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Abstract

We develop a theory of enlarged mixed Shimura varieties, putting the universal vectorial bi-
extension defined by Coleman into this framework to study some functional transcendental results of
Ax type. We study their bi-algebraic systems, formulate the Ax-Schanuel conjecture and explain its
relation with the logarithmic Ax theorem and the Ax-Lindemann theorem which we shall prove. All
these bi-algebraic and transcendental results extend their counterparts for mixed Shimura varieties.
In the end we briefly discuss the André–Oort and Zilber–Pink type problems for enlarged mixed
Shimura varieties.

2010 Mathematics Subject Classification: 11G18 (primary); 14G35 (secondary)

1. Introduction

1.1. Motivations: From Manin–Mumford and André–Oort to
bi-algebraicity. We start with two famous conjectures in arithmetic geometry:
the Manin–Mumford and the André–Oort conjectures. In the table the base field
is C and Y is assumed to be irreducible.

Manin–Mumford André–Oort
Object Abelian variety A and a subvariety Y Shimura variety S and a subvariety Y

Σ :=set of torsion points of A Σ :=set of special points of S
Hypothesis (Y ∩Σ)Zar

= Y (Y ∩Σ)Zar
= Y

Conclusion Y is a torsion coset Y is a Hodge subvariety
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(In this case means an irreducible component of some Hecke translate of a
Shimura subvariety.)

When the Shimura variety S is Ag, a point s is special if and only if the abelian
variety parametrized by s is CM. By standard specialization argument it suffices
to prove Manin–Mumford for abelian varieties over Q. These two conjectures
are independent, although similar. The mixed André–Oort conjecture, replacing
Shimura varieties by mixed Shimura varieties, partly unifies the previous two
conjectures because it implies Manin–Mumford for CM abelian varieties. Now
in the spirit of [43] we make the following conjecture in terms of the bi-algebraic
systems associated with abelian varieties and Shimura varieties, which unifies
Manin–Mumford and André–Oort completely.

CONJECTURE 1.1. Let S be an algebraic variety over Q such that the
uniformization X of San

C has a structure of algebraic variety over Q, and
suppose Y is a subvariety of S containing a Zariski dense subset of arithmetically
bi-algebraic points. Then Y is geometrically bi-algebraic.

Let us explain this conjecture for Ag. For the uniformization unif : H+g → Ag,
we say that s ∈ Ag(Q) is arithmetically bi-algebraic if unif−1(s) ⊂ H+g ∩
M2g×2g(Q). A theorem of Cohen [11] and Shiga–Wolfart [39] asserts that s is
arithmetically bi-algebraic if and only if s is a special point. Hence the set Σ in
the André–Oort conjecture for Ag equals the set of arithmetically bi-algebraic
points. On the other hand, H+g is an open semialgebraic subset of Cg(g+1)/2.
We say that an irreducible subvariety Y of Ag is geometrically bi-algebraic
if any complex analytic irreducible component of unif−1(Y ) is algebraizable in
Cg(g+1)/2. By Ullmo–Yafaev [44] the geometrically bi-algebraic subvarieties of
Ag containing special points are precisely the Shimura subvarieties of Ag. So
Conjecture 1.1 is equivalent to the André–Oort conjecture when S = Ag. In
this particular case Conjecture 1.1 is proven by Tsimerman [41], based on a
definability result of Peterzil–Starchenko [31] and a functional transcendental
result of Pila–Tsimerman [34].

The situation for abelian varieties A over Q is more complicated. We wish
to endow LieAC with a Q-structure so that torsion points of A are precisely
arithmetically bi-algebraic points. However, using the Schneider–Lang and
Wüstholz’ analytic subgroup theorems, Ullmo [43, Proposition 2.6] proved: any
torsion point of A, except the origin, becomes transcendental in LieAC if we
endow LieAC with the canonical Q-structure coming from the given Q-structure
on A. A solution to this problem is proposed by Bost (see [43, Section 2.2.2]):
instead of A we study its universal vector extension A\. Let us briefly recall some
basic facts about A\.
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By a vector extension of A, we mean an algebraic group E such that there exist
a vector group W and an exact sequence 0→ W → E → A→ 0. There exists
a universal vector extension A\ of A such that any vector extension E of A is
obtained as (see [26, Ch. 1, Proposition 1.10]):

0 // WA
//

��

A\ //

��

A

=

��

// 0

0 // W // E // A // 0

where the maps WA → W and A\ → E are unique. In fact over C, A\ is
constructed as follows: let Γ := H1(A(C),Z) ⊂ H1(A(C),C) be the period
lattice of A. For the Hodge decomposition H1(A(C),C) = H 0,−1(AC)

⊕
H−1,0

(AC), the holomorphic part H−1,0(AC) equals the tangent space of A at 0, and the
antiholomorphic part H 0,−1(AC) equals Ω1

A∨C
. We have

0 // H0,−1(AC) //

=

��

H1(A(C),C) //

unif\
��

H−1,0(AC) //

unif
��

0

0 // Ω1
A∨C

// A\(C) ' Γ \H1(A(C),C) // A(C) ' Γ \H−1,0(AC) // 0

and the bottom line is nowhere split. Take the Q-structure H1(A(C),Z) ⊗ Q
on H1(A(C),C). As an application of Wüstholz’ analytic subgroup theorem [48,
Theorem 1], Ullmo [43, Théorème 2.10] proved

z ∈ H1(A(C),Z)⊗Q such that unif\(z) ∈ A\(Q)
⇔ unif\(z) is a torsion point of A\.

Thus we get an arithmetic bi-algebraic description for the torsion points of
A because the projection A\ → A induces a bijection between their torsion
points. This suggests that in view of Conjecture 1.1, the abelian varieties are
not the good objects to study. Instead, one should study their universal vector
extensions. We characterize geometrically bi-algebraic subvarieties of A\ in the
paper, from which we can see that Conjecture 1.1 for A\ implies the Manin–
Mumford conjecture without much effort.

1.2. Motivation: Vector extensions, from Grothendieck to Laumon. The
study of A\ goes back to Grothendieck (\-extensions) and he studied the Gauß-
Manin connection on Lie(A\/B) for any abelian scheme A/B [18] (see also
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[26, Ch. I, Section 3]). Later on Buium [8, 10] studied arithmetic differential
equations on A\, making A\ a differential algebraic group (algebraic D-group),
although the idea was already used by Manin for his work on algebraic curves
over function fields. These are extra tools which do not exist for A, and thus it is
often convenient or even necessary to work with A\ in order to prove properties
for A. Examples of this fact include, but are not limited to: Manin’s proof of the
geometric Mordell conjecture [24, 25], Buium’s effective bound for the geometric
Lang conjecture [9], Bertrand–Pillay’s relative Lindemann–Weierstraß theorem
of [6], Bertrand–Masser–Pillay–Zannier’s proof of the relative Manin–Mumford
conjecture for semi-abelian surfaces [5], results on Galois groups and Manin maps
of Bertrand–Pillay [7], and so forth.

A 1-motive over C, after Deligne, consists of a complex semi-abelian variety G
and a group homomorphism Zn

→ G. However, Deligne’s 1-motives do not allow
vector extensions, although they appear implicitly in the de Rham realizations.
To fix this, Laumon [23] extended the notion of 1-motives by replacing Zn by
a formal group F . Then the identity component F◦ of F gives rise to vector
extensions. We refer to [4] for more details on (realizations of) Laumon 1-motives.

The moduli space of Deligne 1-motives is a mixed Shimura variety. Based on
works of Deligne, Milne, Brylinski and others, Pink [36] finished the framework
for the study of mixed Shimura varieties. However, mixed Shimura varieties do
NOT allow any vector extension. In particular, let Ag be the universal family
over Ag, where Ag is the moduli space of principally polarized abelian varieties
with level-4-structure, and let A\

g be the universal vector extension of the abelian
scheme Ag/Ag. Then A\

g is NOT a mixed Shimura variety. This suggests that in
order to parametrize Laumon 1-motives we must extend this notion. Note that A\

g
is still not large enough: it cannot give any information on the weight −2 part of
Laumon 1-motives, that is, the toric part of G.

1.3. Goals of this paper. In Sections 1.4–1.6 of the Introduction, we briefly
explain the three main goals of the paper, each one occupying a subsection.

1.4. Moduli space in the Deligne–Pink language: enlarged mixed Shimura
varieties. The first main goal of this paper is to develop the theory of
enlarged mixed Shimura varieties, in order to allow vector extensions and
parametrize Laumon 1-motives. This is done in Sections 3 and 4. We define a
pair, called an enlarged mixed Shimura datum, consisting of a Q-group P and
a simply connected complex analytic space X \ satisfying some properties (see
Definition 3.1), and define an enlarged mixed Shimura variety to be the quotient
of X \ by a congruence subgroup of P(Q). Then we prove that any such defined
enlarged mixed Shimura variety admits a structure of algebraic variety over a
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number field canonically associated to the enlarged mixed Shimura datum. This
is exactly what Deligne and Pink did for (mixed) Shimura varieties, so we call this
language of enlarged mixed Shimura data and enlarged mixed Shimura varieties
the Deligne–Pink language. The importance of the Deligne–Pink language for
the study of mixed Shimura varieties is revealed by almost any article on (mixed)
Shimura varieties. As for enlarged mixed Shimura varieties, let me just point
out that every result we prove in this paper (characterization of geometrically bi-
algebraic subvarieties, the logarithmic Ax theorem, the Ax-Lindemann theorem
and the Ax-Schanuel conjecture for the unipotent part) relies heavily on this
language.

The A\
g defined at the end of last subsection is an example of enlarged

mixed Shimura varieties which are not mixed Shimura varieties. Another such
example is the universal vectorial bi-extension P\

g studied by Coleman [12] (see
Example 4.5(2)), which is defined as follows in geometric terms: let Pg be the
universal Poincaré biextension, that is, the Gm-torsor over Ag × A∨g whose fiber
(Pg)a for any point a ∈ Ag is the Poincaré bi-extension over (Ag)a × (A

∨

g )a . Let
A\

g be the universal vector extension of the abelian scheme Ag/Ag. Then P\
g is the

pullback of Pg by A\
g×(A

∨

g )
\
→ Ag×A

∨

g . The typical example of enlarged mixed
Shimura variety to keep in mind is (P\

g)
[n], that is, the n-fiber product of P\

g over
A\

g × (A
∨

g )
\. The advantage of (P\

g)
[n] to A\

g is that it also reflects information on
the weight −2 part of Laumon 1-motives.

