et al., 2019). Based 
on robust physics and supported by modelling studies, it is well 
understood that moisture transport increases into convergent parts 
of the atmospheric circulation such as storm systems, the tropical rain 
belt and high latitudes (Section 8.2.2.1), but changes in atmospheric 
circulation that are less well understood alter moisture transport 
regionally (Section 8.2.2.2). Therefore, given the limited examination 
of moisture transport in models, regional projections should be 
considered with caution. Changes in moisture transport specifically 
associated with monsoons, atmospheric rivers, and other specific 
circulation features are discussed further in the following sections.

In summary, there is high confidence in continued increases in global 
mean column integrated water vapour and near-surface specific 
humidity over land. There is medium confidence in region and season-
dependent decreases in near-surface relative humidity over land, due 
to the complex physical processes involved. In general, there will be 
increases in moisture transport into storm systems, monsoons and 
high latitudes (medium confidence).

8.4.1.3 Precipitation Amount, Frequency and Intensity

This section assesses projected changes in precipitation at regional 
scales. Note that changes in precipitation seasonality are assessed 
in Box 8.2 and that changes in regional monsoons are assessed in 
Section 8.4.2.4, where both circulation and rainfall are considered. 
Further assessments of regional projections of precipitation are 
presented in Chapters 10, 12 and the Atlas, while a comprehensive 
assessment of changes in precipitation extremes is provided in 
Chapter 11.

The AR5 assessed that the contrast of mean precipitation amount 
between dry and wet regions and seasons is expected to increase 

over most of the globe as temperatures increase (high confidence), 
but with large regional variations. Precipitation over the high 
latitudes, equatorial Pacific Ocean, mid-latitude wet regions, and 
monsoon regions were assessed as likely to increase under the 
RCP8.5 scenario, and in many mid-latitude and subtropical dry 
regions as likely to decrease (AR5 Chapters 7, 12, and 14). Extreme 
precipitation over most mid-latitude land areas and wet tropical 
regions was assessed as very likely to become more intense and 
more frequent.

Geographical patterns of projected precipitation changes show 
substantial seasonal contrasts and regional differences, including 
over land (Figure 8.14 and Figure 4.27). Projections for 2081–2100 
under the SSP2-4.5 scenario suggest increased precipitation over 
the tropical oceans, north-eastern Africa, the Arabian Peninsula, 
India, south-eastern Asia and the Polar regions while decreased 
precipitation is projected mainly over the subtropical regions 
(Section  4.5.1.4). Precipitation changes contrast regionally in the 
tropics with wetter wet seasons over South Asia, central Sahel and 
eastern Africa, but less precipitation over Amazonia and coastal 
West Africa (Section  8.4.2.4). These large-scale responses are 
associated with stronger moisture transports in a warmer climate 
that are modulated by the greater warming over land than ocean, 
atmospheric circulation responses and land surface feedbacks 
(Section  8.2.2). There is agreement across CMIP5 and CMIP6 
modelling studies that precipitation increases in wet parts of the 
atmospheric circulation and decreases in dry parts (Liu and Allan, 
2013; Kumar et al., 2015; Deng et al., 2020; Schurer et al., 2020) 
although these regions shift with atmospheric circulation changes. 
The overall pattern is robust across different model scenarios and 
time horizons (Tebaldi and Knutti, 2018), but some deviations 
from the mean pattern cannot be excluded due to the multiple 
time scales and non-linear atmospheric or land surface processes 
involved (Section 8.5.3). Near-term regional changes in precipitation 
are more uncertain because of a  stronger sensitivity to natural 
variability (Section  8.5.2) and non-GHG anthropogenic forcings 
(Section 4.4.1.3 and 8.4.3.1).

Projected changes in regional precipitation also arise as a response 
to changes in large-scale atmospheric circulation (Section  8.2.2.2 
and 8.4.2), both in the tropics (Chadwick et al., 2016b; Byrne et al., 
2018) and extratropics (Shaw, 2019; Oudar et al., 2020b). Despite 
variability in simulated changes, CMIP5 climate models consistently 
project large rainfall changes (of varying sign) over considerable 
proportions of tropical land during the 21st century (Chadwick 
et al., 2016b). Since AR5, some robust responses in large-scale 
circulation patterns have been identified. For example, and as further 
assessed in Section 8.4.2, CMIP6 models project a northward shift 
in the tropical rain belt over eastern Africa and the Indian Ocean 
and a  southward shift in the eastern Pacific and Atlantic oceans 
(Mamalakis et al., 2021). A projected strengthening and tightening 
of the tropical rain belt increases the contrasts between wet and 
dry tropical weather regimes and seasons. It is less clear how the 
well understood poleward expansion of the subtropics and mid-
latitude storm tracks influences precipitation over subtropical and 
mid-latitude continents (Section 8.2.2.2). 
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An ensemble of 31 CMIP6 models under the SSP5-8.5 scenario 
projects increases precipitation by 10–30% over much of the USA 
and decreases by 10–40% over Central America and the Caribbean 
by 2080–2099 (Almazroui et al., 2021). This CMIP6 ensemble also 
projects an increase in annual precipitation over the southern 
Arabian Peninsula and a  decrease over the northern Arabian 
Peninsula, as also projected by CMIP3 and CMIP5 models (Almazroui 
et al., 2020a). Annual mean precipitation is projected to increase over 
South Asia during the 21st century under all scenarios, although the 
rate of change varies within the region based on 27 CMIP6 models 
(Almazroui et al., 2020c). CMIP6 projections also display a reduction 
in annual mean precipitation over northern and southern Africa 
while increases are projected over Central Africa, under the SSP1-2.6, 
SSP2-4.5 and SSP5-8.5 scenarios (Almazroui et al., 2020b). The AR6 
Atlas assesses that regions where annual mean rainfall is likely to 
increase include the Ethiopian Highlands, East, South and North Asia, 
south-eastern South America, northern Europe, northern and eastern 
North America, and the Polar Regions. In contrast, regions where 

annual mean rainfall is likely to decrease include southern Africa, 
coastal West Africa, Amazonia, south-western Australia, Central 
America, south-western South America, and the Mediterranean.

The AR5 identifi ed that high-latitude precipitation increase may lead 
to an increase in snowfall in the coldest regions and a decrease of 
snowfall in warmer regions due to a decreased number of freezing 
days. The fraction of precipitation falling as snow and the duration 
of snow cover was projected to decrease. Heavy snowfall events 
globally are not expected to decrease signifi cantly with warming 
as they occur close to the water freezing point, which will migrate 
poleward and in altitude (O’Gorman, 2014; Turner et al., 2019). There 
are only a  small number of studies evaluating the implications of 
this mechanism in specifi c regions. A study for the north-eastern USA 
indicates smaller reductions for major snowfall events against the 
broader decline in snowfall expected from thermodynamic effects 
(Bintanja and Andry, 2017). Arctic snowfall is projected to decrease 
as rainfall makes up more of the precipitation (Zarzycki, 2018). 

Figure 8.14 | Projected long-term relative changes in seasonal mean precipitation. Global maps of projected relative changes (%) in seasonal mean of precipitation 
averaged across available CMIP6 models (number provided at the top right of each panel) in the SSP2-4.5 scenario. All changes are estimated for 2081–2100 relative to the 
1995–2014 base period. Uncertainty is represented using the simple approach. No overlay indicates regions with high model agreement, where ≥80% of models agree on sign 
of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on sign of change. For more information on the simple approach, please 
refer to the Cross-Chapter Box Atlas.1. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Figure 8.15 | Projected long-term relative changes in daily precipitation statistics. Global maps of projected seasonal mean relative changes (%) in the number of 
dry days (i.e., days with less than 1 mm of rain) and daily precipitation intensity (in mm day–1, estimated as the mean daily precipitation amount at wet days – for example, days 
with intensity above 1 mm day–1) averaged across available CMIP6 models (number provided at the top right of each panel) in the SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 
(e, f) scenario respectively. Uncertainty is represented using the simple approach. No overlay indicates regions with high model agreement, where ≥80% of models agree on 
sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on sign of change. For more information on the simple approach, 
please refer to the Cross-Chapter Box Atlas.1. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).

Beyond annual or seasonal mean precipitation amounts, an implication 
of the parallel intensifi cation of the global water cycle and of the 
increased residence time of atmospheric water vapour (Section 8.2.1) 
is that the distribution of daily and sub-daily precipitation intensities 
will experience signifi cant changes (Pendergrass and Hartmann, 
2014b; Pendergrass et al., 2015; Bador et al., 2018; Douville and John, 
2021), with fewer but potentially stronger events (high confi dence)

(Section  4.3.3). CMIP6 projections show that in the long-term 
more drier days but more intense single events of precipitation are 
expected, regardless of scenario (Figure 8.15). Over almost all land 
regions, it is very likely that extreme precipitation will intensify at 
a rate close to the 7% °C–1 of global warming, but with large spatial 
differences (Sections  11.4 and 8.2.3.2). The projected increase in 
precipitable water is expected to lead to an increase in the highest 
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Figure 8.16 | Rate of change in components of water cycle mean and variability across increasing global warming levels. Relative change (%) in seasonal 
mean total precipitable water (grey line), precipitation (red solid lines), runoff (blue solid lines), as well as in standard deviation of precipitation (red dashed lines) and runoff 
(blue dashed lines) averaged over extratropical land in (c) summer and (d) winter, and tropical land in (a) June–July–August (JJA) and (b) December–January–February (DJF) 
as a function of global mean surface temperature for the CMIP6 multi-model mean across the SSP5-8.5 scenario. Extratropical winter refers to DJF for Northern Hemisphere 
and JJA for Southern Hemisphere (and the reverse for extratropical summer). Each marker indicates a 21-year period centred on consecutive decades between 2015 and 2085 
relative to the 1995–2014 base period. Precipitation and runoff variability are estimated by their standard deviation after removing linear trends from each time series. Error 
bars show the 5–95% confidence interval for the warmest 5°C global warming level. Figure adapted from Pendergrass et al. (2017) and updated with CMIP6 models. Further 
details on data sources and processing are available in the chapter data table (Table 8.SM.1).

possible precipitation intensities and an increase in the probability 
of occurrence of extreme precipitation events on the global scale 
(Neelin et al., 2017), regardless of how annual-mean precipitation 
changes (O’Gorman and Schneider, 2009; O’Gorman, 2015). The 
projected increase in heavy precipitation intensity is also found for 

daily mean precipitation intensity though at a lower rate (Pendergrass 
and Hartmann, 2014a).

An increase in the number of dry days is also projected in several 
regions of the world (Polade et al., 2014; Berthou et al., 2019a), 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1113

Water Cycle Changes  Chapter 8

8

which can dominate the annual precipitation change at least 
in the subtropics (Polade et al., 2014; Douville and John, 2021). 
These findings are supported by CMIP6 projections showing 
a  widespread increase in daily mean precipitation intensity over 
land (Figure 8.15b,d,f) as well as an increase in the number of dry 
days in the subtropics and over Amazonia and Central America 
(Figure 8.15a,b,c). Such changes in precipitation regimes, as well as 
the general increase in the frequency and intensity of precipitation 
extremes (Section  11.4.5), contribute to an overall increase in 
precipitation variability (Polade et al., 2014; Pendergrass et al., 
2017; Douville and John, 2021). This is also found in CMIP6 models, 
which show a stronger increase of interannual variability than in 
seasonal mean precipitation changes, apart from in the winter 
extratropics where both quantities increase at the same rate with 
increasing global warming levels (Figure 8.16). 

In summary, it is virtually certain that global precipitation will 
increase with warming due to increases in GHG concentrations 
and decreases in air pollution. There is high confidence that total 
precipitation will increase in the high latitudes, with a  shift from 
snowfall to rainfall except in the coldest regions and seasons. 
There is also high confidence that precipitation will decrease over 
the Mediterranean, southern Africa, Amazonia, Central America, 
south-western South America, south-western Australia and coastal 
West Africa and that monsoon precipitation will increase over South 
Asia, East Asia and central-eastern Sahel. See Section  8.4.2.4 for 
a more detailed assessment of changes in regional monsoons. Daily 
mean precipitation intensities, including extremes, are projected to 
increase over most regions (high confidence). The number of dry days 
is projected to increase over the subtropics, Amazonia, and Central 
America (medium confidence). There is high confidence in an overall 
increase in precipitation variability over most land areas.

Box 8.2 | Changes in Water Cycle Seasonality

Observed changes
The AR5 did not highlight observed changes in water cycle seasonality and SRCCL mostly emphasized changes in vegetation 
seasonality. Since AR5, a  number of relevant studies have been published, but often with conflicting results. Based on three in 
situ datasets, reduced precipitation seasonality was identified over 62% of the terrestrial ecosystems analysed from 1950–2009 
(Murray-Tortarolo et al. 2017). In contrast, both in situ and satellite data show a general increase in the annual range of precipitation 
from 1979 to 2010, which is dominated by wetter wet seasons (Chou et al., 2013). This paradox may be partly explained by a larger 
aerosol radiative forcing in the middle of the 20th century as well as by internal variability (Kumar et al., 2015; see also Box 8.1). For 
instance, the ‘long rains’ over East Africa experienced declining trends in the 1980s and 1990s (Nicholson, 2017), which was linked 
to anthropogenic aerosols and SST patterns (Rowell et al., 2015), followed by a recent recovery that was linked to internal variability 
(Wainwright et al., 2019). Two satellite datasets revealed decreased rainfall seasonality in the tropics but an increased seasonality in 
the subtropics and mid-latitudes since 1979, without clear attribution (Marvel et al., 2017).

Large differences have been found across seven global precipitation datasets, with no region showing a  consistent, statistically 
significant, positive or negative trend over the last three decades (X. Tan et al., 2020). Regional studies suggest that observed changes 
in precipitation seasonality are neither uniform nor stable across the 20th century (X. Li et al., 2016; Mallakpour and Villarini, 2017; 
Sahany et al., 2018; Deng et al., 2019). Since the 1980s, there is growing evidence that contrasts between wet and dry regimes, 
including seasonality, have increased (Liu and Allan, 2013; Polson et al., 2013; Murray-Tortarolo et al., 2016; Tapiador et al., 2016; 
Gallego et al., 2017; Polson and Hegerl, 2017; Barkhordarian et al., 2018; Lan et al., 2019; Liang et al., 2020; Schurer et al., 2020). 

Additional changes in seasonality may manifest in the timing and duration of wet seasons. A later monsoon onset trend was reported 
throughout India from 1901 to 2013 (Sahany et al., 2018). Conversely, an earlier rainfall onset was implicated in increased springtime 
rainfall over the Tibetan Plateau in recent decades (W. Zhang et al., 2017a). Winter and early spring precipitation over the north-western 
Himalaya for the period 1951–2007 shows an increasing trend of daily precipitation extremes in association with enhanced amplitude 
variations of extratropical synoptic-scale systems known as ‘Western Disturbances’(Madhura et al., 2014; Cannon et al., 2015; Krishnan 
et al., 2019). In China, an earlier onset was observed during 1961-2012 (Deng et al., 2019). In the African Sahel, rainfall has been most 
concentrated in the peak of the rainy season since the end of the 20th century (Biasutti, 2019). A shift in the seasonality of Sahelian 
rainfall, including delayed cessation has also been reported (Section 10.4.2.1; Nicholson, 2013; Dunning et al., 2018). Over southern Africa, 
an observed earlier onset (1985–2007) is in contrast to a simulated historical and projected future delay in the wet season (Maidment 
et al., 2015; Dunning et al., 2018). An increasingly early onset of the North American monsoon has been observed from 1978 to 2009 
(Arias et al., 2015). Seasonality changes in the South American monsoon indicate delayed onsets since 1978 (Fu et al., 2013; Yin et al., 
2014; Arias et al., 2015; Debortoli et al., 2015; Arvor et al., 2017; Giráldez et al., 2020; Haghtalab et al., 2020; Correa et al., 2021). 

In northern high latitudes, a shorter snow season (X. Zeng et al., 2018) is mainly due to an earlier onset of spring snowmelt (Peng et al., 
2013) which has been attributed to anthropogenic climate change (Najafi et al., 2016). Changes in snow seasonality affect streamflow 
at the regional scale, with an earlier peak in spring and a possible decrease of low-level flow in summer (Berghuijs et al., 2014; Kang 
et al., 2016; Dudley et al., 2017), while glacier shrinking can also alter the low-level flow in mountain catchments (Lutz et al., 2014; Milner 
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Box 8.2 (continued)

et al., 2017; Huss and Hock, 2018). This can be partly ameliorated by water management in regulated catchments (Arheimer et al., 2017), 
but not in large river basins such as the Amazon which also shows an increased seasonality of discharge since 1979 (Liang et al., 2020).

Increasing aridity contrasts between wet and dry seasons over the late 20th century have been suggested (Kumar et al., 2015), with 
a human-induced decrease of water availability during the dry season over Europe, western North America, northern Asia, southern 
South America, Australia and eastern Africa (Padrón et al., 2020). Seasonal contrasts in microwave surface soil moisture measurements 
have also increased over 1979–2016 (Pan et al., 2019). Terrestrial water storage variations derived from gravimetric measurements 
since 2003 show a strong seasonality which is underestimated by global hydrological models (Scanlon et al., 2019) and whose multi-
decadal trends are difficult to interpret given the direct effect of enhanced water use (Rodell et al., 2018; Scanlon et al., 2018).

In summary, there is medium confidence that the annual range of precipitation has increased since the 1980s, at least in subtropical 
regions and over the Amazon. There is low confidence that this increase is due to human influence and that GHG forcing has already 
altered the timing or duration of wet seasons. There is high confidence that the human-induced retreat of the springtime snow cover 
and melting of glaciers have already contributed to changes in streamflow seasonality in high-latitude and low-elevation mountain 
catchments, and medium confidence that human activities have also contributed to an increased seasonality of water availability, 
including a drier dry season, in the extratropics.

Projected changes
The AR5 reported with high confidence that the contrast between wet and dry seasons will generally increase with global warming 
and that monsoon onset dates will likely become earlier or show little change, while monsoon retreat dates will likely be delayed, 
resulting in a lengthening of the wet season in many regions. 

Since AR5, several studies have further documented a projected increase in rainfall seasonality and the understanding of the underlying 
mechanisms has been improved (Sections 8.2.1 and 8.3.2). CMIP5 models show that the seasonal concentration of annual precipitation 
will increase over many regions by the end of the 21st century, with robust model agreement in most subtropical regions where an 
increase in the mean number of dry days was also reported in the RCP8.5 scenario (Pascale et al., 2016). The semi-arid, winter rainfall 
dominated subtropical climate is projected to shift poleward and eastward, with the equatorward margins replaced by a more arid 
climate type. However, evolving SST patterns and land–ocean warming contrasts cause more complex responses (Alessandri et al., 
2015; Polade et al., 2017; Brogli et al., 2019; Zappa et al., 2020). Projections over California show a stronger and shorter wet season 
(Polade et al., 2017; Dong et al., 2019). Decreases in future winter and spring rainfall are projected over south-western Australia (Hope 
et al., 2015). Central Asia is projected to experience wetter winters, associated with an increase in snow depth in the north-eastern 
regions (Y. Li et al., 2019). Even in a +2°C climate, both extreme precipitation and dryness will increase significantly in the extratropics, 
amplifying the seasonal precipitation range (Fujita et al., 2019). A single-model study shows that the annual range of precipitation 
increases globally by 2.6%  per 1°C of global warming in stabilized low-warming scenarios (Z. Chen et al., 2020a).

In the tropics, an amplified annual cycle (by about 3–5% °C–1) of global land monsoon hydroclimates (precipitation, precipitation minus 
evaporation (P–E), and runoff) is projected by CMIP5 models under the RCP8.5 scenario, mostly due to a more intense wet season 
(W. Zhang et al., 2019b). A longer rainy season is projected by CMIP6 models over most regional monsoon areas except in the Americas 
(Moon and Ha, 2020). A delayed onset and cessation of the wet season over West Africa and the Sahel (Dunning et al., 2018) and 
a slightly delayed onset of South Asian monsoon rainfall (Hasson et al., 2016) are projected by CMIP5 models. CMIP5 projections suggest 
a strengthening of the annual cycle and a lengthening of the dry season in Southern Amazonia (Fu et al., 2013; Reboita et al., 2014; Boisier 
et al., 2015; Pascale et al., 2016; Sena and Magnusdottir, 2020). This is further verified by the projections from six CMIP6 models (Moon 
and Ha, 2020). A wet season shorter by 5–10 days by the end to the 21st century is projected for southern Africa (Dunning et al., 2018). 

An increase in streamflow seasonality is projected over several large rivers in the low-mitigation RCP8.5 scenario, but with only small 
changes in the seasonality timing, except in northern high latitudes due to the earlier but potentially slower snowmelt in a warmer world 
(Eisner et al., 2017; Musselman et al., 2017). At the end of the century in a high-emissions scenario, peak snowmelt timing is projected to 
occur one month earlier and peak water volume is 79% lower in the eastern USA (Rhoades et al., 2018). Earlier snowmelt is projected, for 
example, by 30 days at the end of the 21st century in RCP4.5 for the Sierra Nevada in the western USA (F. Sun et al., 2018). Sub-seasonal 
changes in water availability were found in many regions in the RCP8.5 scenario. However, these should be considered with caution given 
the magnitude of model errors (C.R. Ferguson et al., 2018). Increases in the seasonality of water availability has been found to be more 
pronounced in areas with high atmospheric evaporative demand, giving rise to a pattern of seasonally variable regimes becoming even 
more variable (Konapala et al., 2020). RCP4.5 and RCP8.5 projections show a pronounced soil drying in summer and autumn over western 
Europe, and a springtime drying over northern Europe due to an earlier snowmelt (Ruosteenoja et al., 2018).
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A simple relative seasonality metric (Walsh and Lawler, 1981) applied to global projections based on CMIP6 models and SSP scenarios 
supports previous CMIP5 fi ndings, especially the amplifi ed seasonality of precipitation around the Mediterranean, and across southern 
Africa, California, southern Australia and the Amazon (Box 8.2, Figure 1). While such changes are not signifi cant in the low-emissions 
SSP1-2.6 scenario, they are consistent with the increased frequency of dry days projected over the same regions (Figure  8.16). 
In monsoon regions outside the Americas, rainfall seasonality does not show a signifi cant increase even in high-emissions scenarios. 
This challenges previous CMIP5 fi ndings based on the difference between maximum and minimum monthly precipitation in a year 
(W. Zhang et al., 2019b) and higher sensitivity to the projected increase in precipitation extremes (Section 11.4.5). In the northern high 
latitudes, milder winters are associated with wetter conditions and a decrease in precipitation seasonality.

In summary, the annual range of precipitation, water availability and streamfl ow will increase with global warming over subtropical 
regions and the Amazon (medium confi dence), especially around the Mediterranean and across southern Africa (high confi dence). The 
contrast between the wettest and driest month of the year is likely to increase by 3–5% °C–1 with global warming in most monsoon 
regions, in terms of precipitation, water availability (P–E) and runoff (medium confi dence). There is medium confi dence that the 
monsoon season could be delayed in a warmer climate in the Sahel. There is high confi dence of earlier snowmelt. 

Box 8.2 (continued)

Box 8.2, Figure 1 | Projected long-term changes in precipitation seasonality. Global maps of projected changes in precipitation seasonality (simply defi ned 
as the sum of the absolute deviations of mean monthly rainfalls from the overall monthly mean, divided by the mean annual rainfall as in Walsh and Lawler, 1981) 
averaged across available CMIP6 models (number provided at the top right of each panel) in the SSP1-2.6 (b), SSP2-4.5 (c) and SSP5-8.5 (d) scenario respectively. 
The simulated 1995–2014 climatology is shown in panel (a). All changes are estimated in 2081–2100 relative to 1995–2014. Uncertainty is represented using the 
simple approach. No overlay indicates regions with high model agreement, where ≥80% of models agree on sign of change. Diagonal lines indicate regions with 
low model agreement, where <80% of models agree on sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box Atlas.1. 
Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Figure 8.17 | Projected long-term relative changes in seasonal mean evapotranspiration. Global maps of projected relative changes (%) in seasonal mean of 
surface evapotranspiration for December–January–February (DJF; left panels) and June–July–August (JJA; right panels) averaged across available CMIP6 models (number 
provided at the top right of each panel) for SSP1.2-6 (a, b) SSP2-4.5 (c, d) and SSP5-8.5 (e, f) scenario respectively. All changes are estimated in 2081–2100 relative to 
1995–2014. Uncertainty is represented using the simple approach. No overlay indicates regions with high model agreement, where ≥80% of models agree on sign of change; 
diagonal lines indicate regions with low model agreement, where <80% of models agree on sign of change. For more information on the simple approach, please refer to the 
Cross-Chapter Box Atlas.1. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).

8.4.1.4 Evapotranspiration 

Since AR5, there is a  growing body of evidence suggesting that 
future projections in evapotranspiration are driven by changes in 
temperature and relative humidity (Laîné et al., 2014; Pan et al., 
2015; Ukkola et al., 2016a), as well as precipitation patterns, as 
found in AR5.

Analysis of CMIP5 models suggests that atmospheric evaporative 
demand will increase over most areas of the world in high-emissions 
scenarios (virtually certain), mostly as a consequence of an increase 
in vapour pressure defi cit (Scheff and Frierson, 2014, 2015; Greve 
and Seneviratne, 2015; Vicente-Serrano et al., 2020). CMIP5 models 
also project an increase in evapotranspiration over most land areas 
(medium confi dence) (Laîné et al., 2014). However, regional changes 
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in evapotranspiration can also be influenced by changes in soil 
moisture and vegetation, which modulate the moisture flux from the 
land to the atmosphere. Several studies of CMIP5 projections suggest 
that increases in plant water use efficiency will limit or counteract 
rising evapotranspiration (Milly and Dunne, 2016; Swann et al., 
2016; Lemordant et al., 2018; Y. Yang et al., 2018). However, other 
studies have found that transpiration increases due to the impact of 
climate change on growing season length, leaf area, and evaporative 
demand (Section  8.2.3.3; Frank et al., 2015; Mankin et al., 2017, 
2018, 2019; Guerrieri et al., 2019; S.  Zhou et al., 2019; Vicente-
Serrano et al., 2020). The parametrizations accounting for these 
complex physiological processes in global climate models may also 
be insufficient (Franks et al., 2017; Peters et al., 2018; Peano et al., 
2019). Thus, there is currently low confidence in the role of vegetation 
physiology in modulating future projections of evapotranspiration. 

CMIP6 models project a  geographical pattern of changes in 
evapotranspiration similar to previous generation models 
(Figure  8.17), although the magnitude is generally larger than 
found for CMIP5 projections (X. Liu et al., 2020). There is, however, 
a strong seasonality in many regions, with a larger relative increase 
in the winter season of the Northern Hemisphere (NH) and smaller 
relative changes in the summer (Figure  8.17). Evapotranspiration 
increases in most land regions, except in areas that are projected to 
become moisture-limited (due to reduced precipitation and increased 
evaporative demand), such as the Mediterranean, South Africa, and 
the Amazonian basin (medium confidence). The patterns of change 
increase in magnitude from low to high-emissions SSP scenarios 
(medium confidence).