1.5. Functional transcendental results: Ax-Schanuel. Let S\ be a connected
enlarged mixed Shimura variety and let unif\ : X \+

→ S\ be its uniformization.
As we shall see in Section 5.1, there exists a complex algebraic variety X \,∨

such that X \+ can be embedded as a semialgebraic open subset (in the usual
topology) of X \,∨. The second main goal of this paper is to study some functional
transcendental results. We start with (Theorem 6.3 and Section 7):

THEOREM 1.2 (logarithmic Ax). Let Z \ be an irreducible subvariety of S\ and
let Z̃ \ be a complex analytic irreducible component of (unif\)−1(Z \). Then the
image of (Z̃ \)Zar, the Zariski closure of Z̃ \ in X \+, (It means that (Z̃ \)Zar is
the complex analytic irreducible component of X \+

∩ (Zariski closure of Z̃ \ in
X \,∨) which contains Z̃ \.) under unif\ is quasi-linear.

THEOREM 1.3 (Ax-Lindemann). Let Z̃ \ be a semialgebraic subset of X \+. Then
any irreducible component of (unif\(Z̃ \))Zar is quasilinear.

Quasilinear subvarieties of S\ will be defined in the next subsection of the
Introduction (Definition 1.7). Theorem 1.2 is proven for pure Shimura varieties
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by Moonen [27, 3.6, 3.7] and for mixed Shimura varieties by the author
[16, Theorem 8.1]. Theorem 1.3 plays an essential role in the proof of the André–
Oort conjecture. It is proven for Y (1)n by Pila [32], for projective pure Shimura
varieties by Ullmo–Yafaev [46], for Ag by Pila–Tsimerman [34], for any pure
Shimura variety by Klingler–Ullmo–Yafaev [22], and for any mixed Shimura
variety by the author [16, Theorem 1.2].

We make some comparison of the proofs of Theorem 1.2 and Theorem 1.3 with
the author’s previous work on mixed Shimura varieties [16]. In both situations
it is important to study the geometric bi-algebraic systems associated with the
ambient varieties (we elaborate on this in the next subsection). We need the
characterization of geometrically bi-algebraic subvarieties in both situations. For
mixed Shimura varieties, logarithmic Ax follows from André’s result on the
algebraic monodromy groups without much effort and the characterization comes
as a byproduct. But for enlarged mixed Shimura varieties, Hodge theory itself is
not enough. We should study the geometry of S\ more carefully and it is better
to separate the proofs into two parts: first prove that geometrically bi-algebraic
subvarieties of S\ are precisely quasilinear subvarieties, then prove that the target
objects in the conclusions are geometrically bi-algebraic. The first part is new
compared to [16], but the second part is only a slight modification.

Here is a common generalization of Theorems 1.2 and 1.3.

CONJECTURE 1.4 (Ax-Schanuel). Let ∆\
⊂ X \+

× S\ be the graph of unif\. Let

Z\
= graph(Z̃ \ unif\

−−→ Z \) be a complex analytic irreducible subvariety of ∆\. Let
F \ be the smallest quasilinear subvariety of S\ which contains Z \. Then

(1) dim(Z̃ \)Zar
+ dim(Z \)Zar

− dim Z̃ \ > dim F \.

(2) Let B\
:= (Z\)Zar

⊂ X \+
× S\. Then dim prws

F\(B
\) − dim prws

F\(Z
\) >

dim(F \)ws.

Let us emphasize that while Z\ is complex analytic, there is no reason that Z \

is closed in S\. So F \ contains the complex analytic closure of Z \ in S\.
We explain part (2) in the next subsection of the Introduction (below

Definition 1.7). For the moment let me just point out why both parts of
Conjecture 1.4 are needed:

• Conjecture 1.4 is a natural generalization of the Ax-Schanuel theorem [2]
(see [40, Introduction]). Ax’ theorem, concerning Cn

→ (C∗)n , implies both
logarithmic Ax and Ax-Lindemann for this bi-algebraic system, and describes
the Zariski closure of complex analytic subvarieties of the graph. This is still
expected to hold for mixed Shimura varieties (Conjecture 8.1). If we want
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to make an Ax-Schanuel conjecture for enlarged mixed Shimura varieties, it
should then reflect both aspects. Note that for mixed Shimura varieties, part (2)
already implies part (1).

• Part (1) of Conjecture 1.4 implies both logarithmic Ax (Theorem 1.2) and Ax-
Lindemann (Theorem 1.3), while part (2) does not.

• Part (2) of Conjecture 1.4 describes the Zariski closure of Z\ in the ambient
space X \+

× S\, while part (1) does not.

We prove the following cases for Conjecture 1.4.

THEOREM 1.5. Conjecture 1.4 holds in the following cases:

(1) When Z̃ \ is algebraic (equivalent to Ax-Lindemann by Theorem 8.5).

(2) When Z \ is algebraic (equivalent to logarithmic Ax by Theorem 8.4).

Little is known for Conjecture 1.4 beyond Ax-Lindemann and logarithmic Ax:
Ax [3] proved part (2) for the universal vector extension of any semi-abelian
variety, (Ax’ theorem was about any complex algebraic group with its Lie algebra,
but this is easily reduced to the case of abelian groups with their Lie algebras, and
hence is equivalent to the statement for the universal vector extension of any semi-
abelian variety.) and Pila–Tsimerman [35] proved the conjecture for Y (1)n (one
crucial point is that each simple factor of the group attached to Y (1)n , which is
SL2(Q), is small).

1.6. Quasilinear subvarieties and geometric bi-algebraicity. Notation: for
any abelian scheme A→ B with unit section ε, denote by ωA/B := ε

∗Ω1
A/B .

A crucial ingredient for Conjecture 1.4 is to understand the geometric bi-
algebraic system associated with S\. This is the third main goal of this paper.
We briefly explain this in this subsection. We say that an irreducible subvariety
Y \ of S\ is geometrically bi-algebraic if one (and hence all) complex analytic
irreducible component of (unif\)−1(Y \) is algebraizable, that is, its dimension
equals the dimension of its Zariski closure in X \,∨. As we pointed out, the
first step to prove any Ax type theorem is to establish the characterization of
geometrically bi-algebraic subvarieties of S\. The result cannot be as elegant as
for mixed Shimura varieties. Take for example S\ = A\

g. Any algebraic subvariety
Y \ contained in a fiber of A\

g → Ag is geometrically bi-algebraic. However, we
prove that this is the only problem: for the exact sequence 0→ ωA∨g /Ag → A\

g →

Ag → 0 of groups over Ag, the ‘nonlinear’ part of any geometrically bi-algebraic
subvariety Y \ of A\

g can only lie in the trivial subbundle of the vector bundle
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part, that is, of ωA∨g /Ag |YG where YG is the image of Y \ in Ag. More precisely we
prove the following characterization of geometrically bi-algebraic subvarieties of
enlarged mixed Shimura varieties (Theorem 5.7):

THEOREM 1.6. An irreducible subvariety Y \ of S\ is geometrically bi-algebraic
if and only if it is quasilinear.

Let us define quasilinear subvarieties of S\. We shall see in Section 3.4 that
there is a commutative diagram for any connected enlarged mixed Shimura variety
(on the right for (P\

g)
[n]):

S\
[π]] //

[π
\
P/U ]

��

S
[π ]

  
[πP/U ]

��

(P\
g)
[n] //

��

P[n]g

##��
S\P/U

[π
]
P/U ]

// SP/U
[πG ]

// SG A\
g × (A

∨

g )
\ // Ag × A∨g

// Ag

(1.1)
where

• all maps in the diagram are projections defined in some natural way;

• S is a connected mixed Shimura variety, and SP/U is the quotient of S by its
weight −2 part and SG is its pure part (and hence SP/U is an abelian scheme
over SG);

• S\P/U is the universal vector extension of the abelian scheme SP/U → SG .

To define quasilinear subvarieties of S\ we need some preparation. Let YG

be a subvariety of SG . Let YP/U ⊂ SP/U |YG := [πP/U ]
−1(YG) be the translate

of an abelian subscheme of SP/U |YG → YG by a torsion section and then by
a constant section of its isotrivial part. Denote by Y univ

P/U the universal vector
extension of the abelian scheme YP/U → YG . Then by the universal property of
the universal vector extension there is a unique embedding Y univ

P/U ⊂ S\P/U |YP/U :=

[π
]

P/U ]
−1(YP/U ) compatible with the embedding YP/U ⊂ SP/U |YG mentioned

above. More concretely there is a unique embedding i (left vertical arrow) of
vector groups over YG inducing the following push-out:

0 // ωY∨P/U /YG
//

_�

i

��

Y univ
P/U

//

��

YP/U
//

=

��

0

0 // ω[πG ]−1(YG )∨/YG
// S\P/U |YP/U

// YP/U
// 0
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Then we obtain another vector extension of YP/U

0→
ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

→
S\P/U |YP/U

Y univ
P/U

→ YP/U → 0,

with the unique map

Y univ
P/U →

S\P/U |YP/U

Y univ
P/U

being 0. Hence
S\P/U |YP/U

Y univ
P/U

' YP/U ×YG

ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

.

Thus
S\P/U |YP/U = Y univ

P/U ×YG

ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

.

Denote by V(0)
|YG the largest trivial subbundle of

ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

.

For simplicity we use ωextr to denote

ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

.

If furthermore YG is a weakly special subvariety of SG , then denote by H the
connected algebraic monodromy group of YG . Then the pullback of ωextr under the
universal cover ỸG → YG , which we call ω̃extr, is an H(R)-bundle. We say that a
subvariety K\ of ωextr is an automorphic subvariety if it is the image of H(R)+ K̃ \

under the natural projection ω̃extr
→ ωextr for some K̃ \ in a fiber of ω̃extr

→ ỸG .
Note that K̃ \ can be chosen to be invariant under a maximal compact subgroup of
H(R)+; see (5.3).

Now we are ready to define

DEFINITION 1.7. An irreducible subvariety Y \ of S\ is called quasilinear if the
followings hold: under the following notations for Y \ compatible with (1.1)

Y \ � //
_

��

Y �

!!

_

��
Y \

P/U
� // YP/U

� // YG
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(1) Y is a weakly special subvariety of S. In particular, YP/U is the translate of
an abelian subscheme of SP/U |YG → YG by a torsion section and then by a
constant section of its isotrivial part.

(2) Under the notations above the theorem, Y \

P/U = Y univ
P/U ×YG (L

\
× YG)×YG K\,

where L\ is an irreducible algebraic subvariety of any fiber of V(0)
|YG → YG ,

and K\ is an irreducible automorphic subvariety of the bundle

ω[πG ]−1(YG )∨/YG

ωY∨P/U /YG

whose intersection with V(0)
|YG is contained in the zero section.

(3) Y \
= Y ×YP/U Y \

P/U for the cartesian diagram in (1.1).

Now we are ready to explain the terminology in part (2) of Conjecture 1.4.
Apply Theorem 1.6 to the bi-algebraic subvariety F \ of S\ (hence we change
every letter ‘Y ’ by ‘F’), then we define

(F \)ws
:= F ×FP/U Funiv

P/U

and [pr ]ws
F\ the natural projection F \

→ (F \)ws. Let prws
F̃\ be the natural projection

from F̃ \ to (F̃ \)ws, the uniformization of (F \)ws. Then we define

prws
F\ := (prws

F̃\ , [pr ]ws
F\) : F̃ \

× F \
→ (F̃ \)ws

× (F \)ws.

1.7. André–Oort and Zilber–Pink type problems for enlarged mixed
Shimura varieties. In Section 9, we briefly discuss about special points
and special subvarieties of enlarged mixed Shimura varieties. We discuss
Conjecture 1.1.

Structure of the paper. We review Pink’s work on equivariant families of
mixed Hodge structures in Section 2. This is the foundation of the Deligne–Pink
language for enlarged mixed Shimura varieties. Then we define and prove basic
properties of enlarged mixed Shimura varieties in Section 3 (for enlarged mixed
Shimura data) and Section 4 (for enlarged mixed Shimura varieties). In particular,
we study their relationship with the mixed Shimura varieties, explaining both
the categorical comparison and the geometrical comparison. We also prove that
any enlarged mixed Shimura variety, a priori defined as a complex analytic
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space, is algebraic and can be canonically descended to its reflex field. Section 5
discusses about the geometric bi-algebraicity and proves the characterization of
geometrically bi-algebraic subvarieties of enlarged mixed Shimura varieties. Then
we study Ax type transcendental results for enlarged mixed Shimura varieties in
the next sections. We prove logarithmic Ax in Section 6 and Ax-Lindemann in
Section 7. In Section 8, we formulate the Ax-Schanuel conjecture, explain its
meaning and prove its relation with logarithmic Ax and with Ax-Lindemann.
Finally we make a small discussion about André–Oort and Zilber–Pink type
problems in Section 9.

Convention. For any abelian scheme A → B with unit section ε, denote by
ωA/B := ε

∗Ω1
A/B .

Since we only talk about geometric bi-algebraicity in the main body of the
paper, we abbreviate ‘geometrically bi-algebraic’ to ‘bi-algebraic’.

When we say ‘definable’, we mean definable in the o-minimal structure Ran,exp.

2. Pink’s work on equivariant families of mixed Hodge structures

In this section, we review Pink’s work on equivariant families of mixed Hodge
structures. The reference of the whole section is [36, Ch. 1].

2.1. Mixed Hodge structure. In this subsection, we recall some background
knowledge about rational mixed Hodge structures. In this subsection, the ring
R = Z or Q.

2.1.1. Basic facts about mixed Hodge structures. We start by collecting some
basic notions about Hodge structures.

Let M be a free R-module of finite rank. A pure Hodge structure of weight
n ∈ Z on M is a decomposition MC =

⊕
p+q=n M p,q into C-vector spaces such

that for all p, q ∈ Z with p+q = n one has Mq,p = M p,q . The associated Hodge
filtration on MC is defined by F p MC :=

⊕
p′>p M p′,q . It determines the Hodge

structure uniquely, because M p,q
= F p MC ∩ Fq MC.

A mixed R-Hodge structure on M is a triple (M, {Wn M}n∈Z, {F p MC}p∈Z)

consisting of an ascending exhausting separated filtration {Wn M}n∈Z of M by R-
modules of finite rank with each M/Wn M free, called weight filtration, together
with a descending exhausting separated filtration {F p MC}p∈Z of MC, called
Hodge filtration, such that the Hodge filtration induces a pure Hodge structure
of weight n on GrW

n M := Wn M/Wn−1 M for all n ∈ Z. A pure Hodge structure of
weight n is then a special case of a mixed Hodge structure by defining the weight
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filtration as Wn′M = M for n′ > n and Wn′M = 0 for n′ < n. The notions of
weight 6 n and of weight > n are defined in the obvious way.

The Hodge numbers are h p,q
:= dimC(GrW

p+q M)p,q . They satisfy hq,p
= h p,q ,

almost all h p,q are zero, and
∑

h p,q
= dim M . If A ⊂ Z ⊕ Z is an arbitrary

subset, then we say that the Hodge structure (M, {Wn M}n∈Z, {F p MC}p∈Z) is of
type A if h p,q

= 0⇔ (p, q) /∈ A.
A morphism of mixed R-Hodge structures is a homomorphism f : M → M ′

such that f (Wn M)⊂ Wn M ′ and f (F p MC)⊂ F p M ′C for all n, p ∈ Z. The rational
mixed Hodge structures form an abelian category with these morphisms. Given
mixed R-Hodge structures on M1 and M2, there are canonical rational mixed
Hodge structures on M1 ⊕ M2, on the dual M∨1 and on Hom(M1,M2).

A mixed Hodge structure on M is said to split over R if there exists a
decomposition MC =

⊕
p,q M p,q such that Wn MC =

⊕
p+q6n M p,q , F p MC =⊕

p′>p M p′,q and Mq,p = M p,q . This decomposition is then uniquely determined
by these properties. Every pure Hodge structure splits over R, but not every mixed
Hodge structure does. However, we still have (see [36, 1.2])

PROPOSITION 2.1 (Deligne). Fix a mixed R-Hodge structure on M.

(1) There exists a decomposition MC =
⊕

p,q M p,q such that Wn MC =⊕
p+q6n M p,q and F p MC =

⊕
p′>p M p′,q .

(2) The Hodge structure is uniquely determined by any such decomposition.

(3) There exists a unique decomposition as in (1) which also satisfies

Mq,p ≡ M p,q mod
⊕

p′<p,q ′<q

M p′,q ′ .

2.1.2. Deligne torus. Let S := ResC/RGm,C. The torus S is called the Deligne
torus. Over C it is canonically isomorphic to Gm,C × Gm,C, but the action of
complex conjugation is twisted by the automorphism c that interchanges the two
factors. In particular, S(R) = C∗ ⊂ S(C) = C∗ × C∗ consists of the points
(z, z) with z ∈ C∗. While the character group of Gm,C is Z in the standard way,
we identify the character group of S with Z ⊕ Z such that the character (p, q)
maps z ∈ S(R) = C∗ to z−pz−q

∈ C∗. Under this identification the complex
conjugation operates on Z ⊕ Z by interchanging the two factors. The following
homomorphisms are important:

• the weight ω : Gm,R ↪→ S induced by R∗ ⊂ C∗;

• µ : Gm,C→ SC sending z ∈ C∗ 7→ (z, 1) ∈ C∗ × C∗ = S(C);
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• the norm N : S� Gm,R sending z ∈ S(R) = C∗ 7→ zz ∈ R∗. The kernel S1 of
N is anisotropic over R, and we have a short exact sequence 1→ S1

→ S→
Gm,R→ 1.

Let M be a free R-module of finite rank. The choice of a representation
k : SC → GL(MC) is equivalent to the choice of a decomposition MC =⊕

p,q M p,q , where M p,q is the eigenspace in MC to the character (p, q). Define
Wn MC =

⊕
p+q6n M p,q and F p MC =

⊕
p′>p M p′,q . We want to understand when

the triple (M, {Wn MC}, {F p MC}) is a mixed R-Hodge structure on M (so, in
particular, Wn MC is defined over R for all n). The following two propositions
of Pink will tell us under which condition on k this is the case for R = Q.

PROPOSITION 2.2 [36, 1.4]. Let P be a connected Q-linear algebraic group. Let
W := Ru(P) be its unipotent radical, let G := P/W and let π : P → G be
the quotient map. Let h : SC → PC be a homomorphism such that the following
conditions hold:

• π ◦ h : SC→ GC is defined over R;

• π ◦ h ◦ ω : Gm,R→ GR is a cocharacter of the center of G defined over Q;

• Under the weight filtration on (LieP)C defined by AdP ◦ h we have
W−1(LieP) = LieW .

Then

(1) For every (Q-)representation ρ : P → GL(M), the homomorphism ρ ◦ h :
SC→ GL(MC) induces a rational mixed Hodge structure on M.

(2) The weight filtration on M is stable under P.

(3) For any p ∈ P(R)W (C), the assertions (1) and (2) also hold for int(p) ◦ h in
place of h. The weight filtration and the Hodge numbers in any representation
are the same for int(p) ◦ h and for h.

PROPOSITION 2.3. Let M be a finite-dimensional Q-vector space. A
representation k : SC → GL(MC) defines a rational mixed Hodge structure
on M if and only if there exist a connected Q-linear algebraic group P, a
representation ρ : P → GL(M) and a homomorphism h : SC → PC such that
k = ρ ◦ h and the conditions in Proposition 2.2 are satisfied. Moreover, every
rational mixed Hodge structure on M is obtained by a unique representation
k : SC→ GL(MC) with the property above.
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Proof. This is [36, 1.5] except the ‘Moreover’ part, where the existence of k has
been explained in the paragraph before Proposition 2.2 and the uniqueness of k
follows from Proposition 2.1(3).

2.1.3. Mumford–Tate group and polarizations. Let M be a free R-module
of finite rank equipped with a mixed R-Hodge structure (M, {Wn M}n∈Z,
{F p MC}p∈Z). By Proposition 2.3, the corresponding rational mixed Hodge
structure on MQ gives rises to a representation k : SC→ GL(MC).

DEFINITION 2.4. The Mumford–Tate group of this mixed R-Hodge structure
is defined to be the smallest Q-subgroup P of GL(MQ) such that k(SC) ⊂ PC.

Before defining the polarizations of pure Hodge structures, we introduce the
Tate Hodge structure, which is defined to be the free R-module of rank 1
R(1) := 2π

√
−1R with the pure R-Hodge structure of type (−1,−1). For every

n ∈ Z, we get a pure R-Hodge structure of type (−n,−n) on R(n) := R(1)⊗n .

DEFINITION 2.5. Suppose that the R-Hodge structure on M is pure of weight n.
A polarization of this Hodge structure is a homomorphism of Hodge structures

Q : M ⊗ M → R(−n)

which is (−1)n-symmetric and such that the real-valued symmetric bilinear form
Q ′(u, v) := (2π

√
−1)n Q(Cu, v) is positive-definite on MR, where C acts on

M p,q by C |M p,q = (
√
−1)p−q .

2.1.4. Variation of mixed Hodge structures.

DEFINITION 2.6 [29, Definition 14.44]. Let S be a complex manifold. A
variation of mixed R-Hodge structures over S is a triple (V,W·,F ·) with

(1) a local system V of free R-modules of finite rank on S;

(2) a finite increasing filtration {Wm} of the local system V by local subsystems
with torsion free GrW

n V for each n (this is called the weight filtration);

(3) a finite decreasing filtration {F p
} of the holomorphic vector bundle V :=

V⊗RS OS , where RS is the constant sheaf over S, by holomorphic subbundles
(this is called the Hodge filtration).

such that

(1) for each s ∈ S, the filtrations {F p(s)} and {Wm} of V(s) ' Vs ⊗R C define a
mixed Hodge structure on the R-module of finite rank Vs ;
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(2) the connection ∇ : V → V ⊗OS Ω
1
S whose sheaf of horizontal sections is VC

satisfies the Grif and only if its transversality condition

∇(F p) ⊂ F p−1
⊗Ω1

S .