In summary, future projections indicate that anthropogenic 
forcings will drive an increase in global mean evaporation over 
most oceanic areas (high confidence) (Figure  8.17), an increase 
in global atmospheric demand (virtually certain) and an increase 
in evapotranspiration over most land areas, with the exception of 
moisture-limited regions (medium confidence). However, substantial 
uncertainties in projections of evapotranspiration, especially at 
seasonal and regional scales, remain (see also Section 8.2.3.3 and 
Cross-Chapter Box 5.1).

8.4.1.5 Runoff, Streamflow and Flooding

The AR5 assessed that projected changes in runoff had low confidence 
over the period 2016–2035; however, under the RCP8.5 scenario, 
runoff increases by 2100 are likely in high northern latitudes. This is 
consistent with projected regional precipitation increases, based on 
consistency of changes across different generations of models and 
different forcing scenarios, and with runoff decreases being likely 
in southern Europe, the Middle East and southern Africa. There was 
considerable uncertainty in the magnitude and direction of change 
for some regions, largely driven by the uncertainty in projected 
precipitation changes, particularly across south Asia. For flooding, 
AR5 assessed with medium confidence that flooding would increase 
over parts of South and South East Asia, tropical Africa, north-east 
Eurasia, and South America, and decrease for parts of Northern 
and Eastern Europe, Anatolia, Central Asia, Central North America, 
and southern South America. The SR1.5 assessed with medium 

confidence that warming of 2°C would increase the fraction of global 
area affected by flood hazard relative to warming of 1.5°C. Projected 
climate-driven changes to runoff, streamflow, and flooding will occur 
in the context of potential human-caused land-use and land-cover 
changes, which can have a large influence on surface water (Sterling 
et al., 2013) but which have considerable uncertainty in projections 
(Prestele et al., 2016).

Since AR5, studies confirm that global mean annual runoff increases 
with global surface temperature increase (X.  Zhang et al., 2014, 
2018; Lehner et al., 2019), but varies regionally (Chen et al., 2017; 
H. Yang et al., 2017; Cook et al., 2020). CMIP5 models display a large 
spread in the ratio of runoff to precipitation for the present-day 
climate, which applies also to future runoff changes under global 
warming (Lehner et al., 2019). In studies of CMIP6 projections, runoff 
increases in most parts of the northern high latitudes and Asia and 
north and eastern Africa, and decreases in the Mediterranean region, 
southern Africa, southern Australia and in parts of western Africa, 
as well as in Central and South America (Greve et al., 2018; Cook 
et al., 2020). Projected changes in runoff also vary seasonally. In the 
Northern Hemisphere (NH), runoff increases during winter since more 
precipitation falls as rain than snow and decreases in the summer as 
less snow is available to contribute to runoff during the warm season 
(Cook et al., 2020). Global maps of projected changes for December–
January–February and June–July–August are shown in Figure 8.18, 
showing projected changes becoming larger and more consistent 
in the higher emissions scenarios. Runoff projections for CMIP6 are 
also shown in Figure 8.16 for tropical and extratropical averages at 
a range of global mean warming levels and in Table 8.1 for global 
land in different future scenarios. In the tropics, both the mean and 
interannual variability of runoff increase with warming. The increase 
in variability is roughly twice as large as the increase in the mean, 
and has a  large spread across models. In the extratropics, changes 
are small in the summer but there are large increases in the winter, 
with the mean increasing much more than the variability, in contrast 
to the tropics. 

Changes in streamflow vary regionally and increase in magnitude 
with emissions scenarios, as with runoff (although the two are not 
equivalent, as runoff includes both surface runoff and streamflow). 
Streamflow projections additionally require the use of hydrologic 
models forced by the output from climate models and have not been 
as widely explored as they are not variables directly included in climate 
models. On an annual basis, streamflows have been projected to 
increase in the northern high latitudes and tropical Asia and Africa, and 
to decrease in the Mediterranean, tropical South America, and South 
Africa (Döll et al., 2018). For a 4°C global warming, half of the global 
land area is projected to be exposed to increased high flows (average 
increase 25%), while about 60% may be exposed to decreased low 
flows (average decrease 50%) (Asadieh and Krakauer, 2017). 

Changes in the seasonality of runoff and streamflow are assessed 
in Box  8.2. The seasonality of runoff and streamflow (calculated 
as the annual difference between the wettest and driest months 
of the year), is expected to increase with global warming in the 
subtropics, especially in the Mediterranean and southern Africa with 
high confidence, and in the Amazon with medium confidence. For 
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regions where snowmelt is an important contributor to streamfl ow, 
there is high confi dence that snowmelt occurring earlier in the 
year will result in peak fl ows also occurring earlier in the year, and 
medium confi dence that reduced snow volume and the weaker solar 
radiation earlier in the year will reduce the most intense fl ows (see 
Section 8.2.3.1). In roughly half of 56 large-scale glacierized drainage 

basins, projected runoff changes show an increase until a maximum 
is reached, beyond which runoff steadily declines because of limited 
ice volumes (Huss and Hock, 2018).

As future changes in fl ood events are assessed in Chapters 9, 11 
and 12, only a  summary is presented here. There are a number of 

Figure 8.18 | Projected long-term relative changes in seasonal mean runoff. Global maps of projected relative change (%) in runoff seasonal mean for December–
January–February (DJF; left panels) and June–July –August (JJA; right panels) averaged across available CMIP6 models (number provided at the top right of each panel) SSP1.2-6 
(a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f) scenario respectively. All changes are estimated in 2081–2100 relative to 1995–2014. Uncertainty is represented using the simple 
approach. No overlay indicates regions with high model agreement, where ≥80% of models agree on sign of change, diagonal lines indicate regions with low model agreement, 
where <80% of models agree on sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box Atlas.1. Further details on data sources 
and processing are available in the chapter data table (Table 8.SM.1).
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complicating factors for projecting both pluvial (overland) and fluvial 
(river) flooding that limit confidence in their assessment. In addition to 
precipitation, flooding also depends on basin and river characteristics 
such as permeability, antecedent soil moisture, and antecedent flow 
levels for river flooding, so projections of extreme precipitation and 
flooding are not always closely linked (Section  8.2.3.2). Possible 
changes in water resources management and land use add another 
layer of complexity to future changes. There is medium confidence 
in a general increase in pluvial and fluvial flooding, although there 
are large regional variations, discussed further in Sections  11.5.5, 
and 12.4. There is medium confidence in a  substantial increase 
in the frequency of extreme sea level events for coastal regions 
(Section  9.6.4.2) and the associated coastal flooding is regionally 
assessed in Section  12.4. The risk of glacier lake outburst floods 
(GLOFs) is expected to increase with glacier melting in some high 
mountain regions (Section 12.4).

In summary, there is medium confidence that global runoff will 
increase with global warming, but with large regional and seasonal 
variations. There is high confidence that runoff will increase in the 
northern high latitudes and decrease in the Mediterranean region and 
southern Africa. There is medium confidence that runoff will increase 
in regions of central and eastern Africa, and decrease in Central 
America and parts of southern South America, with the magnitude 
of the change increasing with emissions. There is medium confidence 
that the seasonality of runoff and streamflow will increase with 
global warming in the subtropics. In snow-dominated regions, there 
is high confidence that peak flows associated with spring snowmelt 
will occur earlier in the year and medium confidence that snowmelt-
induced runoff will decrease with reduced snow, except in glacier-fed 
basins where runoff may increase in the near term. There is medium 
confidence that flooding in general will increase, although with 
considerable variation based on geographic region and flood type. 
These projected climate-related changes will occur in the context of 
human-caused land-use and land-cover changes, which may also 
have a large influence.

8.4.1.6 Aridity and Drought

The AR5 concluded that regional to global-scale projections of 
aridity and drought remained relatively uncertain compared to other 
aspects of the water cycle. It reported that there is a likely increase in 
drought occurrence (medium confidence) by 2100 in regions that are 
currently drought-prone under the RCP8.5 scenario due to projected 
decreases in soil moisture. It stated that it is likely that the most 
prominent projected decreases in soil moisture would occur in the 
Mediterranean, south-western USA, and southern Africa, consistent 
with projected changes in the Hadley circulation and increased 
surface temperatures. These AR5 conclusions are generally supported 
by more recent analyses of CMIP5 models (Feng and Fu, 2013; Berg 
et al., 2017; Cook et al., 2018).

Results from the latest generation of models in CMIP6 are largely 
congruent with CMIP5. Consistent with the coherent nature of 
warming in future projections, increases in vapour pressure deficit 
and evaporative demand are widespread and consistent across 
regions, seasons, and models, increasing in magnitude in accordance 

with the emissions scenario (high confidence) (Figure  8.19; Scheff 
and Frierson, 2014, 2015; Vicente-Serrano et al., 2020). Even under 
a  low-emissions scenario (SSP1-2.6), projections of soil moisture 
show significant decreases in the Mediterranean, southern Africa, 
and the Amazonian basin (high confidence) (Figure 8.19). Under mid- 
and high-emissions scenarios (SSP2-4.5 and SSP5-8.5), coherent 
declines emerge across Europe, westernmost North Africa, south-
western Australia, Central America, south-western North America, 
and south-western South America (high confidence) (Figure  8.19; 
Cook et al., 2020). Compared to CMIP5 results, CMIP6 models exhibit 
more consistent drying in the Amazonian basin (Parsons, 2020), 
more extensive declines in total soil moisture in Siberia (Cook et al., 
2020), and stronger declines in westernmost North Africa and south-
western Australia (Figure 8.19). 

Soil moisture in the top soil layer (10 cm) shows more widespread 
drying than total soil moisture, reflecting a  greater sensitivity of 
the upper soil layer to increasing evaporative demand (Figure 8.19; 
Berg et al., 2017). Conversely, total column soil moisture represents 
the carry-over of moisture from previous seasons deeper in the soil 
column, and potentially higher sensitivity to vegetation processes 
(Berg et al., 2017; Kumar et al., 2019). Central America, the 
Amazonian basin, the Mediterranean region, southern Africa, and 
south-western Australia are projected to experience significant 
declines in total soil moisture, whereas declines in Europe (north 
of the Mediterranean), western Siberia, and north-eastern North 
America are limited to the surface (Figure 8.19). It should be noted 
that because models differ in their number of hydrologically active 
layers, there is less confidence in total soil moisture projections than 
surface soil moisture projections. Based on surface soil moisture 
projections, more than 40% of global land areas (excluding 
Antarctica and Greenland) are expected to experience robust year-
round drying, even under lower emissions scenarios (Cook et al., 
2020). The percentage of land area experiencing drying is slightly 
lower when runoff is used as an aridity metric instead (20–30%); 
taking this into consideration, it is estimated that about a  third 
of global land areas will experience at least moderate drying in 
response to anthropogenic emissions, even under SSP1-2.6 (medium 
confidence) (Cook et al., 2020).

Although there are regions where multiple models predict consistent 
and significant changes in soil moisture, as with evapotranspiration 
(Section 8.4.1.4), there is still uncertainty in these projections related 
to the response of plants to elevated CO2. Most models project 
increases in two variables that have opposite effects on surface 
water availability: plant water use efficiency (WUE) and leaf area 
index (LAI; see Section  8.4.1.4). As discussed in Sections  8.2.3.3, 
8.3.1.4 and 8.4.1.4, there is low confidence in how these changes in 
plant physiology will affect future projections of evapotranspiration, 
and likewise, drought and aridity.

Changes in meteorological (precipitation-based) drought duration 
and intensity in CMIP6 models are more robust than projected 
changes in mean precipitation, more than found in CMIP5 projections 
(Ukkola et al., 2020). Significant increases in drought duration are 
expected in Central America, the Amazonian basin, south-western 
South America, the Mediterranean, westernmost North Africa, 
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southern Africa, and south-western Australia, on the order of 
0.5  to  1  month for a  moderate emissions scenario (SSP2-4.5) and 
two months for a high-emissions scenario (SSP5-8.5; Ukkola et al., 
2020). Drought intensity is projected to increase in the tropics, mainly 
in the Amazonian basin, Central Africa, and southern Asia, as well as 
in Central America and south-western South America (Ukkola et al., 
2020). The CORDEX South Asia multi-model ensemble projections 
indicate an increase in the frequency and severity of droughts over 
central and northern India during the 21st century, under the RCP4.5 
and RCP8.5 scenarios (medium confidence) (Mujumdar et al., 2020). 
Under intermediate or high-emissions scenarios, the likelihood of 
extreme droughts (events that have magnitudes equal to or less than 
the 10th percentile of the 1851–1880 baseline period) increases by 
200–300% in the Amazonian basin, south-western North America, 
Central America, the Mediterranean, southern Africa, and south-
western South America (Cook et al., 2020). Even under a  low-
emissions scenario (SSP1-2.6), the likelihood of extreme droughts 
increases by 100% in south-western North America, south-western 
South America, the Amazon, the Mediterranean, and southern Africa 
(Cook et al., 2020). Thus, there is high confidence that drought 
severity and intensity will increase in the Mediterranean, southern 

Africa, south-western South America, south-western North America, 
south-western Australia, Central America and the Amazonian basin.

Paleoclimate records provide context for these future expected changes 
in drought and aridity. In the Mediterranean, western North America, 
and Central Chile, there is high confidence that climate change will shift 
soil moisture (as represented by the Palmer Drought Severity Index) 
outside the range of observed and reconstructed values spanning the 
last millennium (Figure  8.20; Cook et al., 2014; Otto-Bliesner et al., 
2016). Warmer temperatures, leading to increased evaporative losses, 
are clearly implicated in the projected future drying in these semi-arid 
regions (Dai et al., 2018), emphasizing the central role that warming 
plays in driving increased evaporative demand (Vicente-Serrano et al., 
2020). In contrast, future trajectories are more uncertain in regions 
like Central Asia and eastern Australia–New Zealand where projected 
changes in precipitation and soil moisture are less coherent (Figure 8.19 
and 8.20; Hessl et al., 2018). More information on projected changes 
in drought, including specific categories or drought, can be found in 
Section 11.6.5 and Section 12.4.

In summary, there is high confidence that soil moisture will 
decline in semi-arid, winter-rainfall dominated areas including the 

Soil Moisture (top 10 cm) Soil Moisture (total column)Vapor Pressure Deficit

Figure 8.19 | Projected long-term relative changes in annual mean soil moisture and vapour pressure deficit. Global maps of projected relative changes (%) 
in annual mean vapor pressure deficit (left), surface soil moisture (top 10cm, middle) and total column soil moisture (right) from available CMIP6 models (number provided at 
the top right of each panel) for the SSP1.2-6  (a, b, c), SSP2-4.5 (d, e, f) and SSP5-8.5 (g, h, i) scenarios respectively. All changes are estimated for 2081–2100 relative to 
a 1995–2014 base period. Uncertainty is represented using the simple approach. No overlay indicates regions with high model agreement (‘Robust change’), where ≥80% of 
models agree on sign of change, diagonal lines indicate regions with low model agreement, where <80% of models agree on sign of change. For more information on the simple 
approach, please refer to the Cross-Chapter Box Atlas.1. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Figure 8.20 | Past-to-future drought variability in paleoclimate reconstructions and models for select regions. On the left (a, c, e, g, i), tree-ring reconstructed 
Palmer Drought Severity Index (PDSI) series (black line) for the Mediterranean (10°W–45°E, 30°–47°N; E.R. Cook et al., 2015; Cook et al., 2016a), central Chile (70°W–74°W, 
32°S–37°S; Morales et al., 2020), western North America (117°W–124°W, 32°N–38°N; Cook et al., 2010; Griffin and Anchukaitis, 2014), Eastern Australia and New Zealand 
(136°E–178°E, 46°S–11°S; Palmer et al., 2015), and Central Asia (99°E–107°E, 47°N–49°N; Pederson et al., 2014; Hessl et al., 2018) plotted in comparison to the past-to-
future, fully-forced simulations from four ensemble members (thin blue lines) from the NCAR CESM Last Millennium Ensemble (thick blue line = ensemble mean) (Otto-Bliesner 
et al., 2016) for the same regions. The shaded area represents the range (10th to 90th percentile) of historical and future (RCP8.5) PDSI (Penman–Monteith) simulations from 
15 CMIP5 models and 34 ensemble members for the same regions (1900–2100; Cook et al., 2014). On the right (b, d, f, h, j), the distribution of annual PDSI values from the 
past and present (850 to 2005 CE) (black) is compared to the future distribution (2006 to 2100 CE) (blue). The distributions show each of the four ensemble members from 
the CESM LME simulations. The future component of the CESM LME follows the RCP8.5 scenario. Further details on data sources and processing are available in the chapter 
data table (Table 8.SM.1).
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Mediterranean, southern Africa, south-western North America, south-
western South America, and south-western Australia, as well as in 
Central America and the Amazonian basin. In general, these regions 
are expected to become drier both due to reduced precipitation 
(medium confidence) and increases in evaporative demand (high 
confidence). These same regions are likely to experience increases in 
drought duration and/or severity (high confidence). The magnitude of 
expected change scales with emissions scenarios (high confidence) 
but even under low-emissions trajectories, large changes in 
drought and aridity are expected to occur (high confidence) with 
consequences for regional water availability. In the Mediterranean, 
Central Chile, and western North America, future aridification will 
far exceed the magnitude of change seen over the last millennium 
(high confidence).

8.4.1.7 Freshwater Reservoirs

8.4.1.7.1 Glaciers

Previous assessments have concluded that recent warming has led to 
a reduction in low-elevation snow cover (high confidence) (SROCC), 
permafrost (high confidence) (SROCC), and glacier mass (high to 
very high confidence) (AR5; SROCC). The SROCC noted that these 
declines are projected to continue almost everywhere over the 21st 
century (high confidence), with complete glacier loss expected in 
regions with only small glaciers (very high confidence). The SROCC 
supported the AR5 finding that glacier recession would continue 
even without further changes in climate. The SROCC concluded that 
cryosphere changes had already altered the seasonal timing and 
volume of runoff (very high confidence), which in turn had affected 
water resources and agriculture (medium confidence), and projected 
peak water runoff had already been reached before 2019 in some of 
the glacier regions considered. 

Chapter  9  provides detailed assessment of glacier observations 
and projections (Figures  9.20 and 9.21, and Section  9.5.1). Here, 
a  summary of their key findings is presented. Since SROCC, the 
coordinated Glacier Model Intercomparison Project (GlacierMIP; 
Box  9.3; Marzeion et al., 2020) has advanced modelling efforts. 
Global glacier volumes will substantially decline in coming decades 
regardless of emissions scenario; under a  high-emissions scenario 
some areas will lose nearly all of their glacier mass (Section 9.5.1.3). 
The projected global glacier mass loss over 2015–2100 is 29,000 
±  20,000 Gt for SSP1-2.6 to 58,000 ±  30,000 Gt for SSP5-8.5 
(Section 9.5.1). Because of their lagged response to warming, glaciers 
will continue to lose mass for decades even if global temperature is 
stabilized (very high confidence) (Section 9.5.1).

Global glacier mass loss projections show a  scenario-dependent 
geographic partitioning of when peak in runoff occurs (Marzeion 
et al., 2020), consistent with previous studies (Radić et al., 2014; Huss 
and Hock, 2018; Hock et al., 2019b). Under a low-emissions scenario 
(Marzeion et al., 2020) all regions exhibit runoff in the decades 
prior to 2050. Under a high-emissions scenario however, low- and 
mid-latitude regions show peak runoff before approximately 2060, 
whereas Arctic regions peak in later decades around 2070–2090. 
Antarctic glacier losses will not have peaked by the end of the 

century in the high-emissions scenario. Globally, peak runoff of 2.5 to 
3 mm yr–1 sea level equivalent occurs around 2090 (Marzeion et al., 
2020). Regional projections are presented in detail in Section 9.5.1 
and Figure 9.21, and briefly summarized below.

Himalaya and Central Asia: Glaciers in the Himalayas feed ten of the 
world’s most important river systems and are critical water sources 
for nearly two billion people (Wester et al., 2019). However, they are 
some of the most vulnerable ‘water towers’ (Immerzeel et al., 2020) 
that are projected to experience volume losses of approximately 30 
to 100% by 2100 depending on global emissions scenarios (Marzeion 
et al., 2020). Under mid-range emissions scenarios glaciers in this 
region are projected to reach peak runoff during the period 2020 to 
2040 (Marzeion et al., 2020).

Alaska, Yukon, British Columbia: Post-AR5 but pre-SROCC 
projections indicated a  potential 70 ±  10% reduced volume of 
glacier ice in western Canada relative to 2005 (Clarke et al., 2015), 
with few glaciers remaining in the Interior and Rockies regions 
and maritime glaciers in north-western British Columbia surviving 
only in a diminished state. Recent global projections support these 
earlier findings, showing that glacier mass in western Canada and 
the USA may reduce by 50% under low-emissions scenarios and 
be completely lost under the highest emissions and most sensitive 
glacier model combinations (Figure  9.21; Marzeion et al., 2020). 
Arctic Canada and Alaskan glaciers are projected to experience more 
modest mass loss (0–60% depending on region, scenario, and model; 
Marzeion et al., 2020).

Andes: Huss and Hock (2018) concluded that peak glacier mass was 
reached prior to 2019 for 82–95% of the glacier area in the tropical 
Andes. This is consistent with more recent global model simulations 
that show mass loss rates from low latitude glaciers that universally 
decline from the start of simulations in 2015, regardless of emissions 
scenario (Marzeion et al., 2020). Peak runoff in low-latitude Andean 
glacier-fed rivers has therefore already passed (Frans et al., 2015; Polk 
et al., 2017) but in the Southern Andes may occur in the latter half of 
the century under high-emissions scenarios (Marzeion et al., 2020).

In summary, glaciers are projected to continue to lose mass under all 
emissions scenarios (very high confidence). Runoff from glaciers is 
projected to peak at different times in different places, with maximum 
rates of glacier mass loss in low latitude regions taking place in the 
next few decades in all scenarios (high confidence). While runoff from 
small glaciers will typically decrease because of glacier mass depletion, 
runoff from larger glaciers will increase with increasing global warming 
until glacier mass is similarly depleted, after which runoff peaks and 
then declines and which tends to occurs later in basins with larger 
glaciers and higher ice-cover fractions (high confidence). Glaciers in 
the Arctic and Antarctic will continue to lose mass through the latter 
half of the century and beyond (high confidence).
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8.4.1.7.2 Seasonal snow cover 

The AR5 assessed as very likely that the amount and seasonal 
duration of Northern Hemisphere (NH) snow cover will reduce under 
global warming (AR5 Sections 11.3.4.2 and 12.4.6.2). Changes in the 
total amount of water in the snow cover (snow water equivalent) 
are less certain because of the competing influences of temperature 
and precipitation.

As snow cover is assessed in Chapter  9  (Section  9.5.3.3), only an 
overview of that assessment is provided here. Changes in seasonality 
of snow cover are assessed in Box  8.2. The continued consistency 
of reported results across all generations of model projections, 
along with improvements in process understanding, has increased 
confidence in snow cover projections since AR5. 

In summary, based on the results of Chapter  9, it is now virtually 
certain that future NH snow cover extent and duration will continue 
to decrease with global warming. While most studies have focused 
on the NH, process understanding suggests with high confidence that 
these results apply to the Southern Hemisphere (SH) as well. There is 
high confidence in snowmelt occurring earlier in the year. Changes 
to the timing and amount of snowmelt will have a strong influence 
on all the other aspects of the water cycle in regions with seasonal 
snow, including run-off, soil moisture, and evapotranspiration.

8.4.1.7.3 Wetlands and lakes

The AR5 did not include specific projections for wetlands and lakes. 
The SRCCL and SROCC provided some discussion of wetlands 
projections. For coastal wetlands, SRCCL noted the importance of sea 
level rise for increased saltwater intrusion, although projections of 
coastal wetland area with sea level rise are inconclusive. Some studies 
project substantial decreases (Spencer et al., 2016) while others 
indicate possible increases (Schuerch et al., 2018). SRCCL also noted 
the general expectation for decreases in water resources, including 
wetlands, in areas of decreased rainfall due to increased evaporation.

Local studies of inland wetlands project decreases in a  range of 
environments including mountain (Lee et al., 2015), mid- to high 
latitude (D. Zhao et al., 2018), and prairie (Sofaer et al., 2016) regions. 
In addition to affecting wetland extent and density, changes in 
flooding can also affect the connectivity between wetlands and rivers 
(Karim et al., 2016). Despite a number of uncertainties underlying the 
general response of wetlands to climate change, there are multiple 
ways climate change may cause considerable stress on both inland 
and coastal wetlands (Junk et al., 2013; Moomaw et al., 2018). 

Widespread changes are also projected for lakes (Woolway et al., 
2020), including changes in lake temperature (Fang and Stefan, 1999; 
Sahoo et al., 2016), ice (Sharma et al., 2019), evaporation (W. Wang 
et al., 2018), and stability and mixing (Woolway and Merchant, 
2019). Note that lake ice is also considered in Chapter  12 of this 
Report. To date, CO2-induced lake acidification, analogous to ocean 
acidification, has not been the focus of many studies but may occur 
with continued emissions (Phillips et al., 2015). While glacier lakes in 
general increase with melting glaciers (Linsbauer et al., 2016; Colonia 

et al., 2017; Magnin et al., 2020) no clear projections are currently 
available (see discussion in Chapter 9). Projections of lake level means 
and variability show substantial changes for individual lakes (Bucak 
et al., 2017; Li et al., 2021) but can be sensitive to methodology, due 
to the competing processes involved (Notaro et al., 2015). Projected 
changes to wetlands and lakes due to climate change will occur in 
the context of widespread and continuing human-caused conversion 
and degradation of wetlands (e.g, Davidson, 2014), and where water 
withdrawals have a large impact on lake levels (e.g., Micklin, 2016).

In summary, there is medium confidence that inland wetland extent 
will decrease in regions of projected precipitation decrease and 
evaporation increase, and high confidence that sea level rise will 
increase saltwater intrusion into coastal wetlands. However, there 
is low agreement on the influence of sea level rise on the extent 
of coastal wetlands. Regarding lakes, there is high confidence for 
temperature increases and ice decreases, based on both projections 
and physical expectations, and low confidence for non-homogeneous 
decreases in mixing, given there is currently limited evidence.

8.4.1.7.4 Groundwater

Groundwater projections were not assessed in AR5. Groundwater 
processes are not explicitly included in most current CMIP6 models 
and so must be calculated separately with hydrologic models 
(e.g.,  R.G.  Taylor et al., 2013; Cuthbert et al., 2019a). A  range of 
factors are important in assessing groundwater projections, including 
the mean difference between precipitation and evaporation, the 
intensity of precipitation (R.G. Taylor et al., 2013a), and in changes 
in snow (Tague and Grant, 2009), glaciers (Gremaud et al., 2009), 
and permafrost (Okkonen and Kløve, 2011). Climate impacts on 
groundwater are occurring in the context of severe and growing 
human-caused groundwater depletion (WGII; Konikow and Kendy, 
2005; Rodell et al., 2018; Bierkens and Wada, 2019), and water 
scarcity issues (Mekonnen and Hoekstra, 2016). Climate-related 
changes to the water cycle can influence water demand (for example, 
precipitation decreases in an irrigated area), and anthropogenic 
groundwater depletion can influence the water cycle through 
interactions with surface energy fluxes, surface water, and vegetation 
(Cuthbert et al., 2019a), although uncertainties in estimates of future 
groundwater depletion are large (Smerdon, 2017; Bierkens and Wada, 
2019). Some aspects of groundwater change will be irreversible, 
including the increase of saltwater intrusion into coastal aquifers 
with sea level rise (Werner and Simmons, 2009), and depletion of 
fossil aquifers and aquifers with very long recharge times (Bierkens 
and Wada, 2019). 

Globally, two modelling studies have shown substantial decreases in 
groundwater in regions including the Mediterranean, north-eastern 
Brazil and south-western Africa, with less clarity for other regions 
(Döll, 2009; Portmann et al., 2013). Recent regional-scale analyses 
of the impact of water cycle changes on groundwater recharge 
(e.g., Meixner et al., 2016; Tillman et al., 2017; Shrestha et al., 2018) 
suggest changes in both seasonality and spatial distribution, which are 
amplified under a higher greenhouse-gas emissions scenario (i.e., RCP 
8.5 compared to RCP4.5). Seasonality changes are linked to increases 
during wet winter periods and declines during dry summer periods. 
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Changes in spatial distribution are linked with increases in more humid 
regions and declines in more arid locations. Uncertainty in projections 
of groundwater were found to be substantially influenced by the 
conceptual and numerical models employed to estimate groundwater 
recharge (Meixner et al., 2016; Hartmann et al., 2017). Accordingly, 
current research on estimating water cycles change on groundwater 
includes a  focus on improving the numerical representation of 
groundwater systems (Bierkens et al., 2015; Döll et al., 2016). 

In summary, based on known limitations in current modelling, no 
confident assessment of groundwater projections is made here, 
although important climate-related changes in groundwater 
recharge are expected. In many environments, such climate-related 
impacts are expected to occur in the context of substantial human 
groundwater withdrawals depleting groundwater storage.

8.4.2 Projected Changes in Large-scale Phenomena 
and Regional Variability

A weakening of the tropical circulation represents a balance between 
thermodynamic increases in low level water vapour (about 7% °C–1) 
and smaller increases in global precipitation (1–3% °C–1) that are 
influenced by rapid adjustments to radiative forcings as well as slow 
responses to warming (Section 8.2.2.2; Bony et al., 2013; Chadwick 
et al., 2013; Ma et al., 2018). Since AR5, additional drivers of tropical 
circulation weakening have been identified, including mean SST 
warming and changes in spatial patterns of SST (He and Soden, 
2015), and the direct CO2 radiative effect (Bony et al., 2013; He and 
Soden, 2015; Merlis, 2015). 

8.4.2.1 ITCZ and Tropical Rain Belts

CMIP5 projections show no consistent shift in the zonal mean 
position of the ITCZ (Donohoe et al., 2013; Donohoe and Voigt, 2017; 
Byrne et al., 2018). The ITCZ position is strongly connected to cross-
equatorial energy transport (Kang et al., 2008; Bischoff and Schneider, 
2014), which also shows no consistent change in future projections 
(Donohoe et al., 2013). Since AR5 it has been reported that most 
CMIP5 models project a narrowing of the ITCZ in response to surface 
warming together with intensified ascent in the core region and 
weakened ascent on the ITCZ edges (Lau and Kim, 2015; Byrne et al., 
2018), implying a narrowing of precipitation regions influenced by 
the ITCZ. Modelled changes in the width and intensity of the zonal 
mean ITCZ are strongly anti-correlated, for example, narrowing is 
associated with increased intensity while broadening with decreased 
intensity. Such changes are associated with changes in tropical high 
cloud fraction and outgoing longwave radiation (Su  et al., 2017; 
Byrne et al., 2018).

Regional shifts in tropical convergence zones are much larger than 
their zonal mean, and associated regional changes in precipitation 
(Chadwick et al., 2013; Mamalakis et al., 2021) are characterized by 
considerable uncertainties across models (Kent et al., 2015; Oueslati 
et al., 2016). Over the tropical oceans, shifts in rain bands are strongly 
coupled with changes in SSTs (Xie et al., 2010; Huang et al., 2013). 
Over tropical land, factors including remote SST increases (Giannini, 

2010), the direct CO2 effect (Biasutti, 2013) and land–atmosphere 
interactions (Chadwick et al., 2017; Kooperman et al., 2018) influence 
projections. CMIP6 models project a clear northward ITCZ shift over 
eastern Africa and the Indian Ocean as well as a  southward shift 
over the eastern Pacific and Atlantic oceans, as a result of regionally-
contrasting inter-hemispheric energy flows (Mamalakis et al., 2021). 
The northward movement of the ITCZ over Africa has been linked to an 
intensification of the Saharan heat low associated with greenhouse 
gas (GHG) warming (Dong and Sutton, 2015), causing the tropical 
rain belt to seasonally migrate farther northward and reside there 
longer (Cook and Vizy, 2012; Dunning et al., 2018). In southern Africa, 
the projected delay in the wet season onset (Dunning et al., 2018) 
is also associated with a  circulation-based northward shift in the 
tropical rain band (Lazenby et al., 2018). 

In summary, consistent with the AR5, the overall weakening of the 
tropical circulation is projected in CMIP5 and CMIP6 simulations 
with high confidence. It is likely that the zonal mean of the ITCZ 
will narrow and strengthen in the core region with projected surface 
warming (high confidence). Distinct regional shifts in the ITCZ will 
be associated with regional changes in precipitation amount and 
seasonality (medium confidence).

8.4.2.2 Hadley Circulation and Subtropical Belt

The AR5 found that the Hadley cells are likely to slow down and 
expand in response to radiative forcing, but with considerable 
internal variability. Given the complexities in forcing mechanisms, 
AR5 assigned low confidence to near-term changes in the structure 
of the Hadley circulation. The widening Hadley cells were expected to 
result in a poleward expansion of subtropical dry zones.

Model simulations since AR5 project a more noticeable and consistent 
weakening of the Northern Hemisphere (NH) winter Hadley cell than 
the Southern Hemisphere (SH) winter cell (Seo et al., 2014; Zhou 
et al., 2016), related to changes in meridional temperature gradient, 
static stability, and tropopause height (Seo et al., 2014; D’Agostino 
et al., 2017). Changes in SST patterns reduces the magnitude of 
Hadley cell weakening (Gastineau et al., 2009; Ma et al., 2012). There 
is considerable structure in Hadley circulation strength changes 
with longitude, associated with cloud-circulation interactions 
(Su et al., 2014). Subtropical anticyclones are projected to intensify 
over the north Atlantic and south Pacific but to weaken elsewhere 
(He et al., 2017).

A consistent poleward expansion of the edges of the Hadley cells is 
projected (Nguyen et al., 2015; Grise and Davis, 2020), particularly in the 
SH, consistent with observed trends (Figure 8.21 and Section 8.3.2.2; 
Nguyen et al., 2015). The main driver of future expansion appears to 
be greenhouse gas forcing (Grise et al., 2019), with uncertainty in 
magnitude due to internal variability (Kang et al., 2013). Proposed 
mechanisms for poleward expansion include increased dry static 
stability (Frierson et al., 2007; Lu et al., 2007), increased tropopause 
height (Chen and Held, 2007; Chen et al., 2008), stratospheric 
influences (Kidston et al., 2015) and radiative effects of clouds and 
water vapour (Shaw and Voigt, 2016; see also Section 4.5.1.5). Hadley 
cell expansion is thought to be associated with the precipitation 
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declines projected in many subtropical regions (Shaw and Voigt, 
2016), but more recent work suggests that these reductions are 
mainly due to the direct radiative effect of CO2 forcing  (He and 
Soden, 2015), land–sea contrasts in the response to forcing  
(Shaw and Voigt, 2016; Brogli et al., 2019) and SST changes (Sniderman 
et al., 2019). In semi-arid, winter rainfall-dominated regions (such 
as the Mediterranean), thermodynamic processes associated with  
the land–sea thermal contrast and lapse rate changes dominate the  
projected precipitation decline in summer, whereas circulation 
changes are of greater importance in winter (Brogli et al., 2019). 
The hydroclimates in these regions are projected to evolve with time 
due to changing contributions from rapid atmospheric circulation 
changes and their associated SST responses, as well as slower SST 
responses to anthropogenic forcing (Zappa et al., 2020). 

In summary, CMIP5 and CMIP6 models project a weakening of the 
Hadley cells, with high confidence for the NH in boreal winter and 
low confidence for the SH in austral winter. The Hadley cells are 
projected to expand polewards with global warming, most notably 
in the SH (high confidence). There is currently low confidence in the 
impacts on regional precipitation in subtropical regions. 

8.4.2.3 Walker Circulation

The AR5 determined that the Pacific Walker circulation was likely to 
slow down over the 21st century, which would lead to decreased 
precipitation over the western tropical Pacific and increases over the 
central and eastern Pacific. Recent studies show consistency with 
AR5 conclusions but also show an eastward shift over the Pacific, 
mostly due to a  shift towards more ‘El Niño-like’ conditions under 
global warming (Bayr et al., 2014). Other studies suggest that the 
weakening of the Walker circulation is related to the response 
of the western North Pacific monsoon and to changing land–sea 
temperature contrasts, while a positive ocean–atmosphere feedback 
amplifies the weakening of both east–west SST gradient and trade 
winds in the tropical Pacific (Zhang and Li, 2017).

Since AR5, the paradox between the projected weakening and the 
observed strengthening of the Walker circulation since the 1990s 
(Section  8.3.2.2) has triggered debate about the drivers of these 
changes (England et al., 2014; McGregor et al., 2014; Kociuba and 
Power, 2015; Vilasa et al., 2017; Chung et al., 2019). Projected changes 
in equatorial SST gradients are not entirely consistent with observed 
trends (Coats and Karnauskas, 2017; Seager et al., 2019a), and one 
CMIP5 model that projects a  future strengthening of the Walker 
circulation is more consistent with observations than other models 
(Kohyama et al., 2017). Other studies suggest that these differences 
arise from the dominant influence of internal climate variability to 
the observed trends (Chung et al., 2019), or as a  consequence of 
a  systematic cold bias of most CMIP5 models in their Equatorial 
Pacific cold tongues (Seager et al., 2019a). However, the latter 
hypothesis is based on a simplified model of tropical Pacific dynamics 
and is not consistent with the current physical understanding of the 
tropical circulation response to increasing CO2 levels (Section 8.2.2.2) 
or with independent paleoclimate evidence suggesting a  weaker 
Walker circulation under warmer climates (Tierney et al., 2019; 
McClymont et al., 2020). Different time scales of the tropical Pacific 

responses to global warming have been highlighted by numerical 
experiments with both comprehensive and simplified models. Results 
suggest a transient strengthening of the Walker circulation related to 
Indian Ocean warming (L. Zhang et al., 2018), followed by a slower 
weakening linked to a  strengthened eastern Pacific cold tongue 
warming emerging after 50–100 years (Section  7.4.4.2.1; Heede 
et al., 2020).

CMIP6 projections provide further evidence of a  significant long-
term weakening of the Walker circulation (Figure 8.21). For instance, 
a  pronounced weakening of the upper-level tropical easterly jet is 
projected both over the Indian Ocean and tropical eastern Pacific, 
where declines are projected to exceed 70% by 2100 in the high-
emissions SSP5-8.5 scenario (S. Huang et al., 2020). CMIP6 models 
agree on a  future decrease of the equatorial zonal temperature 
gradient (Fredriksen et al., 2020), which can lead to weaker trade 
winds over the tropical Pacific. However, CMIP6 models show 
a  diversity of SST warming patterns in the tropical Pacific (Freund 
et al., 2020), which contributes to uncertainties in the response of 
both Walker circulation and ENSO to continued warming. 

In summary, there is high confidence that the Pacific Walker circulation 
will weaken by the end of the 21st century, and will be associated 
with decreased precipitation over the western tropical Pacific 
and increases farther east. Discrepancies between observed and 
simulated changes in SSTs in the tropics indicate that a temporary 
strengthening of the Walker Circulation can arise from a  transient 
response to GHG radiative forcing (low confidence) and from internal 
variability (medium confidence).

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1126

Chapter 8 Water Cycle Changes

8

Effect: Thermodynamic strengthening of contrasts between wet and dry events regionally despite shifts in 
circulation patterns. Increases in convergence of moisture into mid-latitude weather systems, tropical cyclones, 
and monsoons; increases precipitation.
Regions: Global
Confidence: HighMoist air

Large Scale Circulation projected changes and their effect on the water cycle

Effect: Broadening of the Hadley 
Cells and poleward expansion of 
subtropical dry zones 
Regions: Uncertain influence on 
drying of subtropical land regions
that are also controlled by 
evolving surface temperature 
patterns 
Confidence: Low

Effect: Drying tendency on edges of the ITCZ; 
moistening tendency in the core, where the wet 
gets wetter response is expected to be amplified.
Regions: Impacts on individual regions only 
beginning to be investigated.
Confidence: Medium

Effect: Reduces thermodynamic strengthening 
of monsoons and the increasing contrasts 
between wet and dry regimes
Regions: Maritime Continent
Confidence: Medium

Effect: Annual-mean mid-latitude 
storm tracks shifting polewards. 
Regions: Regional storm tracks 
moving polewards at different rates in 
different basins. Southern 
hemisphere storm tracks have moved 
polewards more clearly, partly driven 
by ozone depletion. Poleward 
movement likely to weaken as ozone 
hole recovers.

The maps show the effect of 3°C of 
global warming on mean P-E compared 
to preindustrial levels (1850-1900)

Subtropical boundaries
Southern hemisphere

Subtropical boundaries
Northern hemisphere   

Inter-tropical 
convergence zone 
(ITCZ)

Annual mean

mm/day

Drier Wetter Drier

Moist 
air

DJF 

Seasonal mean

Effect: Shifts in location of wettest tropical 
regions, increases or decreases in 
precipitation amount
Regions: Southward shift 1950-1970s over 
west Africa due to aerosol cooling of 
northern hemisphere, recovery since driven 
mainly by GHGs. Signals of regional shifts 
emerging.
Confidence: Low

Regional shifts in ITCZNarrowing/strengthening of ITCZ core Weaker Walker circulation

Present

Future

-1   -0.8  -0.6  -0.4  -0.2    0    0.2   0.4   0.6   0.8    1

JJA

Poleward expansion of Hadley Cells 

Seasonal mean

Southern hemisphereNorthern hemisphere

Confidence: Low Confidence: Medium

Future

South
Pole

Thermodynamic increases in moisture transport into weather systems 

ITCZ ITCZ

PresentPresentPresentPresent Future

North 
Pole

Poleward migration of storm tracks

Figure 8.21 |  Schematic depicting large-scale circulation changes and impacts on the regional water cycle. The central figures show precipitation minus 
evaporation (P–E) changes at 3°C or global warming relative to an 1850–1900 base period (mean of 23 CMIP6 SSP5-8.5 simulations). Annual mean changes (large map) 
include contours (ocean only) depicting control climate P–E = 0 mm day–1 lines with the solid contour enclosing the tropical rain belt region and dashed lines representing the 
edges of subtropical regions. Confidence levels assess understanding of how large-scale circulation change affect the regional water.
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8.4.2.4 Monsoons

In AR5, monsoon precipitation over land was projected to intensify 
by the end of the 21st century, due to thermodynamic increases in 
moisture convergence despite weakening of the tropical circulation 
(see Section 8.2.1.3). Following the definition of regional monsoons 
in Annex V  and Figure  8.11, and the assessment of the observed 
changes (Section  8.3.2.4), here we provide an assessment of 
projected changes in regional monsoons. Assessment is provided 
either in terms of SSP and RCP scenarios and global warming levels 
available since AR5, or from the newly available CMIP6 projections 
(Figure  8.22 and Table  8.2). Table  8.2 provides projected changes 
across the five SSPs used in this Report for precipitation (mm day–1), 
P–E (mm day–1) and runoff (mm day–1) over the regional monsoons 
for the mid (2041–2060) and long term (2081–2100). 

8.4.2.4.1  South and South East Asian Monsoon

In AR5, South and South East Asian monsoon (SAsiaM) precipitation 
was projected to increase by the end of the 21st century but with 
a  weakening of the circulation, with high agreement across the 
CMIP5 models (Kitoh et al., 2013; Menon et al., 2013; Sharmila et al., 
2015; Sooraj et al., 2015; Kitoh, 2017; Kulkarni et al., 2020). Since 
AR5, most studies have confirmed projected increases in South Asian 
monsoon precipitation (high confidence), while one high-resolution 
model (35 km in latitude/longitude) projects monsoon precipitation 
decreases during the 21st century following the RCP4.5 scenario 
(Krishnan et al., 2016).

Over South Asia, the moisture-bearing monsoon low-level jet is 
projected to shift northward in CMIP3 and CMIP5 models (Sandeep 

and Ajayamohan, 2015). Greater warming over the Asian land region 
compared to the ocean contributes to intensification of the monsoon 
low-level south-westerly winds and precipitation (Endo et al., 2018), 
even though the combined effect of upper and lower tropospheric 
warming makes the Asian monsoon circulation response rather 
complicated. A  high resolution model projection, based on the 
RCP8.5 scenario, indicates that a  northward shift of the low-level 
jet and associated weakening of the large-scale monsoon circulation 
can induce a large reduction in the genesis of monsoon low pressure 
systems by the late 21st century (Sandeep et al., 2018). Experiments 
with constant forcing indicate that at 1.5°C and 2°C global warming 
levels, mean precipitation and monsoon extremes are projected to 
intensify in summer over India and South Asia (Chevuturi et al., 2018; 
D. Lee et al., 2018) and that a 0.5°C difference would imply a 3% 
increase of precipitation (Chevuturi et al., 2018). CMIP5 models 
project an increase in short intense active days and decrease in long 
active days, with no significant change in the number of break spells 
for India (Sudeepkumar et al., 2018).

Future monsoon projections from CMIP6 models show an increase 
of SAsiaM precipitation across all the scenarios and across all the 
time frames (Figure 8.22) with the maximum increase at the end of 
the 21st century in SSP5-8.5 (Almazroui et al., 2020c; Z. Chen et al., 
2020b; Ha et al., 2020; Wang et al., 2021). Table 8.2 confirms that 
changes in runoff and P–E over SAsiaM region are positive and largest 
in the higher emissions scenarios considered, as in precipitation. On 
the other hand, changes in the ensemble mean for all the variables 
considered in the SSP1-1.9 scenario are negative for both mid and 
long-term periods (Table  8.2). This is also consistently reflected 
in the spatial map of future precipitation changes (Figure  8.15). 
Different near-term projections of the SAsiaM may result given the 
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Figure 8.22 | Projected regional monsoons precipitation changes. Percentage change in projected seasonal mean precipitation over regional monsoon domains (as 
defined in Figure 8.11, Section 8.3.2.4 and Annex V) for near term (2021–2040), mid-term (2041–2060), and long term (2081–2100) periods based on 24 CMIP6 models and 
three SSP scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Table 8.2 | Monsoon mean water cycle projections in the mid-term (2041–2060) and long term (2081–2100) relative to present day (1995–2014), showing 
present-day mean and 90% confidence range across CMIP6 models (historical experiment) and projected mean changes and the 90% confidence range 
across the same set of models and a range of Shared Socio-economic Pathway scenarios. All statistics are in units of mm day–1. Further details on data 
sources and processing are available in the chapter data table (Table 8.SM.1).

Mid-term: 2041–2061 Minus Reference Period Long Term: 2081–2100 Minus Reference Period

1995–2014 
Reference 

Period
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

South and South East Asian Monsoon (June–July–August–September, JJAS)

Precipitation
8.42 [6.66 
to 10.14]

0.44 [0.08 
to 0.74]

0.47 [0.1 
to 0.96]

0.42 [0.03 
to 0.81]

0.32 
[–0.08 to 
+0.94]

0.54 
[0.11–
1.18]

0.46 [0.16 
to 0.7]

0.52 [0.13 
to 1.09]

0.66 [0.16 
to 1.1]

0.94 [0.3 
to 1.78]

1.46 [0.66 
to 2.49]

Runoff
3.75 [1.8 
to 5.71]

0.23 [0.1 
to 0.38]

0.29 [0.02 
to 0.65]

0.29 [–0.0 
to +0.66]

0.24 
[–0.04 to 
+0.52]

0.38 
[0.07–
0.78]

0.19 
[–0.02 to 
+0.35]

0.29 
[–0.04 to 
+0.65]

0.42 [0.04 
to 0.83]

0.7 [0.12 
to 1.2]

1.14 [0.36 
to 2.05]

P–E
5.19 [3.68 
to 6.5]

0.28 [0.03 
to 0.52]

0.36 [–0.0 
to +0.76]

0.36 [0.02 
to 0.69]

0.3 [–0.04 
to +0.85]

0.45 
[0.06–
0.95]

0.27 [0.06 
to 0.38]

0.38 [0.11 
to 0.76]

0.51 [0.02 
to 0.83]

0.81 [0.24 
to 1.56]

1.15 [0.45 
to 1.84]

East Asian Monsoon (June–July–August, JJA)

Precipitation
5.59 [4.47 
to 6.86]

0.37 
[–0.09 to 
+0.93]

0.37 
[–0.09 to 
+0.87]

0.34 [0.05 
to 0.76]

0.22 
[–0.16 to 
+0.88]

0.43 [0.03 
to 1.1]

0.43 [0.07 
to 1.02]

0.44 [–0.0 
to +1.08]

0.51 [0.11 
to 1.09]

0.59 [0.02 
to 1.31]

0.84 [0.24 
to 1.74]

Runoff
2.24 [1.28 
to 3.41]

0.11 
[–0.16 to 
+0.4]

0.13 
[–0.19 to 
+0.42]

0.13 
[–0.15 to 
+0.4]

0.15 
[–0.29 to 
+0.76]

0.2 [–0.11 
to +0.72]

0.16 
[–0.08 to 
+0.49]

0.16 
[–0.13 to 
+0.58]

0.22 
[–0.13 to 
+0.64]

0.36 
[–0.05 to 
+0.87]

0.51 [0.06 
to 1.24]

P–E
2.41 [1.51 
to 3.31]

0.1 [–0.31 
to +0.51]

0.13 [–0.2 
to +0.48]

0.17 
[–0.04 to 
+0.53]

0.17 [–0.2 
to +0.75]

0.23 
[–0.09 to 
+0.86]

0.16 
[–0.07 to 
+0.57]

0.18 
[–0.18 to 
+0.65]

0.24 [–0.1 
to +0.76]

0.4 [–0.08 
to +0.93]

0.5 [–0.13 
to +1.34]

North American Monsoon (July–August–September, JAS)

Precipitation
3.05 [2.24 
to 3.96]

0.13 
[–0.08 to 
+0.43]

0.07 
[–0.27 to 
+0.32]

0.02 
[–0.32 to 
+0.41]

–0.03 
[–0.37 to 
+0.38]

–0.03 
[–0.43 to 
+0.52]

0.18 
[–0.05 to 
+0.44]

0.04 
[–0.35 to 
+0.39]

–0.1 
[–0.51 to 
+0.37]

–0.19 
[–0.76 to 
+0.44]

–0.15 
[–0.96 to 
+0.57]

Runoff
0.46 [0.09 
to 0.87]

0.03 
[–0.04 to 
+0.12]

0.03 
[–0.07 to 
+0.16]

0.02 [–0.1 
to +0.14]

–0.0 [–0.1 
to +0.14]

–0.0 
[–0.11 to 
+0.14]

0.04 
[–0.03 to 
+0.15]

–0.0 
[–0.19 to 
+0.15]

–0.03 
[–0.22 to 
+0.14]

–0.05 
[–0.23 to 
+0.19]

–0.06 
[–0.29 to 
+0.23]

P–E
0.78 [–0.1 
to +1.45]

0.06 [–0.1 
to +0.2]

0.02 
[–0.18 to 
+0.24]

0.0 [–0.22 
to +0.23]

–0.03 
[–0.24 to 
+0.2]

–0.04 
[–0.31 to 
+0.27]

0.09 
[–0.06 to 
+0.31]

0.01 
[–0.22 to 
+0.25]

–0.08 
[–0.28 to 
+0.25]

–0.17 
[–0.68 to 
+0.25]

–0.18 
[–0.72 to 
+0.38]

South American Monsoon (December–January–February, DJF)

Precipitation
8.44 [5.98  
to 10.22]

0.09 [–0.2 
to +0.3]

0.12 
[–0.29 to 
+0.62]

0.09 
[–0.47 to 
+0.62]

0.07 
[–0.55 to 
+0.62]

0.07 [–0.5 
to +0.71]

0.02 
[–0.32 to 
+0.36]

0.09 
[–0.33 to 
+0.58]

0.07 
[–0.63 to 
+0.81]

0.05 
[–1.17 to 
+0.82]

–0.0 
[–1.22 to 
+1.19]

Runoff
2.49 [1.11  
to 4.38]

–0.02 
[–0.23 to 
+0.26]

–0.01 
[–0.43 to 
+0.53]

0.01 
[–0.45 to 
+0.46]

–0.03 
[–0.49 to 
+0.36]

–0.03 
[–0.56 to 
+0.53]

–0.04 
[–0.27 to 
+0.28]

–0.01 
[–0.41 to 
+0.39]

–0.01 
[–0.58 to 
+0.55]

–0.06 
[–0.81 to 
+0.24]

–0.04 
[–0.85 to 
+0.93]

P–E
4.5 [2.83  
to 6.01]

0.04 
[–0.23 to 
+0.25]

0.08 
[–0.26 to 
+0.47]

0.04 
[–0.43 to 
+0.53]

0.04 [–0.5 
to +0.61]

0.02 
[–0.45 to 
+0.58]

–0.01 
[–0.32 to 
+0.29]

0.03 
[–0.34 to 
+0.43]

–0.02 
[–0.63 to 
+0.62]

–0.02 
[–1.03 to 
+0.72]

–0.09 
[–1.11 to 
+0.98]

Australian and Maritime Continent Monsoon (December–January–February, DJF)

Precipitation
8.63 [6.79 
 to 10.7]

0.26 [0.04 
to 0.49]

0.22 
[–0.23 to 
+0.53]

0.28 [–0.2 
to +0.79]

0.25 
[–0.14 to 
+0.73]

0.38 [0.0 
to 0.84]

0.15 
[–0.09 to 
+0.34]

0.24 
[–0.36 to 
+0.74]

0.5 [–0.1 
to +1.07]

0.65 
[–0.08 to 
+1.33]

0.9 [0.09 
to 1.76]

Runoff
3.82 [1.78  
to 7.25]

0.2 [–0.01 
to +0.48]

0.23 
[–0.11 to 
+0.48]

0.29 
[–0.11 to 
+0.7]

0.24 
[–0.13 to 
+0.56]

0.35 
[–0.03 to 
+0.87]

0.12 
[–0.06 to 
+0.39]

0.29 
[–0.08 to 
+0.88]

0.49 [0.09 
to 1.25]

0.61 
[–0.09 to 
+1.05]

0.92 [0.14 
to 1.83]

P–E
4.8 [3.19  
to 6.63]

0.22 [0.03 
to 0.47]

0.13 
[–0.23 to 
+0.42]

0.2 [–0.16 
to +0.7]

0.2 [–0.14 
to +0.62]

0.27 
[–0.09 to 
+0.61]

0.12 [–0.1 
to +0.31]

0.16 
[–0.31 to 
+0.54]

0.38 
[–0.05 to 
+0.75]

0.54 
[–0.08 to 
+1.13]

0.69 [0.09 
to 1.27]
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diversity in the future aerosol emissions pathways and policies for 
regulating air pollution (Wilcox et al., 2020). Additionally, near-term 
projections of SAsiaM precipitation are expected to be constrained 
by internal variability associated with the PDV (X.  Huang et al., 
2020a). CMIP6 models also indicate a  lengthening of the summer 
monsoon over India by the end of the 21st century, at least in 
SSP2-4.5, with considerable inter-model spread in the projected late 
retreat (Ha et al., 2020).