DEFINITION 2.7. A variation of mixed Hodge structures over S is said to be
graded-polarizable if the induced variations of pure Hodge structure GrW

n V are
all polarizable, that is, for each n, there exists a flat morphism of variations

Qn : GrW
n V⊗ GrW

n V→ R(−n)S

which induces on each fiber a polarization of the corresponding Hodge structure
of weight n.

2.2. Equivariant families of Hodge structures. Now we are ready to discuss
equivariant families of Hodge structures, or more precisely homogeneous spaces
parametrizing certain rational mixed Hodge structures.

PROPOSITION 2.8 (Pink [36, 1.7]). Let P be a connected Q-linear group and let
W :=Ru(P) be its unipotent radical. Let D\ be a P(R)W (C)-conjugacy class in
Hom(SC, PC). Assume that for one (and hence for all by Proposition 2.2(3)) h ∈
D\, the conditions in Proposition 2.2 holds. Let M be any faithful representation
of P and let ϕ be the obvious map

ϕ : D\
→ {rational mixed Hodge structures on M}

given by Propostion 2.2(1). Then:

(1) There exists a unique structure on ϕ(D\) as a complex manifold such that the
Hodge filtration on MC depends analytically on ϕ(h) ∈ ϕ(D\). This structure
is P(R)W (C)-invariant and W (C) acts analytically on ϕ(D\).

(2) For any other representation M ′ of P the analogous map

ϕ′ : D\
→ {rational mixed Hodge structures on M ′}

factors through ϕ(D\). The Hodge filtration on M ′ varies analytically with
ϕ(h) ∈ ϕ(D\).

(3) If in addition M ′ is faithful, then ϕ(D\) and ϕ′(D\) are canonically
isomorphic and the isomorphism is compatible with the complex structure.
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REMARK 2.9. By the proof of [36, 1.7], the map ϕ factors through

D\
' P(R)W (C)/CentP(R)W (C)(h)→ P(C)/F0

h PC ↪→ Grass(M)(C),

where the last map is a closed embedding.

The following lemma will be useful:

LEMMA 2.10 (Pink [36, 1.8]). Let P, D\, M and ϕ be as in Proposition 2.8. Then
for any h ∈ D\, the projection π : P → G := P/Ru(P) induces an isomorphism

CentP(R)W (C)(h)
∼

−→ CentG(R)(π ◦ h).

Two natural questions about this equivariant family of Hodge structures arise:
under which condition do we get a variation of rational Hodge structure on M over
ϕ(D\)? Is there a subset D of D\ having the same image under ϕ such that ϕ|D
is finite? Both questions are answered by Pink. In the following two propositions,
we let P , D\, M and ϕ be as in Proposition 2.8.

PROPOSITION 2.11 (Pink [36, 1.10]). We have a variation of rational mixed
Hodge structures on M over ϕ(D\) if and only if for one (and hence for all)
h ∈ D\ the Hodge structure on LieP is of type

{(−1, 1), (0, 0), (1,−1), (−1, 0), (0,−1), (−1,−1)}.

PROPOSITION 2.12 (Pink [36, 1.16]). Let U < W be the unique connected
subgroup such that LieU =W−2(LieW ) (by Proposition 2.2(3), it does not depend
on h ∈ D\). Let π ′ be the quotient P → P/U. Let

D := {h ∈ D\
| π ′ ◦ h : SC→ (P/U )C is defined over R}.

Then

(1) D is a nonempty P(R)U (C)-orbit in Hom(SC, PC);

(2) ϕ(D) = ϕ(D\);

(3) If F0(LieU )C = 0, then ϕ(D) ' D.

Before moving on, let us make the following remark: in the study of mixed
Shimura varieties one often identifies ϕ(D) and D by Proposition 2.12(3),
however to study enlarged mixed Shimura varieties it is important to distinguish
ϕ(D) and D. We will be careful about this in the whole paper.
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3. Enlarged mixed Shimura data

DEFINITION 3.1. An enlarged mixed Shimura datum (P,X \, h) is a triple
where

• P is a connected linear algebraic group over Q. We denote by W its unipotent
radical and by U ⊂ W be the connected normal subgroup of P uniquely
determined by condition (3) below;

• X \ is a left homogeneous space under the subgroup P(R)W (C) ⊂ P(C), and
X \ h
−→ Hom(SC, PC) is a P(R)W (C)-equivariant map such that every fiber

of h consists of at most finitely many points, (See Remark 3.2(2) for some
discussion.)

such that for some (equivalently for all) x ∈ X \,

(1) the composite homomorphism SC
hx
−→ PC→ (P/W )C is defined over R,

(2) the adjoint representation induces on LieP a rational mixed Hodge structure
of type

{(−1, 1), (0, 0), (1,−1)} ∪ {(−1, 0), (0,−1)} ∪ {(−1,−1)},

(3) the weight filtration on LieP is given by

Wn(LieP) =


0 if n < −2,
LieU if n = −2,
LieW if n = −1,
LieP if n > 0,

(4) the conjugation by hx(
√
−1) induces a Cartan involution on Gad

R where G :=
P/W , and Gad possesses no Q-factor H such that H(R) is compact,

(5) P/Pder
= Z(G) acts on U and on V := W/U through a torus which is an

almost direct product of a Q-split torus with a torus of compact type over Q.

If in addition U is trivial, then (P,X \, h) is said to be of Kuga type. For
simplicity we mostly write (P,X \) since we always consider exactly one map
h for every pair (P,X \).

REMARK 3.2. (1) Conditions (2) and (3) together imply that the composite
homomorphism Gm,C

ω
−→ SC

hx
−→ PC→ (P/W )C is a cocharacter of the center

of P/W defined over R. This map is called the weight.
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(2) We shall compare Definition 3.1 with that of mixed Shimura data in [36,
2.1] in Section 3.1 (categorical comparison) and Section 3.2 (geometric
comparison). According to Pink [36, 2.1], a mixed Shimura datum is a triple
(P,X , h) where P is as in Definition 3.1, X is a left homogeneous space
under P(R)U (C) and h : X → Hom(SC, PC) is P(R)U (C)-equivariant such
that all the conditions in Definition 3.1 are satisfied for any x ∈ X , with
P/W replaced by P/U in condition (1). For those who are familiar with
mixed Shimura data, the action of P(R)U (C) on X can be extended to
an action of P(R)W (C). (Let M and ϕ be as in Proposition 2.8, then the
action of P(R)U (C) on ϕ ◦ h(X ) extends to an action of P(R)W (C) by
Proposition 2.12. Hence the action of P(R)U (C) on X extends to an action
of P(R)W (C) because ϕ(h(X )) ' h(X ) and every fiber of h is at most
finite.) But the map h : X → Hom(SC, PC) is NOT P(R)W (C)-equivariant
because CentP(R)W (C)(hx) is reductive by Lemma 2.10.

(3) Any pure Shimura datum or any mixed Shimura datum with trivial weight
−1 part is by definition an enlarged mixed Shimura datum.

In view of Remark 3.2(2) and Proposition 2.12, enlarged mixed Shimura
data and mixed Shimura data encrypt the same information from the Hodge
theory. Therefore, in order to define morphisms between enlarged mixed Shimura
data, other aspects should be taken into consideration. We postpone it to later
subsections. For the moment let us define:

DEFINITION 3.3. A coarse morphism (P1,X \

1 , h1) → (P2,X \

2 , h2) between
enlarged mixed Shimura data consists of a homomorphism f : P1 → P2 and
a P1(R)W1(C)-equivariant map fs : X \

1 → X \

2 such that the following diagram
commutes:

X \

1
fs //

h1

��

X \

2

h2

��
Hom(SC, P1,C)

h 7→ f ◦h // Hom(SC, P2,C)

3.1. Categorical comparison and some constructions. We define
morphisms between enlarged mixed Shimura data in the current subsection.
Its geometric aspect (beyond Hodge theory) will be discussed in the next
subsection.

We need the following preparation.
Given an enlarged mixed Shimura datum (P,X \, h), let D\

:= h(X \) and let
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D be the subset of D\ defined in Proposition 2.12. Let X := h−1(D) ⊂ X \.
Then it is easy to check that (P,X , h|X ) is a mixed Shimura datum. We say that
(P,X , h|X ) is the mixed Shimura datum associated with (P,X \, h).

DEFINITION 3.4. (1) A morphism f : (P1,X \

1 , h1) → (P2,X \, h2) between
enlarged mixed Shimura data is a coarse morphism satisfying the following
property. For the associated mixed Shimura data (P1,X1, h1|X1) and (P2,X2,

h2|X2) defined as above, we have f (X1) ⊂ X2.

(2) The category of enlarged mixed Shimura data EMSD is defined as
follows: its objects are the collection of enlarged mixed Shimura data, and its
morphisms are the collection of morphisms between enlarged mixed Shimura
data.

We have the following categorical comparison.

LEMMA 3.5 (Categorical Comparison Lemma between EMSD and MSD). The
category EMSD and the category of mixed Shimura data MSD are equivalent.

Proof. By definition of EMSD, we have a functor F : EMSD→MSD.
Given a mixed Shimura datum (P,X , h), let D := h(X ) and let D\ be the

P(R)W (C)-conjugacy class in Hom(SC, PC) of any element of D. Let M and ϕ
be as in Proposition 2.8. Then we have ϕ(D\) = ϕ(D) ' D by Proposition 2.12.
Now take the fiber product X \

:= X ×ϕ(D\) D\ and let h\ be the projection of X \

to the second factor in the fiber product. Recall that ϕ is P(R)W (C)-equivariant.
Then it is not hard to check that (P,X \, h\) is an enlarged mixed Shimura datum.
We say that (P,X \, h\) is the enlarged mixed Shimura datum associated with
(P,X , h). The upshot is that F is essentially surjective.

Now given a morphism f : (P1,X1, h1) → (P2,X2, h2) of mixed Shimura
data, let us construct a morphism of the associated enlarged mixed Shimura
data f \ : (P1,X \

1 , h\1)→ (P2,X \

2 , h\2). Now f gives a P1(R)U1(C)-invariant map
D1 → D2, which naturally extends to a P1(R)W1(C)-invariant map D\

1 → D\

2.
Hence by construction of X \ we obtain a coarse morphism f \ : (P1,X \

1 , h\1) →
(P2,X \

2 , h\2) of enlarged mixed Shimura data. It is not hard to check that f \ is a
morphism between enlarged mixed Shimura data. Hence F is full.

It remains to show that F is faithful. Suppose f, f ′ are morphisms (P1,X \

1 ,

h1)→ (P2,X \

2 , h2) such that f |(P1,X1,h1|X1 )
= f ′|(P1,X1,h1|X1 )

where (P1,X1, h1|X1)

is the associated mixed Shimura datum. Since X1 is defined to be a subset of
X \

1 and f, f ′ are both P1(R)W1(C)-equivariant, we have f = f ′. Hence we are
done.

With this lemma and known results of mixed Shimura data, we can do some
construction for enlarged mixed Shimura data.
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PROPOSITION 3.6 (Quotient). Let (P,X \) be an enlarged mixed Shimura datum
and let P0 be a normal subgroup of P. Then there exists a quotient enlarged mixed
Shimura datum (P,X \)/P0 and a morphism (P,X \) → (P,X \)/P0, unique
up to isomorphism, such that every morphism (P,X \) → (Q,Y \), where the
homomorphism P → Q factors through P/P0, factors in a unique way through
(P,X \)/P0. Moreover let (P,X ) be the mixed Shimura datum associated with
(P,X \), then (P,X \)/P0 is the enlarged mixed Shimura datum associated with
(P,X )/P0.

Proof. Pink [36, 2.9] proved the existence of the quotient mixed Shimura datum
(P,X )/P0. Then the proposition follows from the categorical comparison lemma
(Lemma 3.5) above.

PROPOSITION 3.7 (Unipotent extension). Let (P,X \) be an enlarged mixed
Shimura datum and let 1 → W0 → Q → P → 1 be an extension of P by a
unipotent group W0. Assume

• the adjoint action of Q on every abelian subquotient of W0 factors through P;

• every irreducible subquotient of LieW0 is of type {(−1, 0), (0,−1), (−1,−1)}
as a representation of G := P/Ru(P);

• the center of G acts on every irreducible subquotient of LieW0 through a torus
that is an almost direct product of a Q-split torus with a torus of compact type
over Q.

Then we have

(1) There exists an enlarged mixed Shimura datum (Q,Y \) and a morphism
(Q,Y \) → (P,X \), both unique up to isomorphism, extending the
homomorphism Q → P such that (Q,Y \)/W0 ' (P,X \).

(2) For every morphism (P1,X \

1 ) → (P,X \) and every factorization P1 →

Q → P, there exists a unique extension (P1,X \

1 )→ (Q,Y \)→ (P,X \).

(3) Let (P,X ) be the mixed Shimura datum associated with (P,X \) and let (Q,
Y) be the unipotent extension of (P,X ) be W0 defined by Pink [36, 2.17].
Then (Q,Y \) is the enlarged mixed Shimura datum associated with (Q,Y).

Proof. In fact Conclusion (3) gives the construction and the categorical
comparison lemma (Lemma 3.5) proves that this is what we desire.
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3.2. Structure of the underlying space and the geometric comparison. In
this subsection we study the underlying space X \ of an enlarged mixed Shimura
datum. In particular, we make a geometric comparison between enlarged mixed
Shimura data and mixed Shimura data. This explains the geometric aspect of the
definition of morphisms of enlarged mixed Shimura data.

Given an enlarged mixed Shimura datum (P,X \, h), let D\
:= h(X \) and

let D be the subset of D\ defined in Proposition 2.12. Let M and ϕ be as in
Proposition 2.8. Then ϕ(D\) = ϕ(D) ' D by Proposition 2.12. Hence the triple
(P, ϕ(D), ϕ|−1

D ) is a mixed Shimura datum. Consider the following projection
map, which is the geometric comparison we use:

π ] : (P,X \, h)→ (P, ϕ(D), ϕ|−1
D ), (p, x) 7→ (p, ϕ(hx)). (3.1)

We write (P,X \) and (P, ϕ(D)) for simplicity. Note that any morphism
of enlarged mixed Shimura data f : (P1,X \

1 ) → (P2,X \

2 ) induces a natural
morphism of mixed Shimura data f : (P1, ϕ1(D1))→ (P2, ϕ2(D2)) such that the
following diagram commutes

(P1,X \

1 )
π
]
1 //

f
��

(P1, ϕ1(D1))

f

��
(P2,X \

2 )
π
]
2 // (P2, ϕ2(D2))

in the following way: let (Pi ,Xi) be the associated mixed Shimura data as defined
above Definition 3.4, then by definition of morphisms of enlarged mixed Shimura
data we have f (X1) ⊂ X2. Thus f induces a map from D1 = h(X1) to D2 =

h(X2). As ϕi |Di : Di ' ϕi(Di), we get a map f : ϕ1(D1) → ϕ2(D2), which is
certainly P1(R)U1(C)-equivariant by construction.

Let π \ be the composition

(P,X \)
π]

−→ (P, ϕ(D)) π
−→ (P, ϕ(D))/W =: (G, ϕ(D)G).

We have D\
= h(X \) ' P(R)W (C)/Cent(hx) for any hx ∈ D\, and hence by

Lemma 2.10 D\ is a W (C)-torsor over the complex manifold ϕ(D)G . This endows
D\ with a natural complex structure. More precisely, any Levi decomposition
P = W o G gives a section ϕ(D)G → D\, thus trivializing the W (C)-torsor
D\
' W (C) × ϕ(D)G . This endows D\ with a complex structure. Since two

Levi decompositions of P differ from the conjugation of an element in W (Q),
the complex structure thus defined does not depend on the choice the Levi
decomposition. Note that this complex structure is P(R)W (C)-invariant.
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Since h : X \
→ D\ is a local diffeomorphism, we have a complex structure

on X \, invariant under P(R)W (C). With this complex structure, the underlying
map of every coarse morphism (P1,X \

1 , h1) → (P2,X \

2 , h2) on the underlying
spaces X \

1 → X \

2 is holomorphic. Note that π ] : X \
→ ϕ(D) is holomorphic and

P(R)W (C)-equivariant by Proposition 2.8(1).
Next we define a left P(R)V (C)-homogeneous space D\

P/U ⊂ Hom(SC,

(P/U )C) to be the image of D\ under the obvious morphism Hom(SC, PC) →

Hom(SC, (P/U )C). Then (P/U,D\

P/U , id) is an enlarged mixed Shimura datum.
Apply the geometric comparison discussed above to this enlarged mixed Shimura
datum we get

π
]

P/U : (P/U,D\

P/U )→ (P/U, ϕ(D)P/U ).

We give a better description of π ]P/U . The homologous description for π ] is
given in Section 3.4. By reason of level (condition (3) of Definition 3.1), we know
that LieV is commutative, and hence the exponential morphism LieV → V is an
isomorphism as algebraic groups. So V is commutative, and hence gives rise to
a Q-representation of G and furthermore a variation of rational Hodge structures
over ϕ(D)G of weight −1 and type {(−1, 0), (0,−1)}. Let V := V (C)× ϕ(D)G

be the corresponding holomorphic bundle over ϕ(D)G and let F 0V be the
holomorphic subbundle of V which induces the Hodge filtration in each fiber.

Back to (P/U,D\

P/U ). The space D\

P/U is a (P/U )(R)V (C)-orbit, and there
exists a (P/U )(R)-orbit DP/U ⊂ D\

P/U given by Proposition 2.12. Now any Levi
decomposition P = W o G gives rise to a pair of identifications D\

P/U = V and
DP/U = V (R)× ϕ(D)G . Under this identification we have that

π
]

P/U : D
\

P/U → ϕ(D)P/U is the natural projection V → V/F 0V . (3.2)

Hence π ]P/U is holomorphic.
The following discussion will be useful to understand the morphisms of

enlarged mixed Shimura varieties. For simplicity, let us temporarily assume that
all enlarged mixed Shimura data in the rest of this subsection satisfy U = 1.
Let f : (P1,D\

1) → (P2,D\

2) be a morphism of enlarged mixed Shimura data.
Let fG be the induced morphism (G1, ϕ1(D1)G1) → (G2, ϕ2(D2)G2). Denote by
Vi = Vi(C) × ϕi(Di)Gi . Fix two Levi decompositions P1 = V1 o G1 and P2 =

V2 o G2, which give rise to identifications D\

i = Vi and Di = Vi(R) × ϕi(Di)Gi

for i = 1, 2. Consider the group P∗ of P2 generated by V2 and f (0 o G1).
Then we have two Levi decompositions of P∗, induced by f (P1) < P∗ and by
P2 = V2 o G2 respectively. They differ from the conjugation of an element v2
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in Ru(P∗)(Q) = V2(Q). Thus we have

f (V1) = (v2 + f (V1)(C))× fG(ϕ1(D1)G1) ⊂ V2 (3.3)

and
f (D1) = (v2 + f (V1)(R))× fG(ϕ1(D1)G1) ⊂ D2.

3.3. Structure of the underlying group. One direct corollary of (the proof
of) Lemma 3.5 is that the underlying group remains the same for an enlarged
mixed Shimura datum and its associated mixed Shimura datum. Therefore, for
any enlarged mixed Shimura datum, to study its underlying group it suffices to
look at its associated mixed Shimura datum. Now by Pink [36, 2.15], we have the
following result:

Given an enlarged mixed Shimura datum (P,X \), we can associate to P a 4-
tuple (G, V,U, Ψ ) which is defined as follows:

• G := P/Ru(P) is the reductive part of P;

• U is the normal subgroup of P as in Definition 3.1 (hence the weight −2
part) and V := Ru(P)/U (hence the weight −1 part). Both of them are vector
groups with an action of G induced by conjugation in P (which factors through
G for reason of weight);

• The commutator on W := Ru(P) induces a G-equivariant alternating form
Ψ : V × V → U by reason of weight. Moreover, Ψ is given by a polynomial
with coefficients in Q.

On the other hand, P is uniquely determined up to isomorphism by this 4-tuple:

• let W be the central extension of V by U defined by Ψ . More concretely, W =
U × V as a Q-variety and the group law on W is (u, v)(u ′, v′) = (u + u ′ +
1
2Ψ (v, v

′), v + v′);

• define the action of G on W by g((u, v)) := (gu, gv);

• define P := W o G.