In summary, consistent with AR5, there is high confidence that 
SAsiaM precipitation is projected to increase during the 21st century 
in response to continued global warming across the CMIP6 higher 
emissions scenarios, mostly in the mid- and long terms. 

8.4.2.4.2 East Asian Monsoon

In AR5, the East Asian monsoon (EAsiaM) was projected to intensify 
in terms of precipitation, with an earlier onset and longer duration 
of the summer season. Since AR5, there has been improved 
understanding of future projected changes in the EAsiaM. 

CMIP5 projections indicated a possible intensification of the EAsiaM 
circulation during the 21st century, in addition to precipitation 
increase, although there is a  lack of consensus on changes in the 
western North Pacific subtropical high, this is an important feature 
of the EAsiaM circulation (Kitoh, 2017). Furthermore, the EAsiaM 
precipitation enhancements in the CMIP5 projections are prominent 
over the southern part of the Baiu rainband by the late 21st century, 
with no significant changes in the Meiyu precipitation over central-
eastern China (Horinouchi et al., 2019). It was also shown that the 
Baiu precipitation response in CMIP5 projections is accompanied by 
a southward retreat of the western North Pacific subtropical high and 
a southward shift of the East Asian subtropical jet (Horinouchi et al., 
2019). According to the high-resolution MRI-AGCM global warming 
experiments, future summer precipitation could potentially increase 
on the southern side and decrease on the northern side of the present-
day Baiu location in response to downward-motion tendencies which 
can offset the ‘wet-gets-wetter’ effect, but is subject to large model 
uncertainties (Ose, 2019). Future projections of land warming over 
the Eurasian continent (Endo et al., 2018) and intensified land–sea 
thermal contrast (Z. Wang et al., 2016; Tian et al., 2019) can potentially 

intensify the EAsiaM circulation during the 21st  century. However, 
there are large uncertainties in projected water cycle changes over 
the region (Endo et al., 2018), mostly in the near-term because of 
uncertainties in future aerosol emissions scenarios (Wilcox et al., 
2020), as well as due to the interplay between internal variability 
and anthropogenic external forcing (Wang et al., 2021).

Inter-hemispheric mass exchange can act as a  bridge connecting 
SH circulation with EAsiaM rainfall, however this inter-hemispheric 
link is projected to weaken in a future warmer climate as seen from 
a  CCSM4 projection using the RCP8.5 scenario (Yu et al., 2018). 
A  comparison of 1.5°C and 2°C global warming levels reveals 
how a  0.5°C difference could result in precipitation enhancement 
over large areas of East Asia (D. Lee et al., 2018; J. Liu et al., 2018; 
Chen et al., 2019), with substantial increases in the frequency and 
intensity of extremes (Chevuturi et al., 2018; D. Li et al., 2019). Future 
monsoon projections from the CMIP6 models show increase of 
EAsiaM precipitation across all the scenarios (Z. Chen et al., 2020b), 
though with a  large model spread mostly on the long-term and in 
the higher emissions scenarios (Figure 8.22). Considering all the five 
scenarios used across the report, changes in precipitation, runoff 
and P–E over the EAsiaM are positive and become larger for highest 
emissions scenarios and for the long-term mean, except for the mid-
term SSP1-1.9 scenario where the changes are close to zero or even 
negative (Table 8.2). Additionally, CMIP6 models confirm a projected 
increased length of the EAsiaM season due to early onset and late 
retreat (Ha et al., 2020).

In summary, despite the uncertainties in the monsoon circulation 
response in CMIP5 and CMIP6 models, there is high confidence that 
summer monsoon precipitation over East Asia will increase in the 
21st century and medium confidence that the monsoon season will 
be longer.

8.4.2.4.3 West African Monsoon

The AR5 concluded that projections of West African monsoon 
(WAfriM) rainfall are highly uncertain in CMIP3 and CMIP5 models, 
but still suggest a small delay and intensification in late wet season 
rains. Studies published since AR5 are broadly consistent with this 
assessment. CMIP6 models agree on statistically significant projected 

Mid-term: 2041–2061 Minus Reference Period Long Term: 2081–2100 Minus Reference Period

1995–2014 
Reference 

Period
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

West African Monsoon (June–July–August–September, JJAS)

Precipitation
5.14 [3.62  
to 7.18]

0.16 
[–0.19 to 
+0.4]

0.14 
[–0.22 to 
+0.56]

0.24 
[–0.14 to 
+0.72]

0.3 [–0.1 
to +0.85]

0.38 
[–0.12 to 
+1.24]

0.06 
[–0.25 to 
+0.52]

0.1 [–0.25 
to +0.57]

0.25 
[–0.32 to 
+0.91]

0.38 
[–0.49 to 
+1.14]

0.49 
[–0.55 to 
+1.56]

Runoff
1.43 [0.34  
to 2.57]

0.06 
[–0.07 to 
+0.22]

0.05 
[–0.18 to 
+0.27]

0.14 
[–0.13 to 
+0.54]

0.2 [–0.05 
to +0.7]

0.24 [–0.1 
to +0.8]

–0.01 
[–0.2 to 
+0.21]

0.03 
[–0.25 to 
+0.35]

0.1 [–0.25 
to +0.51]

0.25 
[–0.28 to 
+0.85]

0.3 [–0.33 
to +0.93]

P–E
2.41 [1.05  
to 4.07]

0.08 [–0.2 
to +0.35]

0.1 [–0.2 
to +0.4]

0.2 [–0.11 
to +0.63]

0.23 
[–0.11 to 
+0.74]

0.36 
[–0.06 to 
+1.11]

–0.01 
[–0.27 to 
+0.35]

0.07 [–0.2 
to +0.44]

0.18 
[–0.21 to 
+0.6]

0.28 
[–0.38 to 
+0.95]

0.46 
[–0.44 to 
+1.4]
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increases in rainfall in eastern-central Sahel and a decrease in the 
west for the end of the 21st century (Roehrig et al., 2013; Biasutti, 
2019; Monerie et al., 2020). However, the magnitude of WAfriM 
projected precipitation depends on the convective parametrization 
used (Hill et al., 2017), and large uncertainties remain in WAfriM 
projections because of large inter-model spread, particularly over 
the western Sahel (Roehrig et al., 2013; Biasutti, 2019; Monerie 
et al., 2020). CMIP6 models show a  general increase of WAfriM 
precipitation across all future scenarios but with a substantial model 
spread for the SSP5-8.5 scenario (Figure 8.22). This sensitivity arises 
from the combined and contrasting influences of anthropogenic 
greenhouse gas and aerosol forcing that affect WAfriM precipitation 
(particularly over the Sahel) directly and also indirectly through 
subtropical North Atlantic SST changes (Giannini and Kaplan, 2019). 
The large model spread and associated uncertainties in projected 
precipitation changes is reflected also in runoff and P–E changes 
(Table 8.2). Regional climate models (RCMs) ensembles (e.g., Klutse 
et al., 2018) agree with CMIP5 projected rainfall trends but some 
individual models show rainfall declines (e.g.,  Sylla et al., 2015; 
Akinsanola et al., 2018), highlighting the existing large uncertainties 
in RCMs WAfriM rainfall projections.

Changes in seasonality (Box 8.2) are projected with a later monsoon 
onset (high confidence) over the Sahel and a late cessation (medium 
confidence), suggesting a  delayed wet season as a  regional 
response to global GHG forcing (Biasutti, 2013; Dunning et al., 2018; 
Akinsanola and Zhou, 2019). Rainfall distribution is projected to be 
highly variable with a decrease in the number of rainy days in the 
western Sahel, consistent with an increase in consecutive dry days 
and a  reduction in the number of growing season days (Cook and 
Vizy, 2012; Diallo et al., 2016). A decrease in the frequency but an 
increase in the intensity of very wet events is projected to be more 
pronounced over the Sahel than over Guinean coast, and also under 
higher emissions scenarios (i.e., RCP8.5; Sylla et al., 2015; Akinsanola 
et al., 2018).

In summary, post-AR5 studies and newly available CMIP6 results 
indicate projected rainfall increases in the eastern-central WAfriM 
region but decreases in the west (high confidence), with a delayed 
wet season (medium confidence). Overall, WAfriM summer 
precipitation is projected to increase during the 21st century but 
with larger uncertainty noted under high-emissions scenarios 
(medium confidence).

8.4.2.4.4 North American Monsoon

The AR5 concluded that the North American monsoon (NAmerM) 
will likely intensify in the future, even though there is low agreement 
among models. The AR5 reported medium confidence that 
precipitation associated with the NAmerM will arrive later in the 
annual cycle and persist longer.

Since AR5, analyses of CMIP5 projections suggest little change in the 
overall amount of NAmerM precipitation in response to rising global 
surface temperature. However, significant declines are projected in 
the early monsoon season and increases in the late monsoon season, 
suggesting a shift in seasonality toward a delayed monsoon onset 

and demise (Cook et al., 2013). It is recognized that CMIP5 models 
are generally too coarsely-resolved to simulate the Gulf of California 
and the moisture surges associated with the NAmerM (Pascale et al., 
2017). Under different RCPs, CMIP5 models tend to project a reduction 
in NAmerM precipitation but an increase in extreme precipitation 
events (Torres-Alavez et al., 2014; Bukovsky et al., 2015; Pascale 
et al., 2019). The almost unchanged or slight decrease in NAmerM 
total precipitation amount under global warming projections is at 
odds with paleoclimate records that suggest increased monsoon 
precipitation under past warm conditions (D’Agostino et al., 2019; 
Seth et al., 2019). However, there is low agreement on how those 
changes and the mechanisms that drive them are affected under 
different RCPs since most simulations are model-dependant (Cook 
and Seager, 2013; Geil et al., 2013; Pascale et al., 2019). Projections 
from six CMIP6 models show a  shortening of the NAmerM under 
the SSP5-8.5 scenario due to earlier demises (Moon and Ha, 
2020). In addition, CMIP6 projections show a decrease in NAmerM 
precipitation under SSP2-4.5 and SSP5-8.5 scenarios by the end of 
the 21st century with large inter-model spread (Figure  8.22). This 
result is also supported by the analysis of 31 CMIP6 models under 
the SSTP5-8.5 scenario for the 2080–2099 period (Almazroui et al., 
2021). Non-linearities and uncertainties in the NAmerM projected 
changes are valid for many water cycle variables, like precipitation, 
runoff and P–E (Table 8.2). 

In summary, there is low agreement on a  projected decrease of 
NAmerM precipitation, however there is high confidence in delayed 
onsets and demises of the summer monsoon.

8.4.2.4.5 South American Monsoon 

The AR5 reported medium confidence that the South American 
monsoon (SAmerM) overall precipitation will remain unchanged, and 
medium confidence in projections of extreme precipitation. The AR5 
also stated high confidence in the spatial expansion of the SAmerM, 
resulting from increased temperature and humidity.

Since AR5, some studies indicate that the SAmerM would experience 
changes in its seasonal cycle, with delayed monsoon onsets under 
increasing GHG emissions associated to different RCPs (Fu et al., 
2013; Reboita et al., 2014; Boisier et al., 2015; Pascale et al., 2016; 
Seth et al., 2019; Sena and Magnusdottir, 2020). In contrast, other 
studies indicate projected earlier onsets and delayed retreats of the 
SAmerM under the RCP8.5 scenario based on six CMIP5 models 
(Jones and Carvalho, 2013). These differences have been linked to 
the methodology used to determine monsoon timing, and sensitivity 
to the monsoon domain considered (Section 8.3.2.4.5; Correa et al., 
2021). Recent studies provide further evidence for the projection 
of delayed SAmerM onsets by the late 21st century (Sena and 
Magnusdottir, 2020). An analysis of six CMIP6 models under the 
SSP5-8.5 scenario confirm the projections of delayed SAmerM onsets 
by the end of the 21st century (Moon and Ha, 2020). In addition, 
projected changes in the intensity and length of the SAmerM season 
have been found to be model-dependent (Pascale et al., 2019). The 
analysis of CMIP5 projections of total monsoon rainfall indicate mixed 
signals in the Amazon and SAmerM regions (Jones and Carvalho, 
2013; Marengo et al., 2014), with some studies suggesting increased 
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summer precipitation in the core SAmerM region (Kitoh et al., 2013; 
Seth et al., 2013). Dynamical downscaling of CMIP5 projections 
under the RCP4.5 and RCP8.5 scenarios with the Eta RCM suggests 
reductions of austral summer precipitation over the SAmerM region 
throughout the 21st century (Chou et al., 2014). Further analysis 
using 15 different CMIP6 models for the SSP2-4.5 scenario suggest 
reductions in total SAmerM rainfall (B. Wang et al., 2020). However, 
other analyses of CMIP6 projections under different SSP scenarios 
do not report clear changes in the SAmerM precipitation throughout 
the 21st century (Figure 8.22; Z. Chen et al., 2020b; Jin et al., 2020). 
Similar uncertainties for all the SSP scenarios used across the report 
are found for other water cycle variables, including runoff and P–E 
(Table 8.2). Furthermore, there is disagreement in projected extreme 
precipitation in the region, with some CMIP5-based studies suggest 
reductions (Marengo et al., 2014), while others indicate increases 
based on CMIP5 and CMIP6 models (Kitoh et al., 2013; Sena and 
Magnusdottir, 2020). 

In summary, there is high confidence that the SAmerM will experience 
delayed onsets in association with increases in GHG.  However, 
there is low agreement on the projected changes in terms of total 
precipitation of the South American summer monsoon season. 

8.4.2.4.6 Australian and Maritime Continent Monsoon

The AR5 concluded that projected changes in Australian and Maritime 
Continent monsoon (AusMCM) rainfall and seasonality are uncertain 
in the CMIP5 models, with some projecting increases and others 
projecting decreases for the range of emissions scenarios. Models 
that perform better at simulating present day regional climate project 
little change or an increase in Australian monsoon rainfall (Jourdain 
et al., 2013; CSIRO and BoM, 2015; Brown et al., 2016b). CMIP6 
models project increased AusMCM precipitation in the 21st century 
but with a more robust signal in SSP2-4.5 and SSP5-8.5 rather than 
in lower emissions scenarios (Figure 8.22). A reduced range of CMIP6 
rainfall projections but continued disagreement on the sign of change 
is reported over Australia (Narsey et al., 2020).

The northern and eastern parts of the Maritime Continent have 
projected increases in rainfall in CMIP5 models (Siew et al., 2014), 
while there are projected decreases over Java, Sulawesi and southern 
parts of Borneo and Sumatra. Rainfall changes are correlated with 
the extent of warming in the western tropical Pacific in CMIP5 
models (Brown et al., 2016b) but inter-model differences are also 
related to modelled large-scale zonal mean precipitation response 
in both CMIP5 and CMIP6 model ensembles (Narsey et al., 2020). 
Decomposition of projected rainfall changes indicates that the 
largest source of model uncertainty is associated with shifts in 
the spatial pattern of convection (Chadwick et al., 2013; Brown et al., 
2016b). Uncertainties in capturing the spatial and temporal features 
of the Maritime Continent monsoon depend also on the horizontal 
resolution of coupled climate models (e.g., Jourdain et al., 2013).

The role of anthropogenic aerosol forcing in future projections of the 
Australian monsoon has been investigated for CMIP5 models (Dey 
et al., 2019a); decreases in anthropogenic aerosol concentrations 
over the 21st century are expected to produce relatively greater 

warming in the NH than SH, favouring a  northward shift of the 
tropical rain belt (e.g., Rotstayn et al., 2015). 

There are some clear projected changes in the rainfall variability 
and extremes of the Australian monsoon. Rainfall variability in the 
Australian monsoon domain increases on time scales from daily to 
decadal in CMIP5 models (Brown et al., 2017), indicating either more 
intense wet days or more dry days or both. There is also a projected 
increase in the intensity of extreme rainfall but a  reduction in the 
frequency of heavy rainfall days for the Australian monsoon (Dey 
et al., 2019a). This is consistent with Moise et al. (2020), who found 
an increase in Australian monsoon active phase or ‘burst’ rainfall 
intensity but a reduction in the number of burst days and events.

H.  Zhang et al. (2013) examined changes in Australian monsoon 
onset and duration in CMIP3 models and found model agreement 
on a delay in onset and shortened duration to the north of Australia, 
but less agreement over the interior of the continent. An updated 
study of CMIP5 models found similar mean changes with delayed 
onset and shortened duration, but substantial model disagreement 
(H. Zhang et al., 2016). 

In summary, CMIP6 projections show an increase of AusMCM 
precipitation across all emissions scenarios. There is strong model 
agreement on an increase in monsoon precipitation over the 
Maritime Continent while there is low agreement on the direction 
of change over northern Australia. There is a projected increase in 
rainfall variability over northern Australia, with increased intensity of 
rainfall during the active or ‘burst’ phase (medium confidence). 

8.4.2.5 Tropical Cyclones

Tropical cyclones (TCs) projections are primarily assessed in 
Section  11.7.1.5. Here, we extend this analysis by assessing the 
implications of projected changes in tropical cyclones on the water cycle.

The AR5 concluded that TC rainfall rate was likely to increase 
through the 21st century. Section 11.7.1.5 assesses that the average 
tropical cyclone rain-rate is projected to increase with warming (high 
confidence), and peak rain rates are projected to increase at greater 
than the Clausius–Clapeyron scaling rate of 7% °C–1  warming in 
some regions due to increased low-level moisture convergence 
(medium confidence). The increase in TC rainfall rate is explained by 
increased TC intensity resulting from increasing SSTs, and increased 
environmental water vapour (Chauvin et al., 2017; M. Liu et al., 2019).

Consistent with the observed poleward migration of tropical cyclone 
activity (Kossin et al., 2014), in the SH a larger proportion of storms 
are projected to decay south of 25°S at the end of the 21st century 
but with negligible changes in genesis latitude and storm duration 
for the Australian region (CSIRO and BoM, 2015; Sharmila and Walsh, 
2018). An analysis of projections for North Pacific islands indicate 
that the maximum intensity of storms will increase but the number 
of tropical cyclones will decrease in some places, such as Guam and 
Kwajalein Atoll in the tropical north-western Pacific, or remain the 
same in other regions like near Okinawa (Japan) or Oahu (Hawaii) 
(Widlansky et al., 2019). TC-induced storm tides affecting landfall in 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1132

Chapter 8 Water Cycle Changes

8

the Pearl River delta over South China are projected to increase by 
the end of the 21st century (J. Chen et al., 2020b)

In summary, there is high confidence that heavy precipitation 
associated with tropical cyclones is projected to increase, in response 
to well-understood processes related to increased low-level moisture 
convergence and environmental water vapour. 

8.4.2.6 Stationary Waves

The AR5 did not provide an assessment of stationary wave 
projections as distinct from other related aspects of circulation, such 
as blocking, modes of variability, and storm tracks. Here we provide 
a  brief assessment of stationary wave projections from the water 
cycle perspective, with the related circulation aspects considered 
separately in the following sections. 

Several studies based on CMIP5 projections show changes in 
NH winter stationary waves that increase precipitation over the 
west coast of North America and decrease it over the eastern 
Mediterranean and parts of south-western North America (Neelin 
et al., 2013; Seager et al., 2014a, b, 2019b; Simpson et al., 2016; 
Wills et al., 2019), although the underlying dynamics are not yet fully 
understood (Seager et al., 2019b; Wills et al., 2019). For the NH winter 
global teleconnection pattern, the majority of the models analyzed in 
(Sandler and Harnik, 2020) project the development of a preferred 
longitudinal phasing for the pattern, but with strong disagreement 
among models over the details of the phasing and therefore the 
associated regional hydrologic impacts.

While the potential role of increasing hydrologic extremes with 
quasi-resonant stationary waves during NH summer has received 
considerable attention (see Section 8.3.2.6), as yet there is no clear 
evidence in model projections that this variability will increase (Teng 
and Branstator, 2019). The influence of the Arctic on mid-latitude 
circulation is assessed in Cross-Chapter Box 10.1, which reports that 
there is low confidence in the dominant contribution of Arctic warming 
compared to other drivers in future projections. Potential changes to 
the stratospheric polar vortex in CMIP5 models have a substantial 
influence on tropospheric stationary waves and associated hydrologic 
impacts in both the NH (Zappa and Shepherd, 2017) and SH (Mindlin 
et al., 2020). CMIP5 models have some important limitations in their 
representation of stationary waves (Lee and Black, 2013; Simpson 
et al., 2016; Garfinkel et al., 2020) and this aspect of CMIP6 models 
has not yet been comprehensively evaluated.

In summary, future changes in stationary waves may have an 
important influence on both the mean state and variability of the water 
cycle. Limitations in model representation, dynamical understanding, 
and the number of targeted studies on the topic currently constrain 
the assessment of future changes in stationary waves. Based on 
current knowledge, there is low confidence that projected changes in 
stationary wave activity will contribute to decreases of cold season 
precipitation over the eastern Mediterranean and increases over the 
west coast of North America.

8.4.2.7 Atmospheric Blocking

In AR5, the increased ability of models to simulate blocking and 
higher agreement on projections led to an assessment with medium 
confidence that the frequency of NH and SH blocking will not 
increase, but future changes in blocking intensity and persistence 
were deemed uncertain (AR5 Chapter  14, ES and Box  14.2).  
Blocking influences precipitation (e.g., Trigo et al., 2004), flooding 
(e.g.,  Yamada et al., 2016), drought (e.g.,  Dong et al., 2018b),  
snow (e.g., García-Herrera and Barriopedro, 2006), and glacier melt 
(e.g., Hanna et al., 2013), and so is of broad importance to the water 
cycle in areas of blocking activity.

Blocking projections are assessed in this Report in 
Chapter  4  (Section  4.5.1.6), and model performance in simulating 
blocking is also discussed in Chapter  3  (Section  3.3.3.3). CMIP5 
projections suggest a complex response in blocking frequencies with 
an eastward shift in NH winter blocking, mid-latitude decreases in 
boreal summer except in eastern Europe–western Russia, and SH 
decreases in the Pacific sector during austral spring and summer. 
CMIP6 projections (Figure. 4.28) show a notable decrease in blocking 
activity over Greenland and the North Pacific for the SSP3-7.0 and 
SSP5-8.5 scenarios. However, the continued large differences among 
current models as well as the sensitivity to blocking detection methods 
limits confidence in projected regional changes in blocking (see also 
Section 10.3.3.3.1). The influence of blocking on multiple elements of 
the water cycle means that the uncertainty in blocking projections adds 
a corresponding layer of uncertainty to water cycle projections. 

In summary, and despite recent improvements in the simulation of 
blocking, there is limited evidence in model projections of future 
changes, except for boreal winter over Greenland and the North 
Pacific where there is high confidence that blocking events are not 
expected to increase in the SSP3-7.0 and SSP5-8.5 scenarios. As with 
stationary waves, this adds uncertainty to mid-latitude water cycle 
projections at the regional scale.

8.4.2.8 Extratropical Cyclones, Storm Tracks 
and Atmospheric Rivers

8.4.2.8.1 Extratropical cyclones and storm tracks

The AR5 found that extratropical storms were expected to decrease in 
the Northern Hemisphere (NH), but only by a few percent. Meanwhile, 
precipitation associated with extratropical storms was projected to 
increase due to thermodynamic increases in moisture but potentially 
also due to intensification from increased latent heat release. Latent 
heating is a strong influence on extratropical storms, so it is plausible 
that changes in precipitation and associated latent heating could 
affect extratropical storm intensity and thus precipitation (Z. Zhang 
et al., 2019).

There is increased evidence that precipitation associated with 
individual extratropical storms is projected to increase, following 
thermodynamic drivers with negligible dynamic change (Yettella and 
Kay, 2017). Comparisons with reanalyses also support the projected 
increase in thermodynamic precipitation with little dynamic response 
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for precipitation associated with extratropical storms (Li et al., 2014). 
There is high confidence that projected increases in precipitation 
associated with extratropical storms in the NH (Marciano et al., 2015; 
Pepler et al., 2016; Michaelis et al., 2017; Yettella and Kay, 2017; 
Zhang and Colle, 2017; Hawcroft et al., 2018; Kodama et al., 2019). 
A projected decrease in the number of extratropical cyclones over 
the NH during the boreal summer in CMIP5 models was reported 
by Chang et al. (2016) who related this decrease with a decrease in 
cloudiness and thus accentuating increased maximum temperatures. 
However, model spread was quite large, especially over North 
America, thus there is only low confidence in this seasonal signal.

In AR5, the Southern Hemisphere (SH) storm track was deemed likely 
to shift poleward, the North Pacific storm track more likely than not to  
shift poleward, while the North Atlantic storm track was unlikely 
to display any discernible changes. There was low confidence in 
regional storm track changes and the associated surface climate 
impacts, although a  weakening of the Mediterranean storm track 
was a robust response of the models. Since AR5, the SH mid-latitude 
storm track is projected to shift poleward and the westerlies are 
projected to strengthen over Australia (CSIRO and BoM, 2015). 
Although thermodynamic effects were considered to be the most 
important factor in overall projections of increased mid-latitude 
precipitation, the general poleward shift in cyclogenesis and an 
enhanced latitudinal displacement of individual cyclones may play 
a role (Tamarin-Brodsky and Kaspi, 2017).

In AR5, several factors were identified as relevant to the uncertainties 
in projections of cyclone intensity, frequency, location of storm tracks 
and precipitation associated with ETCs. These include horizontal 
resolution, resolution of the stratosphere, and how changes in the 
Atlantic meridional overturning circulation (AMOC) were simulated. 
Since AR5, projections of extratropical cyclones and storm tracks have 
been examined further, largely confirming previous assessments. In 
particular, extratropical cyclone precipitation scales with the product 
of cyclone intensity (as measured by near-surface wind speed) 
and atmospheric moisture content (Pfahl and Sprenger, 2016). 
Booth et al. (2018) showed that the fraction of rainfall generated 
by the convection scheme in simulated extratropical cyclones is 
highly model- and resolution-dependent, which may be a source of 
uncertainty regarding their precipitation response to anthropogenic 
forcings. Also, increased moisture availability may increase the 
maximum intensity of individual storms while reducing the overall 
frequency as poleward energy transport becomes more efficient.

The role of temperature trends in influencing storm tracks has 
been  further investigated, both in terms of upper tropospheric 
tropical warming (Zappa and Shepherd, 2017) and lower 
tropospheric  Arctic  amplification (J.  Wang et al., 2017), including 
the direct role of  Arctic sea ice loss (Zappa et al., 2018), and the 
competition between their influences (Shaw et al., 2016). Physical 
linkages between Arctic amplification and changes in the mid-latitudes 
are uncertain, as discussed in Chapter 10 (Cross-Chapter Box 10.1). The 
remote and local SST influence has been further examined by Ciasto 
et al. (2016), who confirmed sensitivity of the storm tracks to the 
SST trends generated by the models and suggested that the primary 
greenhouse gas influence on storm track changes was indirect, acting 

through the greenhouse gas influence on SSTs. The importance of the 
stratospheric polar vortex in storm track changes has received more 
attention (Zappa and Shepherd, 2017; Mindlin et al., 2020) and the 
anticipated recovery of the ozone layer further complicates the role of 
the stratosphere (Shaw et al., 2016; Bracegirdle et al., 2020b).

Biases remain in cyclone locations, intensities, cloud features, and 
precipitation (Catto, 2016, Chang et al., 2016). Uncertainties in 
projected precipitation changes in many mid-latitude regions can 
be explained to a  large degree by uncertainties in projected storm 
track or ETC changes. Multiple studies (Chang et al., 2013; Zappa 
et al., 2015; Chang, 2018) have shown strong relationships between 
model-projected precipitation change in many regions and model-
projected change in storm track activity near that regions. While front 
frequency is well represented, frontal precipitation frequency is too 
high and the intensity is too low (Catto et al., 2015). Some of the 
bias in storm tracks appears to be related to limitations in model 
realization of blocking (Zappa et al., 2014). The CMIP6 generation 
of models has improved representation of storm tracks in both 
hemispheres (Bracegirdle et al., 2020a; Harvey et al., 2020). Simulation 
of storm tracks and their associated precipitation generally improve 
with increasing resolution beyond that used in most current climate 
models (Jung et al., 2006; Michaelis et al., 2017; Barcikowska et al., 
2018). In terms of projections, the decreases in cyclone occurrence 
over the Mediterranean were replicated in a higher resolution model 
(Raible et al., 2018).

The projected changes in storm tracks and the associated mechanisms 
have several important implications for water cycle projections. P–E 
changes in the Mediterranean, California and Chile are directly 
linked to storm track changes (Zappa et al., 2020). Where the storm 
tracks are robustly projected to shift (SH, North Pacific) or weaken 
(Mediterranean), understanding the physical causes of the related 
changes in precipitation helps increase confidence in the projections. 
Understanding the competing influences provides context for why 
other regions do not exhibit a consistent signal and cautions against 
regional projections based on individual models. However, model 
bias and the need for relatively high resolution to reproduce the 
relevant dynamics is an important overall limit on confidence in 
current CMIP6 projections.

In summary, there is the high confidence that precipitation associated 
with extratropical storms will increase with global warming in most 
regions. The SH storm track will likely shift poleward, the North Pacific 
storm track more likely than not will shift poleward, and the North 
Atlantic storm track is unlikely to have a  simple poleward shift/ 
display any discernible changes. There is low confidence in regional 
storm track changes, although a  weakening of the Mediterranean 
storm track is a robust response of the models.

8.4.2.8.2 Atmospheric rivers

Atmospheric rivers were not assessed in AR5 but are important in 
the water cycle as they are linked to extreme rainfall, flooding, and 
changes in terrestrial water storage including melt and ablation of 
glaciers and snowpack (Sections 8.2.3). In a warming world, there 
is high confidence that thermodynamical increases in atmospheric 
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water vapour ensure that atmospheric rivers will become wetter, 
hence stronger, and longer-lasting (Payne et al., 2020). This is 
clearly observed in several regional (Ralph and Dettinger, 2011; 
Lavers et al., 2013; Gao et al., 2015; Payne and Magnusdottir, 2015; 
Warner et al., 2015; Hagos et al., 2016; Gershunov et al., 2019) and 
in one global study (V.  Espinoza et al., 2018) of atmospheric river 
activity in CMIP5 model projections. Lavers et al. (2015) indicate that 
integrated vapour transport under RCP 8.5 and 4.5 could increase, 
and consequently this thermodynamic response (O’Gorman, 2015) 
could affect mid-latitude regions where orographic precipitation is 
important (Gershunov et al., 2019). 

Under continued global warming, more intense moisture transport 
within atmospheric river events is projected to increase the magnitude 
of heavy precipitation events on the west coast of the USA (Ralph 
and Dettinger, 2011; Lavers et al., 2015; Warner and Mass, 2017), 
in Western Europe (Lavers et al., 2015; Ralph et al., 2016; Ramos 
et al., 2016), and in East Asia (very likely) (Kamae et al., 2019). All 
CMIP5 models analysed agreed under a range of scenarios, except 
over the Iberian Peninsula (Ramos et al., 2016) where there is only 
low confidence in projected changes. Kamae et al. (2019) reported 
a 1% increase per °C warming in the frequency of atmospheric rivers 
affecting East Asia, but this is strongly affected by SST changes. 
Emerging evidence of possible regional changes due to dynamical 
factors are uncertain (Lavers et al., 2013; Gao et al., 2015; Payne 
and Magnusdottir, 2015). The frequency, magnitude and duration of 
atmospheric rivers making landfall along the North American west 
coast are projected to increase (Gershunov et al., 2019). In contrast, 
V. Espinoza et al. (2018) suggest that the number of atmospheric river 
events is projected to slightly decrease globally. 

In semi-arid regions where atmospheric rivers have historically been 
important and precipitation is mainly confined to the cold season, the 
contribution of atmospheric rivers to annual total precipitation may 
be expected to grow disproportionately. For example, in California 
decreases in precipitation frequency are projected as a  result of 
fewer non-atmospheric river storms, while the projected increase 
in heavy and extreme precipitation events are almost entirely 
a  result of increased atmospheric river activity (Gershunov et al., 
2019). Interannual variability in precipitation amounts is projected 
to increase because of the overall decrease in the frequency of 
storms but a stronger dependence on extremes (Polade et al., 2014), 
particularly due to atmospheric rivers (Gershunov et al., 2019), 
especially where interaction with topography are important (Polade 
et al., 2014; Gershunov et al., 2019). 

In summary, there is high confidence that the magnitude and 
duration of atmospheric rivers are projected to increase in future, 
leading to increased precipitation. This is projected to increase the 
intensity of heavy precipitation events on the west coast of the USA 
and in western Europe (high confidence).

8.4.2.9 Modes of Climate Variability and Regional 
Teleconnections

Following on from the assessment of projected changes in 
modes of climate variability (MoVs) and regional teleconnections 
(Section  4.5.3), here we assess their consequences for projected 
water cycle changes.

8.4.2.9.1 Tropical modes

CMIP6 projections indicate that the amplitude of ENSO (Annex IV.2.3) 
variability will not substantially change during the 21st century (high 
confidence) (Section  4.4.3.2). However, rainfall variability related 
to ENSO is projected to increase significantly by the second half of 
the 21st century, regardless of ENSO amplitude (Section  4.5.3.2). 
Regional precipitation variability associated with ENSO increases 
due to increases in atmospheric moisture, regardless of changes in 
ENSO variability itself (Pendergrass et al., 2017). In many regions, 
the magnitude of the projected changes related to ENSO is small 
compared with historical interannual variability (Bonfils et al., 
2015; Power and Delage, 2018; Perry et al., 2020). Uncertainties 
in precipitation projections related to ENSO depend on internal 
variability associated with the mode (Section 8.5.2), hence the need 
to have relatively large ensembles (about 15 members) to adequately 
estimate uncertainty (Deser et al., 2018; N. Maher et al., 2018; C. Sun 
et al., 2018; Zheng et al., 2018).

Even over regions with statistically significant simulated rainfall 
teleconnections during the historical period, CMIP5 models do not 
project clear changes (Perry et al., 2020). Nonetheless, CMIP5 models 
that realistically reproduce Indian summer monsoon rainfall indicate 
a strengthening of its relationship with ENSO in RCP8.5 projections, 
though the response is not consistent for different varieties of ENSO 
events (Roy et al., 2019). Inconsistent changes in the ENSO–Indian 
summer monsoon relationship in response to global warming 
in CMIP5 and CMIP6 models may be related to statistical issues 
rather than dynamical changes (Bódai et al., 2020; Haszpra et al., 
2020). Over East Africa during the boreal spring and summer, ENSO 
teleconnections are projected to become stronger in the future 
(Endris et al., 2019). Meteorological drought consequences of each 
strong El Niño are projected to become more severe in the region 
(Rifai et al., 2019).

Indian Ocean Dipole (IOD, Annex IV.2.4) and Indian Ocean Basin (IOB, 
Annex IV.2.4) interactions with ENSO are expected to persist in the 
future (Section 4.5.3.3) but projected changes in the frequency and 
intensity of events remain uncertain (Hui and Zheng, 2018; Endris 
et al., 2019; McKenna et al., 2020). Climate extremes such as those 
associated with the extreme positive IOD event of 2019 are expected 
to occur more frequently under continued global warming (Cai et al., 
2021). Projected changes in IOD teleconnections are linked to model 
performance in representing the IOD and its remote influence in the 
present climate, apparently dominated by a positive IOD event-like 
mean state (G. Wang et al., 2017; Huang et al., 2019). Interactions 
between the IOD and the Indian Ocean mean state, via atmosphere–
ocean feedbacks, can affect the behaviour of the IOD (Ng et al., 2018). 
In the eastern Horn of Africa, OND rainfall is projected to increase 
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because of IOD-ENSO related SST changes in the Indo-Pacific region 
and associated Walker circulation changes (Endris et al., 2019). 

Sensitivity studies generally project increases in Madden Julian 
Oscillation (MJO, Annex IV.2.8) precipitation amplitude in a warmer 
climate, with increases of up to 14% °C–1 of warming (Arnold et al., 
2013, 2015; Caballero and Huber, 2013; Liu and Allan, 2013; Maloney 
and Xie, 2013; Schubert et al., 2013; Subramanian et al., 2014; 
Carlson and Caballero, 2016; Pritchard and Yang, 2016; Adames 
et al., 2017a; Wolding et al., 2017; Haertel, 2018). However, in CMIP5 
models with realistic historical MJO behaviour, the precipitation 
amplitude over the Indo-Pacific warm pool region changes from 
–4% to +8% °C–1 in the RCP8.5 scenario relative to the end of the 
20th century (Bui and Maloney, 2018; Maloney et al., 2019). When 
simulated MJO precipitation amplitude increases with warming, the 
leading factor for such change is the intensification of the lower 
tropospheric vertical moisture gradient, that supports stronger 
vertical moisture advection per unit diabatic heating (Arnold et al., 
2015; Adames et al., 2017a, b; Wolding et al., 2017). In idealized 
simulations with constant CO2 forcing with El  Niño-like patterns, 
the MJO activity penetrates farther east into the central and east 
Pacific with increased warming (Subramanian et al., 2014; Adames 
et al., 2017a). Increased MJO convective variability in a  warmer 
climate does not reflect into increased ability of the MJO to force the 
extratropics (Wolding et al., 2017).

In summary, even though there is low confidence in how the tropical 
MoVs will change in the future (Sections 4.3.3.2 and 4.5.3.3), their 
regional hydrological consequences, in terms of precipitation, are 
projected to intensify (medium confidence). For example, the ENSO 
influence on precipitation over the Indo–Pacific sector is projected 
to strengthen and shift eastward (medium confidence). The MJO is 
projected to intensify in a warmer climate, with increased associated 
precipitation (medium confidence).

8.4.2.9.2 Extratropical modes

CMIP6 projections indicate that the Northern Annular Mode (NAM; 
Annex IV.2.1) is expected to become more positive in winter 
throughout the 21st century in the SSP3-7.0 and SSP5-8.5 scenarios 
(Section 4.5.1). In the near term, the Southern Annular Mode (SAM, 
Annex IV.2.2) is projected to become less positive than observed 
during the end of the 20th century during the austral summer in all 
SSPs scenarios (Section 4.3.3.1). 

In the CMIP5 RCP8.5 scenario, increased amplitude and frequency 
of the North Atlantic Oscillation (NAO, Annex IV.2) during boreal 
winter (December–January–February, DJF) is associated with higher 
precipitation in northern Europe and lower precipitation in southern 
Europe (Tsanis and Tapoglou, 2019). However, large-ensemble 
analyses show how the NAO leads to significant uncertainty in future 
changes of regional climate (Section 8.5.2). For example, more than 
a 85% increase in precipitation is projected over northern Europe, 
western Russia and much of eastern North America, with similar 
decreasing resulting in drying over north-western Africa and regions 
adjacent to the Mediterranean Sea (Deser et al., 2017). 

In the SH, the positive trend projected for the SAM in the CMIP5 
RCP8.5 scenario appears to mitigate the wetting in the mid- to high 
latitudes and the drying over the subtropics, but with strong seasonal 
dependence (Lim et al., 2016). Regional precipitation changes in 
South America, South Africa, Southern Australia and New Zealand are 
not well explained by changes in the SAM, but are related to broad-
scale changes in north–south temperature gradients associated 
with enhanced warming of the tropical upper troposphere and 
strengthening of the stratospheric polar vortex (Mindlin et al., 2020).

In summary, projected changes in the intensity, frequency and 
phase of extratropical MoVs (see also Sections  4.3 and 4.5) may 
amplify regional changes in precipitation and contribute to an 
increase in their intra-seasonal and interannual variability (medium 
confidence). Regionally, there are potentially significant precipitation 
and atmospheric circulation changes associated with changes in 
extratropical dynamics (low confidence). 

8.5 What Are the Limits for Projecting Water 
Cycle Changes?

Understanding the limits to projecting water cycle changes are 
fundamental for refining climate and hydrological models needed to 
develop successful climate change adaptation strategies. Regional 
water cycle projections depend on a  range of model-dependent 
responses (Section 8.5.1) and are also strongly influenced by internal 
variability, especially in the near term (Section 8.5.2; Hawkins and 
Sutton, 2012; Rowell, 2012; Orlowsky and Seneviratne, 2013; Kent 
et al., 2015; Fatichi et al., 2016; Greve et al., 2018; Chegwidden 
et al., 2019). CMIP6 models show that different model responses 
to the same forcing scenario remain the main source of uncertainty 
for projected changes in regional precipitation (Figure 8.23; Lehner 
et al., 2020). Section  8.5.3 assesses the potential for non-linear 
responses when shifting from low- to high-global warming levels 
(Section  8.4.2.4; James et al., 2017). While regional uncertainties 
related to downscaling methods (Section 10.3.3) and impact models 
(WGII Chapter 4) are not covered here, the added value of regional 
climate models is briefly discussed (Section 8.5.1.2.2) with a focus on 
water cycle changes.
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8.5.1 Model Uncertainties of Relevance  
for the Water Cycle

Model response uncertainty is typically estimated as the inter-model 
spread (range) projected by a  set of climate models for a  given 
emissions scenario. It is best estimated at the end of a high-emissions 
scenario when internal variability has a  limited contribution to 
total uncertainty (Figure 8.23). Even for aggregated quantities, like 
decadal-mean precipitation averaged over relatively large domains, 
model response uncertainty is substantial and can exceed scenario 
uncertainty (Hawkins and Sutton, 2011; Lehner et al., 2020, 1.5.4, 
4.4.1.3). This can also be true for other water cycle variables such 
as soil moisture, runoff and streamflow at the regional scale, either 

derived directly from global climate models (GCMs) or produced 
by ‘offline’ using global hydrological models (GHMs) driven by 
the same GCMs (Orlowsky and Seneviratne, 2013; Giuntoli et al., 
2015, 2018; Chegwidden et al., 2019). Although some of the model 
response uncertainty is related to climatological biases (Grose 
et al., 2017; G.  Li et al., 2017; Lehner et al., 2019; Samanta et al., 
2019), model biases are not the only way to assess the reliability of 
climate projections (compare with Box 4.1). Therefore, our focus here 
is on the representation of key processes that are not completely 
resolved in current-generation GCMs (Section  8.5.1.1) and on the 
model improvements associated with increased horizontal resolution 
(Section 8.5.1.2).
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Figure 8.23 | Geographical and zonal mean distribution of the percentage of variance explained by the three sources of uncertainty in CMIP6 projections 
of 20-year mean precipitation changes in 2021–2040 (top), 2041–2060 (middle) and 2081–2100 (bottom) relative to the 1995–2014 base period: Internal 
climate variability (left), model response uncertainty (middle) and scenario uncertainty (right, considering four plausible concentration scenarios: 
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Percentage numbers give the area-weighted global average value for each map. Right panels show the zonal mean fractions 
over both land and sea (solid lines) and over land only (dashed line). The figure was adapted from Figure 4a in Lehner et al. (2020), https://creativecommons.org/licenses/by/4.0/. 
The relative contributions of internal variability, models and emissions scenarios to the total uncertainty depend on both region and time horizon. The scenario uncertainty is 
relatively low in near and mid-term time horizons while it increases in the long term mostly over the high latitudes. The model response uncertainty is the most influential factor 
across all time horizons. Internal variability also plays a key role in the near term, especially in the subtropics. Further details on data sources and processing are available in 
the chapter data table (Table 8.SM.1).
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8.5.1.1 Fitness-for-purpose and Poorly Constrained 
Key Processes

The AR5 Chapter  7  recognized that the simulation of clouds and 
precipitation remains challenging for state-of-the-art GCMs. 
Model development and evaluation have continued since 
AR5, with a  particular emphasis on the representation of new 
model components, like interactive vegetation, aerosols and 
biogeochemical cycles. For example, the comparison of simulated 
tropical precipitation across three successive generations of CMIP 
models (including CMIP6) indicates overall little improvement for the 
summer monsoons, the double-ITCZ bias, the diurnal cycle and the 
frequency of precipitation (Fiedler et al., 2020). Some of these issues 
are related to inherent model limitations in three specific areas: 
atmospheric convection, cloud–aerosol interactions and land surface 
processes (ocean and cryosphere-related processes are addressed 
in Chapter 9). These limitations do not weaken the overall progress 
made in the large-scale simulation of present-day climate (FAQ 3.3 
and Section  3.3.2.3), even though the improvement of CMIP6 
compared with CMIP5 models is limited (Figure 3.12) and is generally 
less systematic or obvious at the regional scale (e.g., Gusain et al., 
2020; Monerie et al., 2020; Oudar et al., 2020a). Instead, they call for 
a careful interpretation of hydrological projections with the full range 
of plausible outcomes, rather than only considering the most likely 
scenarios (Sutton, 2018, 2019). 

8.5.1.1.1 Atmospheric convection

Moist convection is fundamental to the water cycle through its vertical 
transport of momentum, heat, and moisture across the atmosphere. 
It is particularly active in the tropics where it contributes to more 
than half of annual precipitation and to the development of severe 
weather events. Given limitations in computing resources, the current-
generation GCMs cannot yet represent small-scale cloud processes 
and consequently shallow and deep convection is determined by 
sub-grid-scale parametrizations. While such parametrizations can be 
evaluated against field observations (e.g., Abdel-Lathif et al., 2018), 
it remains challenging to estimate convective entrainment that is 
valid for both shallow and deep convection (G.J. Zhang et al., 2016). 
Comparisons between regional projections with explicit compared 
with parametrized convection also highlight the limitations of 
parametrized convection for assessing climate change (Kendon et al., 
2019; Jackson et al., 2020).

Atmospheric convection is particularly important for a  realistic 
simulation of tropical precipitation intensities (Pendergrass and 
Hartmann, 2014a; Kendon et al., 2019). Many CMIP5 models 
produce rainfall at water vapour amounts lower than in observations 
(Takahashi, 2018), as well as too light and too frequent precipitation 
events (Sun et al., 2015; Trenberth et al., 2017). Such biases can 
be explained by a  lack of convective inhibition (Rochetin et al., 
2014a, b) and by too much convective and too little non-convective 
precipitation (Chen and Dai, 2019). Tropical convection controls the 
amount of precipitable water  simulated over the equatorial Indian 
Ocean, which has been identified as a key metric for differentiating 
model skill in simulating South Asian monsoon precipitation (Hagos 
et al., 2019). Many models have difficulty in adequately simulating 

the diurnal cycle of precipitation over land (Couvreux et al., 2015), 
the rainfall intensity distribution associated with the West African 
monsoon (Roehrig et al., 2013), and the intensity of tropical cyclones 
(Sections 10.3.3.4 and 11.7.1.3), phenomena for which atmospheric 
convection also plays a key role.

Since AR5, there have been improvements in the representation of 
convective clouds and related precipitation in GCMs. For instance, 
the drizzle issue (too light and too frequent rainfall events) has led 
to modifications in the deep convection triggering scheme (Rochetin 
et al., 2014b; Han et al., 2017; Xie et al., 2018; Wu et al., 2019). 
Although high-resolution studies have highlighted these limitations, 
most GCMs still rely on a convective available potential energy (CAPE) 
closure which has been adapted to various cloud regimes (Bechtold 
et al., 2014; Han et al., 2017; Walters et al., 2019) or evaluated 
against convection-permitting models (CPMs; J. Chen et al., 2020a). 
To increase the sensitivity of convection to tropospheric humidity, 
several models now include a  representation of deep convective 
entrainment dependent on relative humidity (Bechtold et al., 2008; 
Han et al., 2017; M. Zhao et al., 2018; Walters et al., 2019). Other 
efforts have focused on the improvement of shallow convection and 
low-level cloudiness due to their major contribution to uncertainty 
in climate sensitivity (Section 7.4.2.4). A  cloud-regime-based study 
however highlights an apparent disconnection between cloud 
and precipitation processes in GCMs (Tan et al., 2018), suggesting 
that a  good representation of clouds does not lead to systematic 
improvement in simulated precipitation. A global simulation in which 
the parametrized convection is switched off shows a strong influence 
of parametrized convection on daily precipitation extremes (P. Maher 
et al., 2018). Regional simulations at a 25km resolution suggest that 
an explicit deep convection can be beneficial even at such a relatively 
coarse resolution (Vergara-Temprado et al., 2020). Perturbed physics 
ensembles (PPE, Section 1.4.4) make it possible to identify parameters 
in the convection scheme that are most important in determining 
future precipitation changes (Bernstein and Neelin, 2016).

Since AR5, spatial aggregation of tropical convection has also received 
growing attention in both observational (Holloway et al., 2017) and 
modelling studies (Muller and Bony, 2015; Wing et al., 2017; Tan 
et al., 2018). The changing degree of convective organization was 
highlighted as a  key mechanism for dynamic changes in extreme 
precipitation (Pendergrass, 2020a). Yet, convective parametrizations 
do not represent all aspects of mesoscale convective systems (Hourdin 
et al., 2013; Park et al., 2019). This is related to the complexity of 
mechanisms involved from synoptic to mesoscale dynamics, which 
are only partially resolved by models. Cloud-resolving models (CRMs, 
Section  8.5.1.2.2) represent a  useful benchmark for improving the 
parametrization of mesoscale convective systems. Machine learning 
can also be used to parametrize moist convection after training 
the model with a conventional or a  super parametrization scheme 
(Gentine et al., 2018; O’Gorman and Dwyer, 2018), but has not yet 
been used in the CMIP framework.

While some global modelling centres have reported progress in their 
parametrization of convection and in their simulation of seasonal, 
daily and sub-daily precipitation (e.g.,  Danabasoglu et al., 2020; 
Roehrig et al., 2020), CMIP6 models as a whole only show limited 
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improvements in their simulation of the tropical precipitation 
climatology compared to CMIP5 (Figure  3.10; Fiedler et al., 2020). 
For instance, the double-ITCZ syndrome is still prominent (Tian and 
Dong, 2020) despite being reduced in some models (e.g., Qin and 
Lin, 2018). This systematic bias was shown to arise from atmospheric 
processes including cloud feedbacks (Tian, 2015; Dixit et al., 2018; 
Talib et al., 2018) and the SST threshold at which deep convection 
occurs in the tropics (Oueslati and Bellon, 2015; Xiang et al., 2017; 
Adam et al., 2018). Such biases can also arise from a  too weak 
sensitivity of seasonal tropical precipitation to local SSTs compared 
with observations (Good et al., 2021). These biases are large enough 
to alter forced precipitation changes, and consequently limit our 
confidence in projected precipitation changes (Samanta et al., 2019; 
Aadhar and Mishra, 2020). Observational constraints can be used to 
narrow model response uncertainties (DeAngelis et al., 2015; G.  Li 
et al., 2017; Ham et al., 2018; Watanabe et al., 2018), although there 
is still no consensus that model selection or weighting is a reliable 
alternative to the ‘one-model-one-vote’ approach used in Section 8.4 
(Box  4.1). The detrimental influence of model errors can also be 
mitigated by focusing on phenomena or events (Polson and Hegerl, 
2017; Weller et al., 2017), implementing bias adjustment techniques 
(Section 10.2.3.2), or adopting a non-probabilistic storyline approach 
(Zappa and Shepherd, 2017). 

In summary, since AR5 empirical convective parametrization schemes 
and associated precipitation biases have improved in some but not 
all global climate models. There is still low confidence in their ability 
to accurately simulate the spatio-temporal features of present-day 
precipitation, especially in the tropics where a  double-ITCZ bias is 
still apparent in many models. While such biases limit the reliability of 
precipitation projections in some cases, there is currently only medium 
confidence that model selection or weighting is a better alternative 
to the one-model-one-vote approach (Box 4.1). Improved water cycle 
projections can be achieved by focusing on phenomena or weather 
events, such as a thermodynamic intensification of convective events 
(high confidence, Section  8.2.2.1), however accurate quantitative 
estimates are currently hampered by complex, model-dependent 
dynamical responses (Section 8.2.2.2).

8.5.1.1.2 Aerosol microphysical effects on clouds and precipitation

In AR5 Chapter  7, there was low confidence in the representation 
of cloud–aerosol interactions in climate models. Despite progresses 
in this field since AR5, cloud–aerosol interactions remain a  major 
obstacle to understanding climate and severe weather (Varble, 2018). 
High aerosol concentrations have been observed to suppress rain in 
water clouds (Campos Braga et al., 2017; Fan et al., 2020). However, 
such aerosol effects are muted in GCMs, which tend to produce 
precipitation from shallow clouds too frequently at the expense 
of rain intensity (Suzuki et al., 2015; Jing et al., 2017). This arises 
from incomplete knowledge of how clouds adjust to aerosol primary 
effects such as cloud condensation nuclei (CCN). The adjustment 
occurs mainly as a dynamic response to the impacts of CCN on cloud 
droplet size and number concentrations on precipitation-forming 
processes (Rosenfeld et al., 2008; Goren and Rosenfeld, 2014; Koren 
et al., 2014; Camponogara et al., 2018). Uncertainties are large 
for deep clouds, as their processes are much more complex and 

include also the impacts of aerosols on ice-precipitation processes. 
Aerosols can substantially invigorate (Rosenfeld et al., 2008; Koren 
et al., 2014; Fan et al., 2018) and electrify (Thornton et al., 2017; 
Q. Wang et al., 2018) deep tropical convective clouds. High-resolution 
atmospheric simulations suggest that high aerosol concentrations 
can increase environmental humidity by producing clouds that 
mix more condensed water into the surrounding air, which in turn 
favours large-scale ascent and strong convective events (Abbott and 
Cronin, 2021). Further assessment of uncertainties in aerosol–cloud 
interactions for shallow water clouds is provided in Section 7.3.3.2.

A major challenge in representing convective clouds and related 
precipitation events in GCMs is a  lack of sophisticated cloud 
microphysics in convective parametrization schemes (e.g., Fan et al., 
2016). Most of these schemes only include simple microphysical 
treatments, such as direct partition between cloud condensation and 
precipitation, and do not include advanced treatment of conversion 
among different types of hydrometeors. As such these schemes are 
unable to simulate microphysical cloud and precipitation responses 
to aerosol-related perturbations in cloud droplet concentration 
and ice crystals (see Box 8.1), or perturbations in thermodynamical 
states from global warming. Efforts have been made to include more 
advanced cloud microphysical treatment in cumulus parametrizations 
(Song and Zhang, 2011; Grell and Freitas, 2014; Berg et al., 2015) or 
to use explicit cloud microphysics schemes in climate models with 
a  ‘super parametrization’ (Wang et al., 2015), which have been 
shown to improve the performance in simulating cloud properties 
and precipitation. However, few of these improvements have been 
incorporated into CMIP6 climate models so the projected precipitation 
response to anthropogenic perturbation may still be hindered by the 
inadequate microphysical treatment in cumulus parametrization 
(Smith et al., 2020). 