3.4. Notations for EMSD. We fix some notations for the rest of the paper. Let
(P,X \, h) be an enlarged mixed Shimura datum, which for simplicity is often
denoted by (P,X \).
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notation meaning
(P,X ) the associated mixed Shimura datum under Lemma 3.5

(P/U,XP/U ) the quotient mixed Shimura datum (P,X )/U
(P/U,X \

P/U ) (P,X \)/U=the enlarged mixed Shimura datum associated
with (P/U,XP/U )

G, W , U , V as in Section 3.3
D\ h(X \) ⊂ Hom(SC, PC)
D the subset of D\ defined in Proposition 2.12
ϕ the map D\ → {rational mixed Hodge structures on M} for a faithful

representation M of P as in Proposition 2.8
(P/U, ϕ(D)P/U ) the mixed Shimura datum (P, ϕ(D))/U

(G, ϕ(D)G) the mixed Shimura datum (P, ϕ(D))/W

The notations we introduced in Section 3.2 are summarized in the diagram

(P,X \)
π] //

π
\
P/U
��

π \

((

(P, ϕ(D))

πP/U

��
π

vv

(P/U,X \

P/U )
π
]
P/U //

π
\
G

��

(P/U, ϕ(D)P/U )

πG

��
(G, ϕ(D)G)

id // (G, ϕ(D)G)

(3.4)

We explain why the first square is a pullback. Pink proved in [36, 2.18, 2.19] that
ϕ(D) can be identified with a holomorphic complex vector bundle over ϕ(D)G .
In fact let LW := LieWC×ϕ(D)G and let F 0 LW be the holomorphic subbundle
of LW whose fiber over xG is F0

xG
LieWC, then ϕ(D) = LW/F 0 LW . But

F0
xG

VC = F0
xG

LieWC ' exp(F0
xG

LieWC) as algebraic varieties and exp(F0
xG

LieWC)

is a subgroup of W (C) by reason of weight and type for every xG ∈ ϕ(D)G .
So F 0 LW is a subgroup of W (C) × ϕ(D)G over ϕ(D)G and we denote by
F 0V := F 0 LW . Therefore,

F 0V ⊂ D\
= W (C)× ϕ(D)G

π]

−→ ϕ(D). (3.5)

So the first square of the diagram above is a pullback by (3.2).
Before ending this subsection, we remark that it is often enough to consider the

case where X \
= D\ (hence X = D) because of the following lemma:

LEMMA 3.8. For any enlarged mixed Shimura datum (P,X \, h), the canonical
morphism

(P,X \)→ (P,X \)/Pder
× (P, h(X \))
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is injective for both the underlying group and the underlying space. We call such
a morphism a Shimura embedding.

Proof. This follows from the categorical comparison Lemma 3.5 and the parallel
result for mixed Shimura data [36, 2.11].

3.5. Enlarged mixed Shimura data of Siegel type. In this subsection we
focus on some important examples. Let g ∈ N>0. Let V2g be a Q-vector space
of dimension 2g and let

Ψ : V2g × V2g → U2g := Ga,Q (3.6)

be a nondegenerate alternating form. Define

GSp2g := {g ∈ GL(V2g)|Ψ (gv, gv′) = ν(g)Ψ (v, v′) for some ν(g) ∈ Gm},

and Hg ⊂ Hom(S,GSp2g,R) to be the set of all homomorphisms inducing a pure
Hodge structure of type {(−1, 0), (0,−1)} on V2g and for which Ψ or−Ψ defines
a polarization. It is well known that GSp2g is a reductive group and GSp2g(R) acts
transitively on Hg.

3.5.1. We start with the enlarged mixed Shimura datum (P2g,a,X \

2g,a), which
corresponds to the universal vector extension of the universal abelian variety (over
a fine moduli space). (The index ‘a’ is short for ‘abelian’.) See Section 4.2.1 for
further details.

Let
X2g,a := V2g(R)oHg ⊂ Hom(S, V2g,R o GSp2g,R)

denote the conjugacy class under V2g(R) o GSp2g(R) generated by any element
of Hg. Then let

X \

2g,a := V2g(C)oHg ⊂ Hom(SC, V2g,C o GSp2g,C)

be the conjugacy class under V2g(C) o GSp2g(R) generated by any element of
X2g,a. The notation V2g(R)oHg (R = R, C) is justified by the natural bijection

V2g(R)×Hg
∼

−→ V2g(R)oHg, (v
′, x) 7→ int(v′) ◦ x . (3.7)

Under this bijection the action of (v, t) ∈ V2g(C)o GSp2g(R) on V2g(C)oHg is
given by (v, t) · (v′, x) := (v + tv′, t x).

Denote by (P2g,a,X \

2g,a) := (V2goGSp2g, V2g(C)oHg). Then (P2g,a,X2g,a) is a
mixed Shimura datum [36, 2.25] and (P2g,a,X \

2g,a) is the enlarged mixed Shimura
datum associated with (P2g,a,X2g,a).
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Now let us turn to the geometric comparison considered in Section 3.2. Let M
and ϕ be as in Proposition 2.8. In fact we can take M to be a Q-vector space of
dimension 2g + 1 because

P2g,a =

(
GSp2g V2g

0 1

)
< GL2g+1

and then ϕ factors through

{rational mixed Hodge structures on M of type {(−1, 0), (0,−1), (0, 0)}.

We shall work with the mixed Shimura datum (P2g,a, ϕ(X2g,a)) instead of (P2g,a,

X2g,a). Now denote by V2g := V2g(C) × Hg and let F 0V2g be the holomorphic
subbundle of V2g such that its fiber over x ∈ Hg is (V2g)

0,−1
x . Then by (3.2), we

have that on the underlying spaces

(P2g,a,X \

2g,a)
π]

−→ (P2g,a, ϕ(X2g,a)) is the natural projection V2g → V2g/F 0V2g.

(3.8)

3.5.2. Next we define the enlarged mixed Shimura datum (P2g,X \

2g), which
corresponds to the pullback of the canonical relatively ample Gm-torsor over
the universal abelian variety (over a fine moduli space) to its universal vector
extension. See Example 4.5(1) for further details.

Let W2g be the central extension of V2g by U2g defined by Ψ and let P2g be
the group associated to the 4-tuple (GSp2g, V2g,U2g, Ψ ) as in Section 3.3. Then
P2g = W2g o GSp2g. The action of GSp2g on W2g induces a Hodge structure of
type {(−1, 0), (0,−1), (−1,−1)} on LieW2g,C. Let

X2g ⊂ Hom(SC, P2g,C)

be the conjugacy class under P2g(R)U2g(C) generated by any element of Hg.
Then (P2g,X2g) defines a mixed Shimura datum (see [36, 2.25]). Pink [36, 10.10]
proved that the mixed Shimura datum (P2g,X2g) corresponds to the canonical
ample Gm-torsor over the universal abelian variety (over a fine moduli space).
Finally we define (P2g,X \

2g) to be the enlarged mixed Shimura datum associated
with (P2g,X2g) (see Lemma 3.5).

3.5.3. Now define the enlarged mixed Shimura datum (P2g,b,X \

2g,b) which
corresponds to the universal vectorial bi-extension defined by Coleman [12]. (The
index ‘b’ is short for ‘bi-extension’.) See Example 4.5(2) for further details.

Define the group P2g,b to be the unipotent extension of P2g,a = V2g o GSp2g
by V2g ⊕ U2g for the action P2g,a y V2g ⊕ U2g defined by (v, g)(v′, u) := (gv′,
gu + Ψ (v, v′)). Let (P2g,b,X \

2g,b) be the unipotent extension of (P2g,a,X \

2g,a) by
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V2g ⊕ U2g given by Proposition 3.7. Then its associated mixed Shimura datum
(P2g,b,X2g,b) is the unipotent extension of (P2g,a,X2g,a) by V2g ⊕U2g in the sense
of Pink [36, 2.17]. Moreover by [37, Remark 2.13], the mixed Shimura datum
(P2g,b,X2g,b) corresponds to the Poincaré bi-extension over the product of the
universal abelian variety with its dual (over a fine moduli space). We denote by
W2g,b := Ru(P2g,b).

3.6. Reduction Theorem for enlarged Shimura data.

DEFINITION 3.9. An enlarged mixed Shimura datum (P,X \, h) (respectively
mixed Shimura datum (P,X , h)) is said to have generic Mumford–Tate group
if P possesses no proper normal subgroup Q such that for one (equivalently all)
x ∈ X \ (respectively x ∈ X ), hx factors through QC ⊂ PC. We shall denote this
case by P = MT(X \) (respectively P = MT(X )).

REMARK 3.10. (1) Pink [36, 2.13] used the term ‘irreducible’ for this definition
in the case of mixed Shimura data.

(2) Let M and ϕ be as in Proposition 2.8. Then an enlarged mixed Shimura
datum (P,X \, h) has generic Mumford–Tate group if and only if P =
MT(ϕ(h(X \))) (respectively a mixed Shimura datum (P,X , h) has generic
Mumford–Tate group if and only if P = MT(ϕ(h(X )))). But ϕ(h(X \)) =

ϕ(h(X )) by Proposition 2.12, so an enlarged mixed Shimura datum has
generic Mumford–Tate group if and only if its associated mixed Shimura
datum has generic Mumford–Tate group.

PROPOSITION 3.11. Let (P,X \) be an enlarged mixed Shimura datum, then

(1) there exists an enlarged mixed Shimura datum (Q,Y \) having generic
Mumford–Tate group such that (Q,Y \) ↪→ (P,X \) and a connected
component Y \+ of Y \ is sent isomorphically to a connected component X \+

of X \ under this embedding;

(2) if (P,X \) has generic Mumford–Tate group, then P acts on U via a scalar.
In particular, any subgroup of U is normal in P.

Proof. This is true for mixed Shimura data by Pink [36, 2.13, 2.14]. Then it
suffices to apply Lemma 3.5.

We close this section by the following Reduction theorem for enlarged mixed
Shimura data.
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THEOREM 3.12 (Reduction Theorem). Let (P,X \) be an enlarged mixed
Shimura datum with generic Mumford–Tate group. Assume dim V = 2g > 0
(otherwise V = 0 and (P,X \) is a mixed Shimura datum), and let r = dim U +1.
Then there exist pure Shimura data (T,Y) and (G0,D0), where T is a torus and
D0 ⊂ Hom(S,G0,R) such that the following hold: there exists an enlarged mixed
Shimura datum (P∗,X \

∗
) with morphisms

(P∗,X \
∗
)→ (P,X \) which is a ((P0,X0)→ (Gm,H0)) -torsor

and (P∗,X \
∗
)

λ
↪→ (T,Y)× (G0,D0)×

r∏
i=1

(P2g,X \

2g)

such that λ|V : V ' V2g →
⊕r

i=1 V2g is the diagonal map, λ|U∗ : U∗ '
⊕r

i=1 U2g

and G
λ
−→ T × G0 ×

∏r
i=1 GSp2g → GSp2g is nontrivial for each projection.

Proof. The first part is [36, 2.26(a)]. For the second part, let (P,X ) be
mixed Shimura datum associated with (P,X \). Then by [36, 2.26(b)] and
[16, Lemma 2.12], there exists a mixed Shimura datum (P∗,X∗) with Shimura
morphisms

(P∗,X∗)� (P,X ) and (P∗,X∗) ↪→ (T,Y)× (G0,D0)×

r∏
i=1

(P2g,X2g)

with the desired properties. Now it suffices to take (P∗,X \
∗
) to be the enlarged

mixed Shimura datum associated with (P∗,X∗).

4. Enlarged mixed Shimura varieties

4.1. Basic definition and complex space structure.

DEFINITION 4.1. (1) Let (P,X \) be an enlarged mixed Shimura datum and
let K be an open compact subgroup of P(A f ). Define the corresponding
enlarged mixed Shimura variety as

EMK (P,X \)C := P(Q)\X \
× P(A f )/K ,

where P(Q) acts diagonally on both factors from the left. This enlarged
mixed Shimura variety is called of Kuga type if (P,X \) is of Kuga type. We
shall see that EMK (P,X \)C is a complex analytic variety (Proposition 4.3).