In summary, there is still low confidence in the simulated influence 
of the aerosol microphysical effects on future precipitation changes.

8.5.1.1.3 Land surface processes

Land surface processes determine the partitioning of net surface 
radiation into sensible, latent and ground heat fluxes, the partitioning 
of precipitation into evapotranspiration and runoff, and the net 
terrestrial carbon flux at the Earth’s surface. They are relevant for 
simulating the terrestrial water cycle responses to climate change, as 
well as the response to land use change (FAQ 8.1). Even basic land 
surface properties such as albedo (Terray et al., 2018) or the ratio of 
transpiration to total evaporation (Chang et al., 2018) still need to 
be improved in state-of-the-art coupled GCMs. Runoff sensitivities 
are also not well constrained in these models, which display a large 
spread for the present-day climate, influencing simulated changes 
under global warming (Lehner et al., 2019). Earth System Models 
(ESMs) incorporate some combined biophysical and biogeochemical 
processes to a  limited extent, and many relevant processes about 
how plants and soils interactively respond to climate changes are yet 
to be considered (e.g., Y. Liu et al., 2020). Consequently, land surface 
processes and their atmospheric coupling contribute to the range in 
water cycle projections (Jia et al., 2019). 
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Since AR5, development of new and existing processes in land surface 
models (LSMs) have been evaluated. These include soil freezing and 
permafrost (Vergnes et al., 2014; Chadburn et al., 2015; K. Yang et al., 
2018; Gao et al., 2019), soil and snow hydrology (Brunke et al., 2016; 
Decharme et al., 2016), glaciers (Shannon et al., 2019), surface waters 
and rivers (Decharme et al., 2012), as well as vegetation (Bartlett and 
Verseghy, 2015; Betts et al., 2015; Knauer et al., 2015; Tang et al., 
2015) and the representation of hydraulic gradients throughout the 
soil–plant–atmosphere continuum (Bonan et al., 2014). Such land 
surface model developments have led to significant improvements 
in global offline hydrological simulations driven by observed 
atmospheric forcings (e.g., C. Li et al., 2017; Decharme et al., 2019).

Progress in the representation of land surface heterogeneity has 
been made, in the form of improved mapping of root zone storage 
capacity (Wang-Erlandsson et al., 2016), improved vegetation 
stand, disturbance and fire dynamics (F.  Li et al., 2013; Fisher 
et al., 2018; Haverd et al., 2018; Yue et al., 2018; Zou et al., 2019), 
better representation of urban surfaces (Box 10.3), and the explicit 
representation of inland water bodies (Gu et al., 2015; Verseghy and 
MacKay, 2017). The representation of realistic snow and vegetation 
cover significantly affects the simulation of the land surface energy 
and water budgets at multiple time scales (Loranty et al., 2014; 
Bartlett and Verseghy, 2015; Thackeray et al., 2015; Qiu et al., 
2016; Thackeray and Fletcher, 2016; L. Wang et al., 2016; Alessandri 
et al., 2017). Groundwater remains inadequately represented in 
many models, which limits our current understanding of the two-
way interactions between groundwater and the rest of the hydrologic 
cycle (R.G. Taylor et al., 2013a; Leng et al., 2014; Vergnes et al., 2014; 
Pokhrel et al., 2015; Maxwell and Condon, 2016; Collins, 2017; 
Scanlon et al., 2018; Condon et al., 2020). Land management exerts 
an increasing influence on the water cycle (Abbott et al., 2019) whose 
representation in the current-generation climate models is generally 
incomplete (Section 10.3.3.7.2).

Aside from land surface models (LSMs), global hydrological models 
(GHMs) have been further developed for off-line simulations of the 
hydrological impacts of both climate change and water management 
(Jiménez Cisneros et al., 2014; Schewe et al., 2014; Döll et al., 2016, 
2018; Pokhrel et al., 2016, 2017; Veldkamp et al., 2018). GHMs can 
equal or outweigh the contribution of GCMs to uncertainties in 
hydrological projections at the regional scale (Giuntoli et al., 2015). 
Historical GHM simulations are currently not sufficient to improve 
regional water cycle projections, due to modelling uncertainties in 
both the driving GCMs and land surface hydrology (Pechlivanidis 
et al., 2017; Samaniego et al., 2017; Hattermann et al., 2018; 
Krysanova et al., 2018). Biophysical vegetation processes are still 
not accounted for in many GHMs, which may lead to inadequate 
projections of terrestrial runoff and water resources. However, 
hydrological models that do simulate these effects often disagree 
(Prudhomme et al., 2014), so do not necessarily provide the added 
value of a more sophisticated representation of vegetation processes 
and land surface conditions (Döll et al., 2016). 

Since AR5, there has been increasing recognition of the need to 
better understand the role of land–atmosphere coupling and related 
feedbacks (Joetzjer et al., 2014; Berg et al., 2016; Catalano et al., 

2016; Berg and Sheffield, 2018a; Santanello et al., 2018). This has 
led to the development of dedicated field campaigns (Song et al., 
2016; Phillips et al., 2017; Dirmeyer et al., 2018), remotely sensed 
observations (Ferguson and Wood, 2011; Roundy and Santanello, 
2017), and tailored diagnostics (Tawfik et al., 2015a, b; Miralles et al., 
2016, 2019; Dirmeyer and Halder, 2017). Dynamic vegetation models 
have been introduced in global ESMs but they need further evaluation 
(Medlyn et al., 2015; Prentice et al., 2015; Cantú et al., 2018; Franks 
et al., 2018) to provide valuable information on potential vegetation 
feedbacks. Plant migration and mortality, increased disturbances 
from wild fires, insects and extreme events, interactive nitrogen cycle, 
or the impact of increased levels of tropospheric ozone are often 
ignored or poorly represented in the current-generation of ESMs 
(Bonan and Doney, 2018; Fisher et al., 2018). 

The physiological response of plants to increasing atmospheric CO2 is 
generally accounted for, but only using empirical models of stomatal 
conductance that are characterized by a  single critical parameter 
of intrinsic water-use efficiency (Franks et al., 2017, 2018). This 
reflects a lack of structural diversity and caution about the consensus 
of the photosynthesis response to increasing CO2 (Knauer et al., 
2015; Huang et al., 2016), which has implications for the ability of 
the current-generation models to account for uncertainty in future 
evapotranspiration changes. Most CMIP5 models underestimate the 
ratio of plant transpiration to total terrestrial evapotranspiration, 
which may suggest that they also underestimate the impact of plant 
physiology on the water cycle (Lian et al., 2018). Plant hydraulics 
are not explicitly considered in many land surface models, which 
may lead to an underestimation of the influence of the increasing 
atmospheric moisture stress on plant transpiration under climate 
change (Massmann et al., 2019; Grossiord et al., 2020; Y.  Liu 
et al., 2020). Most ESMs underestimate the water use efficiency 
measured at many sites and, consequently overestimate the ratio of 
evapotranspiration to precipitation (J. Li et al., 2018). 

In summary, since AR5 substantial advances have been made in 
the representation of land surface processes in current-generation 
Earth System Models (ESMs). Offline hydrological models allow 
the application of bias-adjusted atmospheric forcings, but there 
is low confidence of an improved response compared to coupled 
climate models, given their inherent limitations (Box  10.2). While 
improvements in the representation of complex land surface 
feedbacks relevant to the water cycle are needed, there is currently 
low confidence that they will systematically improve the reliability of 
water cycle projections. 

8.5.1.2 Added Value of Increased Horizontal Model Resolution

Coarse spatial resolution of climate models has often been considered 
a key limitation in global climate projections (Di Luca et al., 2015; 
Roberts et al., 2018). Proposed and tested solutions include a uniform 
or regional increase in the resolution of GCMs, or the use of regional 
climate models (RCMs). The increase in computing resources has 
also led to the development of convection-permitting models (Prein 
et al., 2015), which have been integrated over larger domains, but 
are still unsuitable for CMIP simulations. Statistical downscaling 
tools are also widely used to generate fine-scale regional climate 
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information necessary for climate impacts and adaptation studies. 
A  comprehensive assessment of the added value of increased 
spatial resolution and of the benefits and shortcomings of statistical 
downscaling tools are addressed in Chapter 10 (Section 10.3.3).

8.5.1.2.1 High-resolution global climate models

Since AR5, horizontal resolution has increased in most global climate 
models, which has led to several improvements in the simulation of 
the water cycle (see also Section 10.3.1.1), not only in areas with 
steep or complex orography, but also over the tropical oceans and 
within the North Pacific and North Atlantic storm tracks (Piazza 
et al., 2016; Roberts et al., 2018; Bui et al., 2019; Chen and Dai, 2019; 
Vannière et al., 2019). Yet, the added value of higher resolution global 
climate models is not systematic (Johnson et al., 2016; Ogata et al., 
2017; D. Huang et al., 2018; Mahajan et al., 2018; Vannière et al., 
2019) and needs careful assessment (Haarsma et al., 2016; Caldwell 
et al., 2019). Several AGCM studies suggest that increased spatial 
resolution leads to better simulation of the atmospheric moisture 
transport from ocean to land, the geographical distribution of 
annual mean precipitation (Demory et al., 2014), and the frequency 
distribution of daily precipitation intensities (L.  Zhang et al., 2016; 
Chen and Dai, 2019) including extremes in many (Jacob et al., 2014; 
Westra et al., 2014), but not all cases (Bador et al., 2020). 

Part of the improvement in simulated precipitation accuracy is related 
to improved simulation of the frequency and/or mean intensity of 
tropical (Roberts et al., 2015; Walsh et al., 2015) and extratropical 
(Hawcroft et al., 2016) cyclones. Idealized regional experiments also 
show that the North Atlantic storm track response to global warming 
can be amplified in higher resolution models (Willison et al., 2015). 
Increased atmospheric horizontal resolution can be also important 
for simulating Northern Hemisphere (NH) blockings (Davini et al., 
2017; Schiemann et al., 2017) and synoptic features of the East 
Asian summer monsoon (Yao et al., 2017; Kusunoki, 2018). Variable 
resolution based on grid stretching may be a valuable alternative for 
simulating regional phenomena like monsoons (Sabin et al., 2013; 
Krishnan et al., 2016) or tropical cyclones (Harris et al., 2016; Chauvin 
et al., 2017), while avoiding inconsistencies in the forcings or physics 
that can be found in RCMs driven by GCMs (Boé et al., 2020; Tapiador 
et al., 2020).

Increasing horizontal model resolution in CMIP5 and CMIP6 models 
leads to a systematic increase in global mean precipitation, enhanced 
moisture advection to land in close connection with increased 
orographic precipitation, and a partial reduction of the long-standing 
double ITCZ bias (Demory et al., 2014; Caldwell et al., 2019; Vannière 
et al., 2019). Recent studies based on HighResMIP simulations 
(Haarsma et al., 2016) confirm the added value of increased 
horizontal resolution (at least 50 km in the atmosphere and 25 km 
in the ocean) for the simulation of tropical (Roberts et al., 2020) and 
extratropical cyclones (Priestley et al., 2020b). CMIP6 model biases 
in annual mean precipitation are only slightly reduced at higher 
resolution (Figure 3.10). 

High resolution representation of the land surface is also important 
for simulating many features of the terrestrial water cycle, such as 

orographic precipitation, snow, runoff and streamflow in complex 
topography areas (Zhao and Li, 2015). However, the added value 
may be easier to assess in offline rather than online land surface 
simulations (Döll et al., 2016) given the possible use of bias-corrected 
atmospheric forcings. Offline high-resolution GHMs are routinely used 
to monitor water resources or to assess the hydrological impacts of 
bias-adjusted global climate projections (Davie et al., 2013; S. Huang 
et al., 2017, 2018). Yet, the development and calibration of ‘hyper-
resolution’ hydrological models, with gridcells of typically 100 m to 
1  km, raises a  number of issues given the lack of comprehensive 
surface or subsurface information (Bierkens et al., 2015) and the lack 
of coupling with the atmosphere (Berg and Sheffield, 2018a). 

In summary, there is high confidence that increasing horizontal 
resolution in GCMs can reduce a  number of systematic model 
errors of relevance for the water cycle, including synoptic circulation 
and the statistics of daily precipitation. High-resolution GCMs and 
GHMs provide improved representation of land surfaces, including 
topography, vegetation and land use change, which are required to 
accurately simulate changes in the terrestrial water cycle. However, 
there is low confidence that the higher horizontal resolution 
simulations currently available provide more accurate projections of 
the large-scale features of the water cycle.

8.5.1.2.2 Regional climate models and  
convective-permitting models

Regional Climate Models (RCMs) are used to dynamically downscale 
global model simulations for a particular region (usually at a spatial 
resolution of the order of 10 to 50 km; see Section 10.3.3). The AR5 
reported that RCMs are useful for regions with variable topography 
and for small-scale phenomena. However, they inherit biases from 
their driving GCMs and thus may lack physical consistency with 
them. Since AR5, the application of RCMs has largely increased due 
to international model intercomparison projects such as CLARIS-
LPB (Sánchez et al., 2015). Many studies have focused on present-
day climatological precipitation, showing with high confidence 
improvements in its monthly to seasonal accumulation and spatial 
distribution (Dosio et al., 2015; Giorgi et al., 2016; Bozkurt et al., 2019; 
Falco et al., 2019; Di Virgilio et al., 2020), although the modelling of 
precipitation remains the ‘Achilles heel’ of both GCMs and RCMs and 
should be considered cautiously when informing regional climate 
change adaptation strategies (Tapiador et al., 2019b).

Regional Convective Permitting Models (CPMs), typically run at 
a resolution less than 10 km, have been implemented over increasingly 
large domains. Compared to models with parametrized convection 
(Section 8.5.1.1.1), they generally show improved simulation of key 
features of the water cycle such as orographic precipitation, sea 
breeze dynamics, the diurnal cycle in precipitation, soil-moisture–
precipitation feedbacks, daily precipitation persistence, sub-daily to 
daily precipitation intensities and related extremes (Section 8.2.3.2; 
Birch et al., 2015; Prein et al., 2015; Kendon et al., 2017; Leutwyler 
et al., 2017; Willetts et al., 2017; Hohenegger and Stevens, 2018; 
Berthou et al., 2019b; Takahashi and Polcher, 2019; Fumière et al., 
2020; Scaff et al., 2020; Caillaud et al., 2021). A growing number of 
studies have also assessed the potential added value of using CPMs 

https://doi.org/10.1017/9781009157896.010
Downloaded from https://www.cambridge.org/core. IP address: 70.40.220.129, on 20 Aug 2024 at 09:24:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.010
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1141

Water Cycle Changes  Chapter 8

8

for regional climate projections (Ban et al., 2015; Giorgi et al., 2016; 
Fosser et al., 2017; Kendon et al., 2017, 2019; C.  Liu et al., 2017; 
Lenderink et al., 2019; Rasmussen et al., 2020; see also Atlas 5.6.3). 
Although projected changes in rainfall occurrence in CPMs are broadly 
and qualitatively consistent with the results of GCMs and RCMs 
(Kendon et al., 2017), there is a tendency towards stronger changes 
in both wet and dry extremes (Berthou et al., 2019a; Kendon et al., 
2019; Lenderink et al., 2019; Finney et al., 2020a). While both GCMs 
and RCMs project an overall decrease in summer precipitation over 
the Alps, RCMs simulate an increase over the high Alpine elevations 
that is not present in the global simulations (Giorgi et al., 2016). 

Recent studies based on both GCMs and CPMs indicate that both 
CAPE and convective inhibition will increase in a  warmer climate 
(Section 8.2.3.2; J. Chen et al., 2020a), consistent with a shift from 
moderate to less frequent but stronger convective events (Rasmussen 
et al., 2020). If underestimated by models with parametrized 
convection, such a mechanism could explain the underestimation of 
both projected increase in precipitation extremes (Borodina et al., 
2017; Yin et al., 2018) and land surface drying (Douville and Plazzotta, 
2017) in the extratropics. CMIP5 models with a  larger increase in 
extreme precipitation also exhibit larger declines or smaller increases 
in light to moderate events (Thackeray et al., 2018).

In summary, there is high confidence that dynamical downscaling 
using limited area models adds value in simulating precipitation 
and related water cycle processes at the regional scale, especially 
in complex orography areas (Section  10.3.3.5.1). There is high 
confidence that the explicit simulation of atmospheric convection can 
improve the representation of weather phenomena, including the life 
cycle of convective storms and related precipitation extremes. Even 
with an improved simulation of small-scale processes, there is only 
medium confidence that there will be an improvement in RCM-based 
water cycle projections as they rely on GCM boundary conditions.

8.5.2 Role of Internal Variability and Volcanic Forcing

Beyond modelling uncertainties, internal variability and unpredictable 
natural forcings may also lower the degree of confidence in projected 
water cycle changes, especially in the near term (2021-2040) and 
regional-scale projections (Hawkins and Sutton, 2011; Kent et al., 
2015; Thompson et al., 2015; Fatichi et al., 2016; McKinnon and 
Deser, 2018; Chen and Brissette, 2019; Lehner et al., 2020). Although 
there is low confidence that the main modes of climate variability 
(Annex IV) are altered in a  warmer climate (Sections  4.4.3 and 
4.5.3), increasing contrast between wet and dry weather regimes 
(Section 8.2.2.1) will amplify their influence on water cycle variability 
(Section 8.4.2.9) and therefore contribute to uncertainties in near-
term precipitation changes (Figure  8.23). The role of internal 
variability as source of uncertainties in regional climate projections 
is assessed in Section 10.3.4.3. Here we assess the role of internal 
variability in influencing water cycle projections using paleoclimate 
reconstructions, pre-industrial model simulations, and large single 
model ensembles (Section 8.5.2.1). Implications for the predictability 
of near-term water cycle changes are specifically assessed, as 
they show significant but model-dependent regional hydrological 

fingerprints over land (Section 8.5.2.2). The role of volcanic eruptions 
is also briefly assessed in terms of consequences and uncertainties in 
water cycle projections (Section 8.5.2.3).

8.5.2.1 Quantification of Water Cycle Internal Variability

Estimating internal variability is an important challenge in the 
assessment of human-induced changes in the water cycle since its 
magnitude and range of variability can exceed the anthropogenic 
signal, at least at the regional scale and for near-term projections 
or low-emissions scenarios (Sections  4.4.1.4 and 8.4.2.9; Deser 
et al., 2012; Shepherd, 2014; Xie et al., 2015; Sarojini et al., 2016; 
Dai and Bloecker, 2019; Lehner et al., 2020). Underestimating 
internal variability in models may result in the overestimation of 
anthropogenic climate change because the ‘noise’ in the signal-to-
noise ratio is underestimated (Knutson and Zeng, 2018). There is 
medium confidence that this underestimation affects global water 
cycle projections, for instance, in terms of drought persistence and 
severity in the south-western USA, eastern Australia, southern Africa, 
the Mediterranean, the southern Amazonian basin and China (Ault 
et al., 2014; Cook et al., 2018; Gu et al., 2018). In CMIP6 models, 
the uncertainty in future projections of 20-year mean precipitation 
changes attributable to internal variability ranges from 41% in 
the near term (2021–2040) to 5% in the long term (2081–2100) 
(Figure 8.23). For decadal-mean precipitation changes, the relative 
contribution of internal variability is even larger when using large 
ensembles (Lehner et al., 2020).

Over the 20th century, CMIP5 models show a realistic magnitude of 
decadal precipitation variability, if not a slight overestimation in some 
regions (Knutson and Zeng, 2018). However, the relatively short and 
human-influenced instrumental record limits our ability to quantify the 
magnitude of internal variability in the water cycle, particularly over 
long time scales (decadal and beyond). Global extended reanalyses 
(Section 1.5.2) have been used to derive long-term variability in the 
regional water cycle components (Caillouet et al., 2017), merged with 
historical meteorological and hydrological local observations (Bonnet 
et al., 2017; Devers et al., 2020). Specific assessment of these types 
of methodology and related uncertainties is provided in Chapter 10 
(Sections  10.2 and 10.3). Paleoclimate archives (tree rings, corals, 
ice core, speleothems, lake and ocean sediments) provide extended 
reconstructions of key water cycle metrics and large-scale circulation 
features. Some studies have suggested that CMIP5 models 
underestimate internal variability at decadal and longer time scales, 
and therefore may be missing important processes in the climate 
system (Ault et al., 2012, 2013; Bunde et al., 2013; Franke et al., 2013; 
Cheung et al., 2017; Hope et al., 2017; Kravtsov, 2017; Cassou et al., 
2018). However, recent assessments using paleoclimate records have 
found that CMIP5 models are able to reproduce decadal-to-centennial 
variability, including the severity, persistence and spatial extent of 
megadroughts (Coats et al., 2015; Stevenson et al., 2015; PAGES 
Hydro2K Consortium, 2017), once signal reddening (autocorrelation) 
in proxy archives is accounted for (Dee et al., 2017; PAGES Hydro2K 
Consortium, 2017). Implementation of proxy system models, that 
is, functions that transform model variables into proxy units, has 
reduced model–proxy disagreement, although some differences in 
the magnitude of internal variability remain, particularly at centennial 
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time scales (Dee et al., 2017; Parsons et al., 2017). It is unclear 
whether remaining discrepancies represent limitations of the climate 
models, or limitations of the proxy system models. Therefore, there 
is medium to high confidence (i.e.,  depending on the region) that 
climate models do not underestimate water cycle internal variability. 

The mechanisms driving internal variability in the water cycle in 
climate model simulations varies. While models indicate that cool 
SSTs in the eastern tropical Pacific (La Niña or the cool phase of 
the PDO) are associated with drought in south-western North 
America, they also show that atmospheric internal variability may 
be a  more prominent driver (Coats et al., 2015, 2016; Stevenson 
et al., 2015; Parsons et al., 2018). Simulations of the last millennium 
from CMIP5–PMIP3 reproduce the observed negative correlation 

between eastern Australian rainfall and the central equatorial Pacific 
SSTs with varying skill, and also display periods when the ENSO 
teleconnection weakens substantially for several decades (Brown 
et al., 2016a). Differences in simulated internal variability have been 
found to be responsible for the inter-model spread in predicted shifts 
in subtropical dry zones for a given shift in the Hadley cell (Seviour 
et al., 2018). CMIP5 models show that both internal variability 
and anthropogenic forcings are responsible for the drying over 
the South Atlantic Convergence Zone region, though with large 
uncertainties (Zilli and Carvalho, 2021). Moreover, the detection of 
the anthropogenic forcing on the South Atlantic Convergence Zone 
is strongly dependent on the characterization of model internal 
variability (Talento and Barreiro, 2012). 

NAO influence on precipitation and SLP trends

Internal Forced

Forced - Internal Forced + Internal

(a) (b)

(c) (d)

(mm/day/30 year)
-0.75 -0.6 -0.45 -0.3 -0.15 0 0.15 0.3 0.45 0.6 0.75

Figure 8.24 | Impact of the North Atlantic Oscillation (NAO) on 2016–2045 climate trends. (a) Regressions of winter sea level pressure (SLP) and precipitation 
trends upon the normalized leading principal component (PC) of winter SLP trends in the CESM1 Large Ensemble, multiplied by two to correspond to a two standard deviation 
anomaly of the PC (as internal climate variability component); (b) CESM1 ensemble-mean winter SLP and precipitation trends (as forced climate variability component);  
(c) b – a (forced minus internal climate variability component); (d) b + a (forced plus internal climate variability component). Precipitation in colour shading (mm day–1 per 
30 years) and SLP in contours (interval = 1 hPa per 30 years with negative values dashed). Figure adapted from Deser et al. (2017), https://creativecommons.org/licenses/by/4.0/; 
further details on data sources and processing are available in the chapter data table (Table 8.SM.1).
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Beyond the tropics, North Pacific decadal variability (Annex IV.2.6, 
2.4.5, 3.7.6) exerts a  strong modulation of extratropical ENSO 
teleconnections, but also influences low-frequency variability of the 
Walker circulation, which is underestimated by most CMIP5 models 
(England et al., 2014). Atlantic Multi-decadal Variability (Annex IV.2.7, 
2.4.6, 3.7.7) teleconnections show a high model spread among CMIP5 
models, both in terms of persistence and spatial coherence (Qasmi 
et al., 2017), which has potential consequences for the water cycle 
variability simulated over Europe. For example, internal variability 
will continue to play an important role in the variability of river flows 
over France in coming decades (medium confidence) (Giuntoli et al., 
2013; Boé and Habets, 2014; Bonnet et al., 2017).

Ensembles of atmosphere-only simulations driven by observed or 
reconstructed SST are useful for evaluating the ability of models to 
capture the circulation and/or precipitation variability observed over 
the historical period (Zhou et al., 2016; Deng et al., 2018; Douville 
et al., 2019). However, limitations of such AGCM-based attribution 
methods, that is, related to the lack of air–sea interactions in the 
response, may lead to erroneous attribution conclusions in some 
regions for local circulation and mean and extreme precipitation 
(Dong et al., 2017). Other methods to measure the portion of 
precipitation variability include the partitioning into dynamical 
as opposed to thermodynamical components (Saffioti et al., 2016; 
Fereday et al., 2018; Lehner et al., 2018), the analysis of variance 
(Dong et al., 2018a) and direct characterization of stochastic weather-
noise (Short Gianotti et al., 2014). 

Single-model initial condition large ensembles (SMILEs) are a powerful 
tool for estimating the magnitude of internal variability in historical 
and future climates (Section  1.4.4). Using SMILEs, it has been 
shown, for example, that internal NAO variability imparts substantial 
uncertainty to future changes in European precipitation (Figure 8.24; 
Deser et al., 2017). For the South Asian summer monsoon, internal 
variability can overshadow the forced monsoon rainfall trend, thereby 
increasing near-term projection uncertainties (X. Huang et al., 2020a). 
Specific regional applications of the use of large ensembles are further 
assessed in Sections 10.3.4.3 and 10.3.4.4. 

Since AR5, SMILEs have helped quantify the time of emergence of 
climate change signals (see Sections  1.4.2.2 and 10.4.3). Results 
from SMILEs indicate that by 2000–2009 (compared to 1950–1999), 
simulated anthropogenic shifts in mean annual precipitation 
already emerged over 36–41% of the globe including high latitudes 
(Frankcombe et al., 2018; Kumar and Ganguly, 2018), the eastern 
subtropical oceans, and the tropics (Zhang and Delworth, 2018). 
By 2050 (2100), more than 60% (85%) of the globe is projected to 
show detectable anthropogenic shifts in mean annual precipitation 
(Zhang and Delworth, 2018). Other SMILE results for the 1950–2100 
period (Kay et al., 2015; Sigmond and Fyfe, 2016) indicate that 
internal variability can obscure the detection of the anthropogenic 
hydroclimatic signal until the middle to late 21st century in many 
parts of the world for both mean and extreme precipitation 
(Martel et al., 2018; Dai and Bloecker, 2019). A  common finding 
is that changes in the characteristics of wet extreme events will 
emerge earlier than changes in average conditions (Gaetani et al., 
2020; Hawkins et al., 2020; Kusunoki et al., 2020). An assessment 

of the methods used to estimate time of emergence is presented 
in Chapter 10 (Section 10.3.4.3). For specific regional examples of 
climate change attribution and emergence of anthropogenic signal, 
see Section 10.4.2.