(2) Under the notation of (1) and Section 3.4, we say that the mixed Shimura
variety

MK (P,X )(C) = P(Q)\X × P(A f )/K
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is the mixed Shimura variety associated with EMK (P,X \)C and EMK (P,
X \)C is the enlarged mixed Shimura variety associated with MK (P,
X )(C). Here MK (P,X )(C) means the C-points of the algebraic variety
MK (P,X ) over the number field E(P,X ) on which it is defined (this is
proven by Pink).

REMARK 4.2. Let X \+ be a connected component of X \, and thus X \+ is a
P(R)+W (C)-homogeneous space. Then as for mixed Shimura varieties, we have

EMK (P,X \)C =
⋃

[p]∈P(Q)+\P(A f )/K

Γ (p)\X \+

where Γ (p) := P(Q)+ ∩ pK p−1.

PROPOSITION 4.3. The action of Γ (p) on X \+ factors through a quotient Γ (p)
which acts properly discontinuously on X \+. There is a canonical structure of
a normal complex space on EMK (P,X \)C, whose singularities are quotient
singularities by finite groups. Moreover EMK (P,X \)C is a complex manifold if
K is neat (cf. [36, 0.6] for neatness).

Proof. (Compare with [36, 3.3]) The image of Γ (p) in (P/Pder Z(P))(Q) is finite
by Definition 3.1(5), so it suffices to prove the assertation for Γ := Γ (p) ∩
(Pder Z(P))(Q). Note that Γ = Γ (p)when K is neat. Now Z(P)(R) acts trivially
on X \+, so we may replace (P,X \) by (P,X \)/Z(P). Then Γ is an arithmetic
subgroup of Pder(Q), torsion free if K is neat, and therefore is a discrete subgroup
of Pder(R). So Γ acts properly discontinuously on P∞ := Pder(R)+W (C). But
X \+
' P∞/StabP∞(x) for any x ∈ X \+ and StabP∞(x) is compact by Lemma 2.10

and Definition 3.1(4). So Γ acts properly discontinuously on X \+. Note that
Γ ∩ StabP∞(x) is finite, and hence trivial if K is neat. The complex structure of
Γ (p)\X \+ comes from the P(R)W (C)-invariant complex structure on X \, and
Γ (p)\X \+ is a complex manifold when K is neat.

4.2. Algebraic structure and canonical model. The goal of this section is to
prove:

THEOREM 4.4. Every enlarged mixed Shimura variety EMK (P,X \)C admits a
structure of algebraic variety with the following properties:

(1) It has a model EMK (P,X \) over E(P,X ) := the reflex field of (P,X ),
(See [36, 11.1] for definition.) called the canonical model, such that the map
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induced by the geometric comparison (3.1)

[π ]] : EMK (P,X \)C→ MK (P, ϕ(D))(C)

descends to a map over the field E(P,X ) = E(P, ϕ(D))

EMK (P,X \)→ MK (P, ϕ(D))

where MK (P, ϕ(D)) is the canonical model of MK (P, ϕ(D))C.

(2) Let f : (P1,X \

1 )→ (P2,X \

2 ) be a morphism of enlarged mixed Shimura data,
and let K1 ⊂ P1(A f ) and K2 ⊂ P2(A f ) be open compact subgroups such that
f (K1) ⊂ K2. Then the canonical map induced by f

[ f ] : EMK1(P1,X \

1 )C→ EMK2(P2,X \

2 )C, [(x, p)] 7→ [( f (x), f (p))]

is algebraic.

In this subsection we only give the construction of the structure of algebraic
variety (with property (1)). We prove property (2) in the next subsection.

An important tool to prove this theorem is the geometric comparison considered
in Section 3.2.

4.2.1. Universal vector extension of the universal abelian variety. Let (P2g,a,

X \

2g,a) and (P2g,a,X2g,a) as in Section 3.5.1. Let N > 3 be an integer. Define

KGSp(N ) := {h ∈ GSp2g(Z)|h ≡ 1 mod N } and K2g,a(N ) := V2g(Z)o KGSp(N ).

Consider EMK2g,a(N )(P2g,a,X \

2g,a)C and the geometric comparison (3.8). Denote by
Ag(N ) := ShKGSp(N )(GSp2g,Hg) and Ag(N ) := MK2g,a(N )(P2g,a, ϕ(X2g,a)).

Pink proved [36, 10.10] that MK2g,a(N )(P2g,a, ϕ(X2g,a)) ' Ag(N ) is the universal
abelian variety over the fine moduli space ShKGSp(N )(GSp2g, ϕ(Hg)) ' Ag(N )
and therefore is an algebraic variety. To better illustrate the moduli interpretation
of EMK2g,a(N )(P2g,a,X \

2g,a)C, we consider its connected components given by
Remark 4.2.

Denote by V+2g := V2g(C)×H+g . Let ΓGSp(N ) := Sp2g(Z) ∩ KGSp(N ) and

Γ2g,a(N ) := Pder
2g,a(Z) ∩ K2g,a(N ) = V2g(Z)o ΓGSp(N ).

Denote by Ag(N )+ (respectively Ag(N )+) the connected component
Γ2g,a(N )\ϕ(X +2g,a) (respectively ΓGSp(N )\ϕ(H+g )) of Ag(N ) (respectively
Ag(N )). From the geometric comparison (3.8) we have
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0→ F 0V+2g → X \+

2g,a = V+2g → ϕ(X +2g,a) = V+2g/F 0V+2g → 0 as vector bundles over H+g
⇒0→ ΓGSp(N )\F 0V+2g → ΓGSp(N )\V+2g → ΓGSp(N )\ϕ(X +2g,a)→ 0 as vector bundles over Ag(N )+

⇒0→ ΓGSp(N )\F 0V+2g → V2g(Z)\
(
ΓGSp(N )\V+2g

)
→ V2g(Z)\

(
ΓGSp(N )\ϕ(X +2g,a)

)
→ 0,

that is, 0→ ΓGSp(N )\F 0V+2g → Γ2g,a(N )\V+2g → Ag(N )+ → 0 as Lie groups over Ag(N )+

⇒0→ ωAg (N )+∨/Ag (N )+ → Γ2g,a(N )\V+2g → Ag(N )+ → 0 as Lie groups over Ag(N )+

(In fact these vector bundles are automorphic bundles over Ag(N )+. This
is because the variation of pure Hodge structures (V+2g,F 0) over H+g extends
naturally to H∨g : the fibers over H+g define polarizable Hodge structures of weight
−1, whereas a general fiber over H∨g defines Hodge structure of weight −1 not
necessarily polarizable.) Here the last implication is the canonical isomorphism
ωAg(N )+∨/Ag(N )+ ' ΓGSp(N )\F 0V+2g implied by the definition of F 0V+2g, and
Ag(N )\+ := Γ (N )\V+2g is the universal vector extension of the universal abelian
variety Ag(N )+ over Ag(N )+. In particular, Ag(N )\+ is an algebraic variety and
the maps in the last line above are algebraic.

The above discussion holds for any pK2g,a(N )p−1
∩ P2g,a(Q)+. So by

Remark 4.2 Ag(N )\ := EMK2g,a(N )(P2g,a,X \

2g,a)C is the universal vector extension
of the universal abelian variety Ag(N ) over the fine moduli space Ag(N ), and
in particular is an algebraic variety. But Ag(N ) has a canonical model over Q,
so Ag(N )\ has a model over Q and the projection Ag(N )\ → Ag(N ) is defined
over Q.

4.2.2. General Case. It suffices to consider the case dim V = 2g > 0 since
otherwise EMK (P,X \)C is a mixed Shimura variety and the result is known by
Pink [36]. By Proposition 3.11(1) and Remark 4.2, we may assume that (P,X \)

has generic Mumford–Tate group. By Lemma 3.8 we may assume that X \
⊂

Hom(SC, PC). Denote by K P/U := πP/U (K ) < P/U , KW := K ∩ W (A f ) and
KV := KW/(K ∩ U (A f )). Up to replacing K be a subgroup of finite index we
may assume K = KW o KG and KV ⊂ K2g,a(N ) for some N > 4 even.

We start with EMK P/U (P/U,X \

P/U )C. Use the notation of Section 3.4 (note that
we are in the case X \

= D\). Apply Theorem 3.12 to (P/U,X \

P/U ) and we get
an inclusion

(P/U,X \

P/U ) ↪→ (T,Y)× (G0,D0)× (P2g,a,X \

2g,a)

under which V ' V2g. If we by abuse of notation denote by ShKG (G, ϕ(X )G)

its image in ShKT (T,Y)(C) × ShKG0
(G0,D0)(C) × Ag(N ), then we have that

EMK P/U (P/U,X \

P/U )C is the restriction of

ShKT (T,Y)(C)× ShKG0
(G0,D0)(C)× Ag(N )\

→ ShKT (T,Y)(C)× ShKG0
(G0,D0)(C)×Ag(N )
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to ShKG (G, ϕ(X )G) because V ' V2g. In particular, we have the following
Cartesian diagram in the category of complex varieties, where all objects and
morphisms are algebraic except those concerning EMK P/U (P/U,X \

P/U )C:

EMK P/U (P/U,X \
P/U )C

//

[π
]
P/U ]

��

ShKT (T,Y)(C)× ShKG0
(G0,D0)(C)× Ag(N )\

��
MK P/U (P/U, ϕ(X )P/U )(C) // ShKT (T,Y)(C)× ShKG0

(G0,D0)(C)× Ag(N )

But Ag(N )\ is the universal vector extension of the universal abelian scheme
Ag(N ) over Ag(N ), so EMK P/U (P/U,X \

P/U )C is the universal vector extension
of the abelian scheme MK P/U (P/U, ϕ(X )P/U )(C) → ShKG (G, ϕ(X )G)(C). So
Theorem 4.4 holds for EMK P/U (P/U,X \

P/U )C.
Now we turn to EMK (P,X \)(C). The Cartesian diagram in (3.4) induces a

Cartesian diagram in the category of complex varieties, where all objects and
morphism are algebraic over E(P,X ) except those concerning EMK (P,X \)C:

EMK (P,X \)C //

��

EMK P/U (P/U,X \

P/U )(C)

��
MK (P, ϕ(X ))(C) // MK P/U (P/U, ϕ(X )P/U )(C)

(4.1)

But MK (P, ϕ(X )) → MK P/U (P/U, ϕ(X )P/U ) is a T -torsor for some algebraic
group T over E(P,X ) by Pink [36, 3.12, 3.18]. So Theorem 4.4 holds for
EMK (P,X \)C.