In summary, there is medium confidence that climate models 
reproduce the general magnitude and character of internal variability 
that influences water cycle variables. There is high confidence that 
internal variability will continue to be a major source of uncertainty, 
at least for near-term water cycle projections at the regional scale. 
There is low confidence in the region-dependent time of emergence 
of water cycle changes (see also Section 10.4.3), but there is medium 
confidence that changes in wet extreme events will emerge earlier 
than changes in average conditions.

8.5.2.2 Implications for Near-Term Water Cycle Projections

Adapting water resource management in the face of climate change 
will greatly benefit from improved prediction of land surface hydrology 
at the decadal time scale. Climate predictions (Section 1.4.4) differ 
from climate projections by constraining the initial state of the slow 
components of the climate system (i.e., the ocean, the cryosphere 
and the terrestrial hydrology) as well as volcanic aerosols and ozone 
depleting substances with observations. Anthropogenic and natural 
radiative forcing and low-frequency modes of variability (e.g., AMV 
and PDV, Annex IV.2.7 and IV.2.6) suggest the possible predictability 
of climate in the first decade or so of the 21st century, in addition to 
the projected response to the anthropogenic forcing (Sections 4.2.3 
and 4.4.1.3). 

In AR5, decadal prediction of precipitation over some land areas 
showed improved skill due to specified radiative forcing, with almost 
no added value from ocean initialization. Since AR5, more studies 
have been devoted to understanding the potential or effective 
water cycle predictability related to ocean multi-decadal variability. 
Decadal hindcast experiments based on large ensembles highlight 
increasing skill scores in annual mean precipitation three to seven 
years ahead, at least over the Sahel and Europe (Yeager et al., 2018). 
There is relatively high predictability of the AMV impacts over the 
Mediterranean basin, Central Asia and the Americas (from the USA to 
northern South America) during boreal summer, but in boreal winter 
the signal-to-noise ratio shows only weak predictability over land 
(Yamamoto and Palter, 2016; Ruprich-Robert et al., 2017). The link 
between South Asian summer monsoon changes and the AMOC 
and the decadal variability in the Pacific Ocean open the possibility 
of increased predictability for the near future (Kushnir et al., 2017; 
X. Huang et al., 2020b; Sandeep et al., 2020).

The additional skill associated with the initialization of the cryosphere 
and the land surface has received limited attention. However, there 
is observational evidence that oceanic decadal variations can 
propagate into the atmosphere and, consequently accumulate into 
terrestrial land surface reservoirs (e.g.,  Bonnet et al., 2017) and 
vegetation (e.g., Zeng et al., 1999). This land surface memory, like in 
soil moisture (Alessandri and Navarra, 2008; Catalano et al., 2016) 
or snow (Loranty et al., 2014), may also contribute to the decadal 
predictability of the terrestrial component of the water cycle, but 
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remains difficult to assess given the limitations of observational 
records. Vegetation initialization seems to generate as much noise as 
signal and does not necessarily translate into improved skill in early 
decadal predictions based on ESMs (Weiss et al., 2014). 

Decadal hydrological predictability in an idealized setting has also 
been investigated through offline land surface hindcast experiments, 
driven by observed atmospheric forcing and/or initial conditions, 
suggesting the potential for skilful predictions for terrestrial water 
storage, deep soil moisture, and groundwater (Yuan and Zhu, 2018). 
Yet, a real-world assessment is hampered by the lack of observations 
and is only feasible when multi-decadal records of satellite estimates 
of terrestrial water storage, snow mass or soil moisture are available.

In summary, there is high confidence that the water cycle changes 
that have already emerged from internal variability will become more 
pronounced in near-term (2021–2040) projections. However, there 
is low confidence in decadal predictions of precipitation changes, 
particularly over most land areas, because internal variability 
remains difficult to predict and can offset or amplify the forced water 
cycle response. 

8.5.2.3 Volcanic Forcing

Volcanic eruptions can affect climate projections in the near term 
(2021–2040; Section  4.4.4 and Cross-Chapter Box  4.1). In this 
chapter, they are of interest because they can trigger a  transient 
departure from the water cycle response to anthropogenic radiative 
forcing. Major volcanic eruptions temporarily reduce total global and 
wet tropical region precipitation (high confidence) (Iles and Hegerl, 
2014), can weaken or shift the ITCZ (Iles and Hegerl, 2014; Colose 
et al., 2016; Liu et al., 2016), and reduce summer monsoon rainfall 
(medium confidence) (Pausata et al., 2015b; Zambri and Robock, 
2016; Zambri et al., 2017; Zuo et al., 2019; M. Singh et al., 2020). 
Monsoon precipitation in one hemisphere can be enhanced by the 
remote volcanic forcing occurring in the other hemisphere (medium 
confidence) (Pausata et al., 2015a; Liu et al., 2016; Zuo et al., 2019). 
Over the Sahel, the sign of hydrological changes depend on the 
hemisphere where the volcanic eruptions occur (J.M.  Haywood 
et al., 2013). Out of phase changes in the Sahel and the Amazonian 
basin are expected from the effect of volcanic aerosols on tropical 
Atlantic SST and the ITCZ (Hua et al., 2019). Over the last millennium, 
uncertainties remain in the symmetry/asymmetry of the monsoon 
response because it is difficult to estimate the exact latitude and 
season of past volcanic eruptions further back in time (Colose et al., 
2016; Fasullo et al., 2019).

Data for six major eruptions over the last century along with 
CMIP5 historical experiments indicate that volcanic eruptions cause 
a  detectable decrease in streamflow in northern South America, 
Central Africa, high-latitude Asia and in wet tropical–subtropical 
regions, and a detectable increase in south-western North America 
and southern South America (Iles and Hegerl, 2015). Attempts 
to include volcanic forcing in future projections show enhanced 
precipitation variability on annual to decadal time scales with 
small reductions in Asian monsoon rainfall (Bethke et al., 2017). 
The occurrence of volcanic eruptions in the coming century, either as 

single large events or clustered smaller ones, can alter the water cycle 
(see also Cross-Chapter Box 4.1), and regional drought events may 
be enhanced by co-occurring volcanic (Liu et al., 2016; Gao and Gao, 
2017; Zambri et al., 2017) and GHG (e.g., Cook et al., 2018) forcing 
(low confidence). Volcanic eruptions may also lead to widespread 
precipitation anomalies up to several years following an eruption 
through their potential influence on the El Niño Southern Oscillation 
(low confidence) (Stevenson et al., 2016; Dee et al., 2020; McGregor 
et al., 2020).

In summary, large volcanic eruptions reduce global mean precipitation, 
as well as precipitation in tropical wet regions (high confidence). 
There is low confidence in specific regional and seasonal responses, 
primarily due to the limitations of the observational record.

8.5.3 Non-linearities Across Global Warming Levels

The AR5 concluded that annual and seasonal mean precipitation 
changes can be estimated by linear pattern-scaling techniques (Santer 
and Wigley, 1990; Arnell and Gosling, 2016; Greve et al., 2018), 
which represent regional changes in precipitation as a linear function 
of global mean temperature change. However, there are a number of 
caveats when pattern-scaling is applied to low-emissions scenarios 
or to scenarios where localized forcing (e.g., anthropogenic aerosols) 
are significant and vary in time (Collins et al., 2013). Here the focus is 
in on non-linear water cycle responses to increasing global warming 
levels, as estimated for instance from the difference between the first 
2°C of global warming, and the next 2°C of warming (Figure 8.25), 
and their possible underlying mechanisms.

8.5.3.1 Non-linearities in Large-scale Atmospheric Circulation 
and Precipitation

Since AR5, there is further evidence that the pattern-scaling technique 
has limitations (Lopez et al., 2014; Wartenburger et al., 2017; Tachiiri 
et al., 2019), and that alternative approaches, such as multiple 
regressions using the land–sea warming contrast as an additional 
predictor, offer added value (Joshi et al., 2013). The  simplest 
traditional pattern-scaling approach approximates future changes by 
the product of a  time-evolving global surface temperature change 
and a  pattern that varies spatially but is constant across time, 
scenarios, and models. This technique was shown to be more robust 
across scenarios rather than across models, with better results for 
temperature compared with precipitation (Tebaldi and Arblaster, 
2014; see also Section 4.2.4). One approach which avoids scaling is to 
consider a period in a different scenario with the same global surface 
temperature change (Herger et al., 2015). It is attractive as it provides 
patterns of any temporal resolution that are consistent across 
variables. Nonetheless, this technique is still only based on global 
surface temperature and is not necessarily suitable for precipitation 
changes projected in stabilized versus transient scenarios (at the 
same global warming level) given the fast-atmospheric adjustment 
to GHG radiative forcing (Sections 8.2.1 and 8.4.1.1).

Even in a  theoretical climate system governed by linear processes, 
pattern-scaling assumptions can fail because the different forcing time 
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Figure 8.25 | Effect of fi rst versus second 2°C of global warming relative to the 1850–1900 base period on seasonal mean precipitation (mm day–1). CMIP6 
multi-model ensemble mean December–January–February (left panels) and June–July–August (right panels) precipitation difference for (a, b) SSP5-8.5 at +2°C (c, d) SSP5-8.5 at 
+4°C minus SSP5-8.5 at +2°C (second 2°C warming); (e, f) second minus fi rst 2°C fast warming (c–a and d–b). Only models reaching the +4°C warming levels in SSP5-8.5 are 
considered. Differences are computed based on 21-year time windows centred on the fi rst year reaching or exceeding the selected global warming level using a 21-year running 
mean global surface atmospheric temperature criterion. Uncertainty is represented using the simple approach. No overlay indicates regions with high model agreement, where 
≥80% of models agree on sign of change. Diagonal lines indicate regions with low model agreement, where <80% of models agree on sign of change. For more information on the 
simple approach, please refer to the Cross-Chapter Box Atlas.1. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).

response of different parts of the Earth system cause evolving spatial 
warming patterns ( Good et al., 2016a). This occurs primarily because 
different feedbacks occur at different time scales ( Armour et al., 2013; 
Andrews et al., 2015), which in turn implies that the atmospheric 
circulation and water cycle is dependent both on the level of warming 

and the rate of change   (Ceppi et al., 2018). The usual distinction 
between the fast adjustment to increased GHG concentrations and 
the slower response to SST warming (Section 8.2.2.2) may, however, 
not be suffi cient to explain the time evolution of the hydroclimatic 
response at the regional scale, especially in subtropical land areas 
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where this response critically depends on shifts in atmospheric 
circulation associated with distinct ‘fast’ (typically five to ten years, 
that is however much slower than the atmospheric adjustment 
assessed in Section  8.2.1) and slow SST warming patterns (Zappa 
et al., 2020). The changing balance between the water cycle response 
to anthropogenic GHG and aerosol forcings is another source of non-
linearity across time and global warming levels (Ishizaki et al., 2013; 
Rowell et al., 2015; Y. Liu et al., 2019b; Wilcox et al., 2020). 

Non-linearities in the climate response are thought to arise from 
multiple factors. These include state-dependent ice-albedo feedback 
and its potential influence on Northern Hemisphere (NH) storm 
tracks (Peings and Magnusdottir, 2014; Semenov and Latif, 2015; see 
also Cross-Chapter Box 10.1 and Section 8.6.1.2); a state-dependent 
sensitivity of tropical precipitation to increased SST (Schewe and 
Levermann, 2017; He et al., 2018); a complex response of the Atlantic 
meridional overturning circulation (AMOC; Sections  9.2.4.1 and 
8.6.1.1) and its model- and magnitude dependent teleconnections 
with regional temperature and precipitation (Kageyama et al., 
2013; Jackson et al., 2015; Qasmi et al., 2017, 2020); and other 
atmospheric and terrestrial (Section 8.5.3.2) processes such as cloud 
and land surface feedbacks (Ceppi and Gregory, 2017; King, 2019). 
The response of convective precipitation may exhibit non-linearities 
because it is itself modulated by both dynamics and atmospheric 
water content, each responding independently to warming (Chadwick 
and Good, 2013; Neupane and Cook, 2013). 

Based on a  simple model, it was also suggested that the Indian 
summer monsoon may exhibit a moisture-advection feedback which 
allows multiple stable states as boundary conditions change (Zickfeld 
et al., 2005). However, limitations of this theory and comprehensive 
GCMs suggest a  near-linear monsoon response to a  broad range 
of radiative forcings (Boos and Storelvmo, 2016). Non-linear 
precipitation responses to global warming have been reported in 
the Indo-Pacific, where a  linear increase in SSTs can trigger non-
linear changes in precipitation and a  shift in the ITCZ depending 
on the relative amplitudes of uniform and structured SST anomalies 
(C.T.Y. Chung et al., 2014; Toda and Watanabe, 2018).

Compared to atmospheric circulation and seasonal mean precipitation, 
extreme precipitation has been found to scale more accurately with 
local and global mean temperature (Chou et al., 2012; Pendergrass 
et al., 2015). The projected increase in the magnitude of extreme 
precipitation is generally proportional to the global warming level, 
with an increase of around 7%  per  1°C warming (Section  11.4.5) 
although this rate shows seasonal and geographical variations and 
is slightly less for five-day than for one-day precipitation maxima. 
Projected changes in extreme precipitation are the result of both 
thermodynamical and more model-dependent and potentially less 
linear dynamical contributions (Pfahl et al., 2017). Projected changes 
in precipitation extremes are also potentially sensitive to a  non-
linear response of spatial convective organization (Pendergrass et al., 
2016), and can exhibit a  quadratic rather than linear response to 
global warming (Pendergrass et al., 2019).

Within CMIP6, the linearity to CO2 forcing can be assessed through the 
comparison of the model response to abrupt doubling compared with 

abrupt quadrupling of atmospheric CO2 (Webb et al., 2017). Preliminary 
analyses based on CMIP5 models showed that annual precipitation 
changes following a doubling step change in CO2 from pre-industrial 
levels are not necessarily consistent with the response to the step 
from doubling to quadrupling despite a  similar change in radiative 
forcings (Good et al., 2016a; Ceppi and Shepherd, 2017). Beyond the 
visual comparison of the climate response at various global warming 
levels (e.g., Figure 4.35), the linearity across global warming levels can 
be assessed by using the highest emissions scenario and comparing 
seasonal mean relative precipitation changes at +2°C versus +4°C 
above pre-industrial (1850–1900) temperatures (Figure  8.25). The 
results support the previous finding (Good et al., 2016b) that a second 
2°C warming does not necessarily lead to the same precipitation 
anomaly pattern as the first 2°C, especially in the tropics where regional 
differences can be large but not necessarily consistent among different 
models. They are also consistent with a  recent analysis of CMIP5 
models showing that the projected drying in the Mediterranean and 
in Chile is substantially faster than the increase in GSAT, and therefore 
does not scale linearly with global warming (Zappa et al., 2020). 

In summary, there is high confidence that continued global warming 
will further amplify GHG-induced changes in large-scale atmospheric 
circulation and precipitation. Nonetheless, there are cases where 
regional water cycle changes are not linearly related to global 
warming due to the interaction of multiple forcings, feedbacks and 
time scales (medium confidence, see also Sections 4.2.4, 7.4.3 and 
8.2.1). Aridity in subtropical regions is highly sensitive to fast shifts 
in large-scale atmospheric circulation so are particularly susceptible 
to such non-linearities.

8.5.3.2 Non-linearities in Land Surface Processes 
and Feedbacks

Land surface responses and feedbacks represent a potential source of 
non-linearity for the water cycle response, at least at regional and local 
scales. The forced response of soil moisture and freshwater resources 
not only depends on precipitation, but also on evaporation (Laîné 
et al., 2014), snowmelt (Thackeray et al., 2016), and runoff (X. Zhang 
et al., 2018) which are intrinsically non-linear processes depending 
on soil moisture or temperature thresholds. Bare ground evaporation 
is, for instance, usually estimated as a non-linear function of surface 
soil moisture (Jefferson and Maxwell, 2015). Plant transpiration 
requires more complex formulations with non-linear dependencies 
on multiple environmental factors including root-zone soil moisture 
and atmospheric CO2 concentration (Franks et al., 2017). Globally, 
land surface evaporation is both energy and soil-moisture limited, 
but one of these limitations can become dominant depending on 
regions and seasons. Non-linearities may be particularly strong in 
transitional regimes where and when soil moisture limitation plays 
a major role (Berg and Sheffield, 2018b).

Snowmelt is a nonl-inear process and projected changes in snowfall 
are also a  non-linear combination of changes in total precipitation 
and in the fraction of solid precipitation. In cold regions, snowfall may 
first increase because of the increased water capacity of a  warmer 
atmosphere and then decrease because snow falls as rain in an even 
warmer atmosphere. Such non-linearities can contribute to elevation, 
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Figure 8.26 | Rate of change in basin-scale annual mean runoff with increasing global warming levels. Relative changes (%) in basin-averaged annual mean 
runoff estimated as multi-model ensemble median from a variable subset of CMIP6 models for each SSP over nine major river basins: (a) Mississippi, (b) Danube, (c) Lena, 
(d) Amazon, (e) Euphrates, (f) Yangtze, (g) Niger, (h) Indus, and (i) Murray. The basin averages have been estimated after a first-order conservative remapping of the model 
outputs on the 0.5° by 0.5° river network of Decharme et al. (2019). The shaded area indicates the 5–95% confidence interval of the ensemble values across all SSPs. Note 
that the y-axis range differs across basins and is particularly large for Niger and Murray (panels g and i). The number of models considered is specified for each scenario in the 
legend located inside panel b. Further details on data sources and processing are available in the chapter data table (Table 8.SM.1).

latitudinal and seasonal contrasts in the observed and projected 
retreat of the Northern Hemisphere (NH) snow cover (Shi and Wang, 
2015; Thackeray et al., 2016). Mountain glaciers also represent source 
of non-linear runoff responses since the annual runoff can first increase 
due to additional melting and then decrease as the glaciers shrink 
(Kraaijenbrink et al., 2017; Shannon et al., 2019). Section  9.5.1.3 
concludes with high confidence that the average annual runoff from 

glaciers will generally reach a peak at the latest by the end of the 21st 
century, and decline thereafter. This peak may have already occurred for 
small catchments with little ice cover, but tends to occur later in basins 
with large glaciers. Permafrost thawing is another mechanism which 
can trigger a non-linear hydrological response in the high latitudes of 
the NH (Walvoord and Kurylyk, 2016), whose magnitude and potential 
abruptness is assessed in Section 5.4.3.3.
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Land surface runoff and groundwater recharge are highly non-
linear process, depending for instance on rainfall intensity, soil 
infiltration capacity, vertical profile of soil moisture and water table 
depth. A non-linear relationship between rainfall and groundwater 
recharge was observed in the tropics where intense seasonal 
rainfalls associated with internal climate variability contribute 
disproportionately to recharge (R.G. Taylor et al., 2013a; Cuthbert 
et al., 2019a). Groundwater fluxes in arid regions are generally less 
responsive to climate variability than in humid regions, which can 
temporarily buffer climate change impacts on water resources or lead 
to a long, initially hidden, hydrological responses to global warming 
(Cuthbert et al., 2019a). Hydrological model simulations driven by 
individual and combined forcing show that decreased precipitation 
can cause larger deficits in soil moisture, streamflow and water table 
depth than other forcings, but also that these factors are not linearly 
cumulative when applied in combination (Hein et al., 2019). Surface 
runoff was found to scale only approximately with global warming 
(Tanaka et al., 2017). Significant non-linearities were found in the 
projected annual mean runoff response to global warming in CMIP5 
projections, which could not be entirely explained by precipitation 
changes (X.  Zhang et al., 2018). Similar non-linear behaviours are 
found in CMIP6 models over the Amazon, Yangtze, Niger, Euphrates 
and Mississippi river basins (Figure 8.26), highlighting the need to 
reassess the assumption of linearity when estimating regional water 
cycle changes. 

Beyond changes in land surface water fluxes, non-linearities in the 
response of soil moisture and freshwater reservoirs have not been 
well documented in global climate projections but deserve further 
attention given the complex interactions between the water, energy 
and carbon cycles (Berg and Sheffield, 2018a), the growing direct 
human influence on rivers and groundwater (Abbott et al., 2019), 
and a possible offset between the linear components of changes in 
precipitation and evapotranspiration. Significant non-linearities were 
found in water scarcity projections, as seen by the stronger sensitivity 
to the first 2°C increase in global warming (Gosling and Arnell, 2016).

In summary, there is both numerical and process-based evidence 
that terrestrial water cycle changes can be non-linear at the regional 
scale (high confidence). Non-linear regional responses of runoff, 
groundwater recharge and water scarcity have been documented 
based on both CMIP5 and CMIP6 models, and highlight the limitations 
of simple pattern-scaling techniques (medium confidence). Water 
resources fed by melting glaciers are particularly exposed to such 
non-linearities (high confidence).

8.6 What Is the Potential for Abrupt Change?

In this Report, abrupt change is defined as a regional-to-global scale 
change in the climate system that occurs faster than the  typical 
rate of changes in its history, implying non-linearity in the climate 
response (see Glossary). Often, abrupt change arises from positive 
feedbacks in the climate system that cause the current state to 
become unstable, and cross a ‘tipping point’ (Lenton et al., 2008); 
that is, a rapid shift from one climate state to another. The water cycle 
has several attributes with potential to produce abrupt change. Non-

linear interactions between the ocean, atmosphere, and land surface 
can result in rapid shifts between wet and dry states (Sections 8.6.1 
and 8.6.2). Cessation of solar radiation modification could also result 
in abrupt changes in the water cycle (Section  8.6.3). This section 
reviews these types of abrupt shifts and assesses the likelihood that 
they will occur by 2100.

8.6.1 Abrupt Water Cycle Responses to a Collapse  
of Atlantic Meridional Overturning Circulation

Multiple lines of evidence, including both paleoclimate reconstructions 
and simulations, suggest that a  severe weakening or collapse of 
Atlantic Meridional Overturning Circulation (AMOC, see Glossary) 
causes abrupt and profound changes in the global hydrological cycle 
(Chiang and Bitz, 2005; Broccoli et al., 2006; Chiang and Friedman, 
2012; Jackson et al., 2015; Renssen et al., 2018). Deep water 
formation in the North Atlantic is dependent on a delicate balance of 
heat and salt fluxes (Buckley and Marshall, 2016); disruption in either 
of these due to melting ice sheets, a  change in precipitation and 
evaporation, or ocean circulation can force AMOC to cross a tipping 
point (SROCC; Drijfhout et al., 2015). During the last deglacial 
transition, one such slowdown in AMOC – during the Younger Dryas 
event (12,800–11,700 years ago) – caused worldwide changes in 
precipitation patterns. These included a southward migration of the 
tropical ITCZ (Peterson et al., 2000; McGee et al., 2014; Schneider 
et al., 2014; Mohtadi et al., 2016; Reimi and Marcantonio, 2016; 
P.X.  Wang et al., 2017) and systematic weakening of the African 
and Asian monsoons (Tierney and DeMenocal, 2013; Otto-Bliesner 
et al., 2014; Cheng et al., 2016; Grandey et al., 2016; Wurtzel et al., 
2018). Conversely, the Southern Hemisphere (SH) monsoon systems 
intensified (Cruz et al., 2005; Ayliffe et al., 2013; Stríkis et al., 2015, 
2018; Campos et al., 2019). Drying occurred in Meso-America 
(Lachniet et al., 2013) while the North American monsoon system 
was largely unaffected (Bhattacharya et al., 2018). The mid-latitude 
region in North America was wetter (Polyak et al., 2004; Grimm et al., 
2006; Wagner et al., 2010; Voelker et al., 2015), while Europe was 
drier (Genty et al., 2006; Rach et al., 2017; Naughton et al., 2019). 
A transient coupled climate model simulation was able to reproduce 
the large-scale precipitation response to such an event (Figure 8.27a; 
Liu et al., 2009). 

These patterns of past hydroclimatic change are relevant for future 
projections because it is very likely that AMOC will weaken by 2100 
in response to increased greenhouse gas emissions (Section 9.2.3.1; 
Weaver et al., 2012; Drijfhout et al., 2015; Bakker et al., 2016; 
Reintges et al., 2017). Furthermore, there is medium confidence 
that the decline in AMOC will not involve an abrupt collapse before 
2100 (Section 9.2.3.1). The response of precipitation to hypothetical 
AMOC collapse under elevated greenhouse gases bears resemblance 
to the paleoclimate response during the Younger Dryas event, with 
some important differences due to effects of increased CO2 on global 
precipitation patterns (Figure  8.27b). As with the paleoclimate 
events, AMOC collapse results in a southward shift in the ITCZ that 
is most pronounced in the tropical Atlantic. This could cause drying 
in the Sahel region (Defrance et al., 2017) as well as Meso-America 
and northern Amazonia (Parsons et al., 2014; Y. Chen et al., 2018). 
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Figure  8.27 |  Comparison of reconstructed past and idealized future annual mean precipitation responses to an Atlantic Meridional Overturning 
Circulation (AMOC) collapse. (a) Model simulation of precipitation response to the Younger Dryas event relative to the preceding warm Bølling-Allerød period (base 
colours, calculated as the difference between 12,600–11,700 years before the present (BP) and 14,500–12,900 BP from the Transient Climate Evolution (TraCE) paleoclimate 
simulation of Liu et al., 2009), with paleoclimate proxy evidence superimposed on top (dots). (b) Model simulation of precipitation response to an abrupt collapse in AMOC 
under a doubling of 1990 CO2 levels (after W. Liu et al., 2017). Regions with rainfall rates below 20 mm yr–1 are masked. Further details on data sources and processing are 
available in the chapter data table (Table 8.SM.1). 

AMOC collapse also causes the Asian monsoon systems to weaken 
(Figure 8.27b; W.  Liu et al., 2017) counteracting the strengthening 
expected in response to elevated greenhouse gases (see 
Section 8.4.2). Europe is projected to experience moderate drying in 
response to AMOC collapse (Jackson et al., 2015). 

In summary, given that there is medium confidence that the decline 
in AMOC will not involve an abrupt collapse before 2100, there is low 
confidence that an AMOC-driven abrupt change in the water cycle 
will occur by 2100. However, if AMOC collapse does occur, it is very 
likely that there would be large regional impacts on the water cycle.

8.6.2 Abrupt Water Cycle Responses to Changes  
in the Land Surface

Changes in the land surface, including vegetation cover and dust 
emissions, can trigger abrupt changes in the water cycle. Plants 
regulate the exchange of water and energy between the land surface 
and the atmosphere (Section  8.2.3.3), such that sudden shifts in 
plant functions, types, or biomes can trigger feedbacks that have 
the potential to cause abrupt changes in the regional water cycle. 
Dust emissions, from either climatic or land use changes, affect the 
radiation budget and can regionally exacerbate dry extremes. Below, 
we assess the likelihood of abrupt changes in the water cycle for the 
well-studied regions of the Amazon and the Sahel, and the potential 
for dust emissions to amplify drought and aridity.

8.6.2.1 Amazon Deforestation and Drying

The Amazon forest plays an active role in driving atmospheric moisture 
transport and generating precipitation in the South American region 
(SRCCL; Drumond et al., 2014; Poveda et al., 2014; Yin et al., 2014; 
Staal et al., 2018, 2020; Agudelo et al., 2019; Espinoza et al., 2019). 

This close association between the land surface and the water cycle 
makes the Amazon a  potential hotspot for abrupt change (Torres 
and Marengo, 2014). Both deforestation and drying are projected to 
increase by 2100, resulting in a worst-case scenario of up to a 50% 
loss in forest cover by 2050 (Soares-Filho et al., 2006; Boisier et al., 
2015; ter Steege et al., 2015; Gomes et al., 2019). Deforestation in 
the Amazon also raises the probability of catastrophic fires (Brando 
et al., 2014). The combination of deforestation, drier conditions, 
and increased fire can push the rainforest ecosystem past a tipping 
point, beyond which there is rapid land surface degradation, a sharp 
reduction in atmospheric moisture recycling, an increase in the 
fraction of precipitation that runs off, and a  further shift towards 
a drier climate (Staal et al., 2015; Boers et al., 2017; Zemp et al., 2017; 
Ruiz-Vásquez et al., 2020). A rapid drop in precipitation has a direct 
impact on river flows, driving basin-scale shifts from a regulated to 
unregulated state (Salazar et al., 2018). Regional climate modeling 
experiments confirm that increased deforestation leads to a  drier 
climate, although not all models show a true tipping point, at least 
under present-day climatic conditions (Lejeune et al., 2015; Spracklen 
and Garcia-Carreras, 2015).

In AR5, some simulations using a  coupled climate–carbon cycle 
model exhibited an abrupt dieback of the Amazon forest in future 
climate scenarios (Oyama and Nobre, 2003; Cox et al., 2004; Malhi 
et al., 2008). However, subsequent work demonstrated that abrupt 
Amazon dieback does not occur consistently across, or even within, 
Earth system models (Lambert et al., 2013; Boulton et al., 2017). 
The occurrence of dieback is highly dependent on both how dry the 
simulated climate is in the present day (Malhi et al., 2009) as well 
as the representation of forest structure and competitive dynamics 
(Levine et al., 2016). Models with a low diversity of plant characteristics 
and types have a higher tendency for abrupt change (Sakschewski 
et al., 2016). Abrupt shifts and ecosystem disruptions can occur on 
the sub-regional level (Pires and Costa, 2013), highlighting the need 
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for higher-resolution modelling studies. Since AR5, CMIP6 projections 
suggest that a tipping point in the Amazon system may be crossed on 
a local or regional scale (Staal et al., 2020) but continue to be highly 
dependent on model biases in precipitation and the simulation of the 
land surface. Consequently, the timing, and probability, of an abrupt 
shift remains difficult to ascertain. 

In summary, while there is a  strong theoretical expectation that 
Amazon drying and deforestation can cause a  rapid change in the 
regional water cycle, currently there is limited model evidence to 
verify this response, hence there is low confidence that such a change 
will occur by 2100.

8.6.2.2 Greening of the Sahara and the Sahel

Greening of the Sahara and Sahel regions in North Africa, in 
response to an increase in precipitation, has long been considered 
an amplifying mechanism that can lead to abrupt change. Although 
the high surface albedo of the desert stabilizes the energy balance 
of the system (Charney, 1975), greening can induce strong, positive 
feedbacks between the land surface and precipitation that can shift 
the region into a ‘Green Sahara’ state. The fact that the transition 
phase between a Desert Sahara and Green Sahara is not theoretically 
stable (Brovkin et al., 1998) creates a tipping point and allows for the 
possibility of an abrupt shift between dry and wet climate regimes. 
Paleoclimate reconstructions provide evidence of past Green Sahara 
states (DeMenocal and Tierney, 2012), under which rainfall rates 
increased by an order of magnitude (Tierney et al., 2017), leading 
to a vegetated landscape (Jolly et al., 1998) with large lake basins 
(Gasse, 2000; Drake and Bristow, 2006). The underlying driver of the 
Green Sahara is the periodic increase in summer insolation associated 
with the orbital precession cycle (Kutzbach, 1981). In this sense, Green 
Saharas are not direct analogues for a  response to anthropogenic 
greenhouse gas emissions (GHGs), as these past states were forced 
by natural, seasonal changes in solar radiation. However, the climate 
dynamics of Green Sahara periods (which have global impacts, 
Pausata et al., 2020), and the speed of the transitions between Desert 
Saharas and Green Saharas, are relevant for future projections.

Since AR5, paleoclimatic studies have improved our view of the 
timing, spatial extent, and speed of transitions associated with the 
early Holocene (11,000–5,000 years ago) Green Sahara. Observed 
transitions into and out of Green Sahara states are always 
faster than the underlying forcing, in agreement with theoretical 
considerations (high confidence) (Tierney and DeMenocal, 
2013; Shanahan et al., 2015; Tierney et al., 2017). However, 
there is low confidence in the duration of the transition because 
sedimentary records cannot typically resolve changes on decadal 
to multi-decadal time scales (Tierney and DeMenocal, 2013). Both 
paleoclimate data and modelling experiments suggest that the 
timing and speed of the transition was spatially heterogeneous 
(high confidence), with northern Saharan locations becoming drier 
thousands of years before more equatorial locations (Shanahan 
et al., 2015; Tierney et al., 2017; Dallmeyer et al., 2020). These 
observations are consistent with theoretical studies suggesting 
that spatial heterogeneity and diversity in ecosystems can mitigate 
the probability of catastrophic change (Van Nes and Scheffer, 2005; 

Bathiany et al., 2013). Conversely, low ecosystem diversity can 
produce local or regional ‘hot spots’ of abrupt change such as those 
seen in some paleoclimate records (Claussen et al., 2013). 

CMIP5 and CMIP6 models, some of which include dynamic 
vegetation schemes, cannot simulate the magnitude, nor the spatial 
extent, of greening and precipitation change associated with the 
last Green Sahara under standard mid-Holocene (6,000 years ago) 
boundary conditions (high confidence) (Figure 3.11; Harrison et al., 
2014; Tierney et al., 2017; Brierley et al., 2020). This result remains 
unchanged since AR4 (Jansen et al., 2007). This may be due to 
climatological biases in the models (Harrison et al., 2015) or could 
imply that the strength of the feedbacks between vegetation and 
the water cycle in the models is too weak (Hopcroft et al., 2017). To 
date, climate models still only produce the amount and spatial extent 
of rainfall that is needed to sustain a Green Sahara if they are given 
prescribed changes in the land surface, such as albedo, soil moisture, 
vegetation cover and/or dust emissions (Pausata et al., 2016; Skinner 
and Poulsen, 2016; Tierney et al., 2017). 

Some climate model simulations suggest that under future high-
emissions scenarios, CO2 radiative forcing causes rapid greening in 
the Sahel and Sahara regions via precipitation change (Claussen 
et al., 2003; Drijfhout et al., 2015). For example, in the BNU-ESM 
RCP8.5 simulation, the change is abrupt with the percentage of bare 
soil dropping from 45% to 15%, and percentage of tree cover rising 
from 50% to 75%, within 10 years (2050–2060; Drijfhout et al., 
2015). However, other modelling results suggest that this may be 
a short-lived response to CO2 fertilization (Bathiany et al., 2014). 

In summary, given outstanding uncertainties in how well the current 
generation of climate models capture land surface feedbacks in the 
Sahel and Sahara, there is low confidence that an abrupt change to 
a greener state will occur in these regions before 2100 or 2300.

8.6.2.3 Amplification of Drought by Dust

Mineral dust aerosols in the climate system originate from both semi-
permanent and transient sources (Prospero et al., 2002; Ginoux et al., 
2012). The former are typically arid regions where significant alluvial 
sediments have accumulated over time, while the latter are often 
associated with natural (e.g., droughts, wildfires) and anthropogenic 
(e.g.,  land use change, desertification) disturbances. Modern-day 
dust emissions are dominated by natural sources (Ginoux et al., 
2012), although human emissions may contribute 10–60% of the 
global atmospheric dust load (Webb and Pierre, 2018). Paleo-dust 
records suggest that human factors (land use change and landscape 
disturbance) may have doubled global dust emissions between 1750 
and the last quarter of the 20th century (Section 2.2.6; Hooper and 
Marx, 2018).

Dust aerosols influence the climate system and hydrologic cycle 
through both direct impacts on radiation (absorbing and scattering 
longwave and shortwave) and via indirect effects on cloud and 
precipitation processes (Box  8.1; Choobari et al., 2014; Kok et al., 
2018; Schepanski, 2018). The capacity of dust aerosols to suppress 
precipitation by reducing humidity and energy availability, and 
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increasing stability in the atmosphere (Cook et al., 2013; Huang et al., 
2014) can drive positive feedbacks (see also Section  6.3.6). Thus 
there is strong potential for dust to contribute to abrupt changes in 
the water cycle, especially in semi-arid regions where wind erosion 
is highly sensitive to vegetation cover and drought variability (Yu 
et al., 2015). One such event occurred over the Central USA during 
the 1930s: the Dust Bowl drought, an iconic event characterized by 
widespread land degradation and historically unprecedented levels 
of dust storm activity (Hansen and Libecap, 2004; Lee and Gill, 
2015). While initialized by warm sea surface temperatures in the 
North Atlantic, modeling work indicates that land cover changes and 
resulting dust emissions contributed to the severity and spatial extent 
of the drought by further suppressing precipitation (Cook et al., 2009; 
Hu et al., 2018; Cowan et al., 2020). There is also increasing evidence 
that dust aerosol feedbacks are necessary to explain the magnitude 
of rainfall increase during the mid-Holocene Green Sahara (Pausata 
et al., 2016; Tierney et al., 2017).

The importance of dust aerosol feedbacks in future abrupt climate 
events, like droughts or rapid aridification, is unclear. In part, this is 
because the response of dust aerosol emissions and loading levels 
in the atmosphere to climate change is highly uncertain (Tegen and 
Schepanski, 2018; Webb and Pierre, 2018). This difficulty in predicting 
future dust responses is rooted in the fact that emissions depend on 
both changes to the land surface (e.g., land use/land cover change, 
aridification, ecological responses to climate change) and the state 
of the atmosphere (Tegen and Schepanski, 2018). While there is some 
evidence that global dust aerosol concentrations in the future will 
increase (Allen et al., 2016; Tegen and Schepanski, 2018), it is highly 
dependent on changes in precipitation patterns and atmospheric 
circulation (see the SRCCL, Section 2.4.1), and it is not clear what the 
radiative impact will be (Allen et al., 2016; Kok et al., 2018). 

In summary, due to limited evidence, there is low confidence 
regarding the role of dust in abrupt climate change events over the 
next century.

8.6.3 Abrupt Water Cycle Responses to Initiation or 
Termination of Solar Radiation Modification

Solar radiation modification (SRM) techniques seek to reduce the 
impacts of climate change by modifying the Earth’s radiation budget, 
either by reflecting incoming solar radiation or increasing the amount 
of heat lost to space. Note that, following SR1.5, the definition of 
SRM in this Report refers to changes in both solar and longwave 
radiation (Section 4.6.3.3 and Glossary). A variety of methods have 
been proposed, including injection of aerosols or their precursors 
into the stratosphere, cloud brightening, and cirrus cloud thinning 
(Table 4.8). Since SRM alters the planetary energy balance, changes in 
the hydrological cycle are theoretically expected (Section 8.2). These 
changes can be abrupt if the initial magnitude of SRM is large, rather 
than increased gradually. Since AR5, a diversity of SRM techniques 
have been tested using climate model simulations, with an increasing 
focus on consequences for regional water availability. Techniques 
targeting shortwave radiation (sulfate injection, surface albedo 
modification, cloud brightening) are likely to reduce global mean 

precipitation relative to future CO2-emissions scenarios (Bala et al., 
2008; A. Jones et al., 2013; Tilmes et al., 2013; Ferraro et al., 2014; 
Crook et al., 2015). In contrast, cirrus cloud thinning, a  longwave 
radiation technique, results in increased global precipitation as it 
causes enhanced radiative cooling in the troposphere (medium 
confidence) (Crook et al., 2015; Kristjánsson et al., 2015; Jackson 
et al., 2016).

The magnitude of hydrological disruption for both the initiation and 
termination of SRM depends on the method used, as well as the 
strength and duration of its implementation (Ekholm and Korhonen, 
2016; Irvine et al., 2019). Under abrupt SRM implementation, 
hydrological shifts are rapid, occurring within the first decade 
(Crook et al., 2015). Artificial enhancement of albedo in Northern 
Hemisphere desert regions causes a  southward shift in the Hadley 
Cell and ITCZ, and extreme drying in the northern tropics (Crook et al., 
2015). Uniform or tropical stratospheric sulfate injection weakens 
the African and Asian summer monsoons and causes drying in the 
Amazon (Robock et al., 2008; Crook et al., 2015; Dagon and Schrag, 
2016). Changes in evapotranspiration can produce large deficits or 
surpluses in soil moisture and runoff in different regions and seasons 
(Dagon and Schrag, 2016). 

Rapid changes (years to decades) in the hydrological cycle are 
also expected if SRM is terminated abruptly, either purposefully or 
because of technical failure or political disagreement. We reiterate 
the AR5 conclusion that if SRM ‘were terminated for any reason, there 
is high confidence that surface temperatures would increase rapidly 
(within a decade or two) to values consistent with the GHG forcing’. 
The additional global warming caused by SRM termination may result 
in a rapid increase in global mean precipitation (medium confidence) 
(A. Jones et al., 2013). Heterogenous regional and seasonal changes 
are also expected, but are model-dependent (A. Jones et al., 2013). 
As with SRM initiation, the impact of SRM termination is expected to 
be dependent on the technique deployed. 

In summary, it is very likely that abrupt water cycle changes will occur 
if SRM is abruptly initiated or halted, especially in tropical regions. 
Further assessment of the potential side-effects of SRM is found in 
Section 4.6.3.3.

8.7 Final Remarks

Despite the advances presented in this chapter, there are still many 
opportunities to improve the understanding and quantification of 
human influence on past, present and future water cycle changes:

• Extension and development of pre-instrumental data and 
paleoclimate records, particularly from the Southern Hemisphere, 
will improve estimates of the range of natural climate variability 
and extremes, and our knowledge of how the water cycle 
responded in past high CO2 climates.

• Development of longer observational time series that will improve 
our understanding of physical processes and the analysis and 
simulation of natural modes of weather and climate variability. 

• The use of large model ensembles will help better understand the 
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interactions between climate change and internal variability and 
in the detection and attribution of observed water cycle changes.

• An improvement of the general circulation model (GCM)-
simulated precipitation, latent heating and radiative effects 
of deep convective clouds would benefit from an improved 
representation of their interactions with aerosols.

• Further research on land surface processes, including 
groundwater recharge, the role of plant physiological changes, 
land use change, dams and irrigation, will improve future 
projections of key aspects of the terrestrial water cycle such as 
aridity and drought.

• Ongoing efforts to develop higher-resolution ‘convection 
permitting’ regional or global climate models will lead to an 
improved simulation of clouds and precipitation, their coupling 
with boundary layer and surface processes, their diurnal cycle 
and high-frequency variability, and their response to climate 
change, including extreme precipitation events.

• Further analysis of past and current climate variability alongside 
future climate change projections will provide physically 
understood constraints for improving the accuracy of regional 
water cycle simulations, adding value to the results obtained 
from global climate models.

• Increased understanding of internal variability and interactions 
with human-induced change will improve efforts to attribute 
changes in the water cycle and to understand and anticipate 
future non-linear change.
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Frequently Asked Questions

FAQ 8.1 | How Does Land Use Change Alter the Water Cycle?   

The ways in which humans use and change land cover, for example by converting fields to urban areas or clearing 
forests, can affect every aspect of the water cycle. Land-use changes can alter precipitation patterns and how 
water is absorbed into the ground, flows into streams and rivers, or floods the land surface, as well as how 
moisture evaporates back into the air. Changes in any of these aspects of the interconnected water cycle can 
affect the entire cycle and the availability of freshwater resources.

Land use describes the combination of activities and ground cover defining each area of the Earth’s continental 
surface. Altering land use can modify the exchange of water between the atmosphere, soil and subsurface 
(FAQ 8.1, Figure 1). 

For instance, changes in land cover can affect the ability of soils to soak up surface water (infiltration). When soil 
loses its capacity to soak up water, precipitation that would normally infiltrate and contribute to groundwater 
reserves will instead overflow, increasing surface water (runoff) and the likelihood of flooding. For example, 
changing from vegetation to urban cover can cause water to flow rapidly over buildings, roads and driveways 
and into drains rather than soaking into the ground. Deforestation over wide areas can also directly reduce 
soil moisture, evaporation and rainfall locally but can also cause regional temperature changes that affect 
rainfall patterns.

Extracting water from the ground and river systems for agriculture, industry and drinking water depletes 
groundwater and can increase surface evaporation because water that was previously in the ground is now in 
direct contact with the atmosphere, being available for evaporation. 

Changing land use can also alter how wet the soil is, influencing how quickly the ground heats up and cools 
down and the local water cycle. Drier soils evaporate less water into the air but heat up more in the day. This can 
lead to warmer, more buoyant plumes of air that can promote cloud development and precipitation if there is 
enough moisture in the air. 

Changes in land use can also modify the amount of tiny aerosol particles in the air. For instance, industrial and 
domestic activities can contribute to aerosol emissions, as do natural environments such as forests or salt lakes. 
Aerosols cool down global temperature by blocking out sunlight but can also affect the formation of clouds and 
therefore the occurrence of precipitation (see FAQ 7.2). 

Vegetation plays an important role in soaking up soil moisture and evaporating water into the air (transpiration) 
through tiny holes (stomata) that allow the plants to take in carbon dioxide. Some plants are better at retaining 
water than others, so changes in vegetation can affect how much water infiltrates into the ground, flows into 
streams and rivers, or is evaporated. 

More globally, land-use change is currently responsible for about 15% of the emissions of carbon dioxide 
from human activities, leading to global warming, which in turn affects precipitation, evaporation, and plant 
transpiration. In addition, higher atmospheric concentrations of carbon dioxide due to human activities can 
make plants more efficient at retaining water because the stomata do not need to open so widely. Improved 
land and water management (e.g., reforestation, sustainable irrigation) can also contribute to reducing climate 
change and adapting to some of its adverse consequences. 

In summary, there is abundant evidence that changes in land use and land cover alter the water cycle globally, 
regionally and locally, by changing precipitation, evaporation, flooding, groundwater, and the availability of 
freshwater for a variety of uses. Since all the components of the water cycle are connected (and linked to the 
carbon cycle), changes in land use trickle down to many other components of the water cycle and climate system. 
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FAQ 8.1 (continued) 

FAQ 8.1: How do land use changes affect the water cycle?

Land-use changes
and consequences

Water cycle 
effects

Altering land use affects the water cycle in many ways, with subsequent consequences for the whole cycle.

Urban 
cover

Soil 
moisture

Aerosols

Water 
extraction

Vegetation

Global 
warming

Precipitation

Runoff

Infiltration

Groundwater

Surface 
evaporation

Plant 
transpiration

FAQ 8.1, Figure 1 | Land-use changes and their consequences on the water cycle. As all the components or the water cycle are tightly connected, 
changes in one aspect of the cycle affects almost all the cycle.
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Frequently Asked Questions

FAQ 8.2 | Will Floods Become More Severe or More Frequent as a Result of Climate Change?

A warmer climate increases the amount and intensity of rainfall during wet events, and this is expected to 
amplify the severity of flooding. However, the link between rainfall and flooding is complex, so while the most 
severe flooding events are expected to worsen, floods could become rarer in some regions. 

Floods are a natural and important part of the water cycle but they can also threaten lives and safety, disrupt 
human activities, and damage infrastructure. Most inland floods occur when rivers overtop their banks (fluvial 
flooding) or when intense rainfall causes water to build up and overflow locally (pluvial flooding). Flooding is 
also caused by coastal inundation by the sea, rapid seasonal melting of snow, and the accumulation of debris, 
such as vegetation or ice, that stops water from draining away. 

Climate change is already altering the location, frequency and severity of flooding. Close to the coasts, rising 
sea levels increasingly cause more frequent and severe coastal flooding, and the severity of these floods is 
exacerbated when combined with heavy rainfall. The heavy and sustained rainfall events responsible for most 
inland flooding are becoming more intense in many areas as the climate warms because air near Earth’s surface 
can carry around 7% more water in its gas phase (vapour) for each 1°C of warming. This extra moisture is drawn 
into weather systems, fueling heavier rainfall (FAQ 8.2, Figure 1). 

A warming climate also affects wind patterns, how storms form and evolve, and the pathway those storms 
usually travel. Warming also increases condensation rates, which in turn releases extra heat that can energize 
storm systems and further intensify rainfall. On the other hand, this energy release can also inhibit the uplift 
required for cloud development, while increases in particle pollution can delay rainfall but invigorate storms. 
These changes mean that the character of precipitation events (how often, how long lasting and how heavy they 
are) will continue to change as the climate warms. 

In addition to climate change, the location, frequency and timing of the heaviest rainfall events and worst 
flooding depend on natural fluctuations in wind patterns that make some regions unusually wet or dry for 
months, years, or even decades. These natural variations make it difficult to determine whether heavy rainfall 
events are changing locally as a result of global warming. However, when natural weather patterns bring heavy 
and prolonged rainfall in a warmer climate, the intensity is increased by the larger amount of moisture in the air.

An increased intensity and frequency of record-breaking daily rainfall has been detected for much of the land 
surface where good observational records exist, and this can only be explained by human-caused increases in 
atmospheric greenhouse gas concentrations. Heavy rainfall is also projected to become more intense in the future 
for most places. So, where unusually wet weather events or seasons occur, the rainfall amounts are expected to 
be greater in the future, contributing to more severe flooding. 

However, heavier rainfall does not always lead to greater flooding. This is because flooding also depends 
upon the type of river basin, the surface landscape, the extent and duration of the rainfall, and how wet the 
ground is before the rainfall event (FAQ 8.2, Figure 1). Some regions will experience a drying in the soil as the 
climate warms, particularly in subtropical climates, which could make floods from a rainfall event less probable 
because the ground can potentially soak up more of the rain. On the other hand, less frequent but more intense 
downpours can lead to dry, hard ground that is less able to soak up heavy rainfall when it does occur, resulting 
in more runoff into lakes, rivers and hollows. Earlier spring snowmelt combined with more precipitation falling 
as rain rather than snow can trigger flood events in cold regions. Reduced winter snow cover can, in contrast, 
decrease the chance of flooding arising from the combination of rainfall and rapid snowmelt. Rapid melting of 
glaciers and snow in a warming climate is already increasing river flow in some regions, but as the volumes of ice 
diminish, flows will peak and then decline in the future. Flooding is also affected by changes in the management 
of the land and river systems. For example, clearing forests for agriculture or building cities can make rainwater 
flow more rapidly into rivers or low-lying areas. On the other hand, increased extraction of water from rivers can 
reduce water levels and the likelihood of flooding. 
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FAQ 8.2 (continued) 

A mix of both increases and decreases in fl ooding have been observed in some regions and these changes have 
been attributed to multiple causes, including changes in snowmelt, soil moisture and rainfall. Although we 
know that a warming climate will intensify rainfall events, local and regional trends are expected to vary in 
both direction and magnitude as global warming results in multiple, and sometimes counteracting, infl uences. 
However, even accounting for the many factors that generate fl ooding, when weather patterns cause fl ood 
events in a warmer future, these fl oods will be more severe. 
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FAQ 8.2: Causes of more severe floods from climate change
Flooding presents a hazard but the link between rainfall and flooding is not simple.
While the largest flooding events can be expected to worsen, flood occurrence may decrease in some regions. 
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FAQ 8.2, Figure 1 | Schematic illustrating factors important in determining changes in heavy precipitation and fl ooding.
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Frequently Asked Questions

FAQ 8.3 | What Causes Droughts, and Will Climate Change Make Them Worse?

Droughts usually begin as a deficit of precipitation, but then propagate to other parts of the water cycle (soils, 
rivers, snow/ice and water reservoirs). They are also influenced by factors like temperature, vegetation and 
human land and water management. In a  warmer world, evaporation increases, which can make even wet 
regions more susceptible to drought.

A drought is broadly defined as drier than normal conditions; that is, a moisture deficit relative to the average 
water availability at a given location and season. Since they are locally defined, a drought in a wet place will 
not have the same amount of water deficit as a drought in a dry region. Droughts are divided into different 
categories based on where in the water cycle the moisture deficit occurs: meteorological drought (precipitation), 
hydrological drought (runoff, streamflow, and reservoir storage), and agricultural or ecological drought (plant 
stress from a combination of evaporation and low soil moisture). Special categories of drought also exist. For 
example, a snow drought occurs when winter snowpack levels are below average, which can cause abnormally 
low streamflow in subsequent seasons. And while many drought events develop slowly over months or years, 
some events, called flash droughts, can intensify over the course of days or weeks. One such event occurred 
in 2012 in the Midwestern region of North America and had a severe impact on agricultural production, with 
losses exceeding $30 billion US dollars. Droughts typically only become a concern when they adversely affect 
people (reducing water available for municipal, industrial, agricultural, or navigational needs) and/or ecosystems 
(adverse effects on natural flora and fauna). When a drought lasts for a very long time (more than two decades) 
it is sometimes called a megadrought.

Most droughts begin when precipitation is below normal for an extended period of time (meteorological 
drought). This typically occurs when high pressure in the atmosphere sets up over a  region, reducing cloud 
formation and precipitation over that area and deflecting away storms. The lack of rainfall then propagates 
across the water cycle to create agricultural drought in soils and hydrological drought in waterways. Other 
processes act to amplify or alleviate droughts. For example, if temperatures are abnormally high, evaporation 
increases, drying out soils and streams and stressing plants beyond what would have occurred from the lack of 
precipitation alone. Vegetation can play a critical role because it modulates many important hydrologic processes 
(soil water, evapotranspiration, runoff). Human activities can also determine how severe a  drought is. For 
example, irrigating croplands can reduce the socio-economic impact of a drought; at the same time, depletion of 
groundwater in aquifers can make a drought worse.

The effect of climate change on drought varies across regions. In the subtropical regions like the Mediterranean, 
southern Africa, south-western Australia and south-western South America, as well as tropical Central America, 
western Africa and the Amazon basin, precipitation is expected to decline as the world warms, increasing the 
possibility that drought will occur throughout the year (FAQ 8.3, Figure 1). Warming will decrease snowpack, 
amplifying drought in regions where snowmelt is an important water resource (such as in south-western South 
America). Higher temperatures lead to increased evaporation, resulting in soil drying, increased plant stress, and 
impacts on agriculture, even in regions where large changes in precipitation are not expected (such as central 
and northern Europe). If emissions of greenhouse gases are not curtailed, about a third of global land areas 
are projected to suffer from at least moderate drought by 2100. On the other hand, some areas and seasons 
(such as high-latitude regions in North America and Asia, and the South Asian monsoon region) may experience 
increases in precipitation as a result of climate change, which will decrease the likelihood of droughts. FAQ 8.3, 
Figure 1 highlights the regions where climate change is expected to increase the severity of droughts.
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FAQ 8.3 (continued) 

FAQ 8.3: Climate change and droughts
In some regions, drought is expected to increase under future warming.

FAQ 8.3, Figure 1 | Schematic map highlighting in brown the regions where droughts are expected to become worse as a result of climate 
change. This pattern is similar regardless of the emissions scenario; however, the magnitude of change increases under higher emissions.
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