EXAMPLE 4.5. (1) Let (P2g,X \

2g) be as in Section 3.5.2. Keep the notation of
Section 4.2.1. Let N > 4 be an even integer. Define K2g(N ) := W2g(Z) o
KGSp(N ). Denote by Lg(N ) := MK2g(N )(P2g,X2g). Pink [36, 10.10] proved
that Lg(N ) is (the total space of) the canonical symmetric relatively ample
Gm-torsor over the universal abelian variety Ag(N ) → Ag(N ). The proof
of Theorem 4.4 shows that EMK (P2g,X2g), which we denote by L\g(N ), is
defined over Q and is the pullback of the Gm-torsor Lg(N ) over the universal
abelian variety Ag(N ) → Ag(N ) to the universal vector extension Ag(N )\

of Ag(N ).

(2) Let (P2g,b,X2g,b) be as in Section 3.5.3. Keep the notation of Section 4.2.1.
Let N > 4 be an even integer. Define K2g,b(N ) := W2g,b(Z) o KGSp(N ).
Pink proved [37, Remark 2.13] that the mixed Shimura variety
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Pg(N ) := MK2g,b(N )(P2g,b,X2g,b) is (the total space of) the Poincaré bi-
extension over Ag(N )×Ag(N ) Ag(N )∨. The proof of Theorem 4.4 shows that
EMK2g,b(N )(P2g,b,X \

2g,b), which we denote by P\
g(N ), is defined over Q and

is the pullback the Poincaré bi-extension Pg(N ) to Ag(N )\ ×Ag(N ) Ag(N )∨\.
This is the ‘universal vectorial bi-extension’ considered by Coleman in [12].

4.3. Morphisms between enlarged mixed Shimura varieties.

PROPOSITION 4.6. Let f : (P1,X \

1 ) → (P2,X \

2 ) be a morphism of enlarged
mixed Shimura data, and let K1 ⊂ P1(A f ) and K2 ⊂ P2(A f ) be open compact
subgroups such that f (K1) ⊂ K2. Then we have:

(1) The canonical map induced by f

[ f ] : EMK1(P1,X \

1 )C→ EMK2(P2,X \

2 )C, [(x, p)] 7→ [( f (x), f (p))]

is algebraic, closed and descends to E(P1,X1).

(2) If furthermore f is injective both on the underlying groups and the
underlying spaces such that K1 = f −1(K2), then [ f ] is finite.

(3) If f is injective both on the underlying groups and the underlying spaces,
then for every K1 there exists a K2 such that [ f ] is a closed embedding.

Proof. This proposition can be proven using the geometric interpretations in
Section 4.2.2. By Proposition 3.11(1) and Remark 4.2, we may assume that (Pi ,

X \

i ) has generic Mumford–Tate group for i = 1, 2. By Lemma 3.8 we may assume
that X \

i ⊂ Hom(SC, Pi,C) for i = 1, 2. By Pink [36, 3.8, 9.24] the proposition is
true for

[ f ] : MK1(P1, ϕ1(X1))→ MK2(P2, ϕ2(X2))

and

[ f P/U ] : MK1,P/U (P1/U1, ϕ1(X1)P/U )→ MK2,P/U (P2/U2, ϕ2(X2)P/U ).

Hence by (4.1) it suffices to prove the proposition for

[ fP/U ] : EMK1,P/U (P1/U1,X \

1,P/U )C→ EMK2,P/U (P2/U2,X \

2,P/U )C.

By (3.3) Im([ fP/U ]) is a group subscheme of EMK2,P/U (P2/U2,

X \

2,P/U )C|Im([ fG ]) → Im([ fG]) translated by a torsion section. Since
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EMKi,P/U (Pi/Ui ,X \

i,P/U ) is the universal vector extension of the abelian scheme
MKi,P/U (Pi/Ui , ϕ(X )i,P/U )→ ShKi,G (G i , ϕ(Xi)Gi ), the morphism

EMK2,P/U (P2/U2,X \

2,P/U )C|Im([ fG ])→ MK2,P/U (P2/U2, ϕ2(X2)P/U )C|Im([ fG ])

gives a bijection on the torsion sections, we conclude that: [ fP/U ] is the extension
of [ f P/U ] by the natural morphism ω1 → ω2 induced by [ f P/U ], with ωi :=

ωMKi,P/U (Pi /Ui ,ϕ(X )i,P/U )∨/ShKi,G (Gi ,ϕ(Xi )Gi )
. Hence we are done.

5. Bi-algebraic setting for enlarged mixed Shimura varieties

From this section, we only consider connected enlarged mixed Shimura data
and connected enlarged mixed Shimura varieties.

DEFINITION 5.1. (1) A connected enlarged mixed Shimura datum is a
triple (P,X \+, h) such that (P,X \+, h) ⊂ (P,X \, h) for some enlarged
mixed Shimura datum (P,X \, h) with h injective and that X \+ is a left
P(R)+W (C)-homogeneous space. It is said to have generic Mumford–
Tate group if (P,X \, h) has generic Mumford–Tate group.

(2) A connected enlarged mixed Shimura variety S\ associated with the
connected enlarged mixed Shimura datum (P,X \+, h) is a quotient Γ \X \+

for some congruence subgroup Γ of P(Q)+ := P(Q)∩P(R)+, where P(R)+
is the stabilizer in P(R) of h(X \+) ⊂ Hom(SC, PC).

REMARK 5.2. (1) For any enlarged mixed Shimura datum (P,X \, h), let X \+

be a connected component of X \. Then (P,X \+, h) is a connected enlarged
mixed Shimura datum. Conversely every connected enlarged mixed Shimura
datum arises in this way.

(2) By Remark 4.2, connected enlarged mixed Shimura varieties are precisely
connected components of enlarged mixed Shimura varieties. So by
Theorem 4.4 and Proposition 4.6, any connected enlarged mixed Shimura
variety is algebraic and has a model over Q and any Shimura morphism
between connected enlarged mixed Shimura varieties is algebraic and
descends to Q.

(3) In practice we often consider the case Z(P) = 1. This can be achieved
by replacing (P,X \+) by (P,X \+)/Z(P). Under this hypothesis every
neat congruence subgroup is contained in Pder(Q). Conversely fix a Levi
decomposition P = W o G, then Pder

= W o Gder. Hence any congruence
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subgroup Γ < Pder(Q) is Zariski dense in Pder by Definition 3.1(4) and [38,
Theorem 4.10].

We are interested in the uniformization unif\ : X \+
→ S\ = Γ \X \+. Use the

notation of Section 3.2 (note that D\+
' X \+ and D+ ' X + and so we do not

distinguish X and D). Let ΓP/U := πP/U (Γ ) and let ΓG := π(Γ ). We use indices
to distinguish different uniformizations:

X \+

P/U

unif\P/U
−−−→ S\P/U := ΓP/U\X \+

P/U ϕ(X+) unif
−→ S := Γ \ϕ(X+)

ϕ(X+)P/U
unifP/U
−−−→ SP/U := ΓP/U\ϕ(X+)P/U ϕ(X+)G

unifG
−−→ SG := ΓG\ϕ(X+)G .

NOTATION 5.3. For any subset Ỹ \ of X \+, the diagram in Section 3.4 gives rise
to

X \+ π] //

π
\
P/U
��

π \

((

ϕ(X +)

πP/U

��
π

vv

Ỹ \ � //
_

��

Ỹ_

��
X \+

P/U

π
]
P/U //

π
\
G

��

ϕ(X +)P/U

πG

��

Ỹ \

P/U
� //

_

��

ỸP/U_

��
ϕ(X +)G

id // ϕ(X +)G ỸG ỸG

For any subset Y \ of S\, the diagram in Section 3.4 gives rise to

S\
[π]] //

[π
\
P/U ]

��
[π \]

))

S

[πP/U ]

��
[π ]

uu

Y \ � //
_

��

Y_

��
S\P/U

[π
]
P/U ] //

[π
\
G ]

��

SP/U

[πG ]

��

Y \

P/U
� //

_

��

YP/U_

��
SG

id // SG YG YG

We emphasize that the diagrams on the right are purely set theoretic.

5.1. Algebraic structure on X \+ and bi-algebraic subsets. Recall that the
complex structure on X \+ is given by X \+

' W (C)× ϕ(X +)G and ϕ(X +)G ↪→

X ∨G = G(C)/FxG GC (for any xG ∈ XG) is a complex algebraic variety and
ϕ(X +)G is a semialgebraic subset of X ∨G , open in the usual topology.
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DEFINITION 5.4. Let Ỹ \ be a complex analytic subset of X \+, then

(1) Ỹ \ is called an irreducible algebraic subset of X \+ if Ỹ \ is a complex
analytic irreducible component of the intersection of its Zariski closure in
W (C)×X ∨G with X \+.

(2) Ỹ \ is called algebraic if it is a finite union of irreducible algebraic subsets of
X \+.

The inclusion ϕ(X +) ' X + ↪→ X ∨ defines an algebraic structure on ϕ(X +)
(see [16, Section 6]). All maps in the diagrams in Notation 5.3 are algebraic. To
see this, it suffices to prove the algebraicity of π ] : X \+

→ ϕ(X +), which fits into
the commutative diagram

X \+
= P(R)+W (C)/Cent(hx) ' W (C)× ϕ(X+)G

� � //

π]

��

P(C)/F0
xG

GC ' W (C)× X ∨G

��
ϕ(X+) = P(R)+W (C)/StabP(R)+W (C)(ϕ(hx))

� � // X ∨ = P(C)/F0
xG

PC

and hence is algebraic.
Now we are in the following situation: under unif\ : X \+

→ S\, the two
spaces X \+ and S\ are algebraic but the map unif\ is transcendental. We want
to understand the bi-algebraic objects in this context.

DEFINITION 5.5. (1) A subset Ỹ \ is called bi-algebraic if Ỹ \ is an irreducible
algebraic subset of X \+ and Y \

:= unif\(Ỹ \) is a closed algebraic subvariety
of S\.

(2) A closed subvariety Y \ of S\ is said to be bi-algebraic if it is the image of
some bi-algebraic subset of X \+ under unif\.

We give a more concrete description of bi-algebraic subvarieties. In order to do
this we introduce ‘quasilinear subvarieties’.

5.2. Quasilinear subvarieties and characterization of bi-algebraic
subvarieties. Let Ỹ \ be a subset of X \+. We use Notation 5.3. Let (Q,
Y+) be the smallest connected mixed Shimura subdatum of (P, ϕ(X +))
such that ỸP/U ⊂ Y+Q/UQ

. Assume that ỸP/U is weakly special, namely
ỸP/U = (N/UN )(R)+ ỹP/U for some normal subgroup N of Q (with UN :=U∩N )
and a point ỹP/U ∈ ỸP/U . By (3.2) we have for (P/U, ϕ(X +)P/U )

0→ F 0V → X \+

P/U = V
π
]
P/U
−−→ ϕ(X +)P/U = V/F 0V → 0. (5.1)
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Let us introduce the following notation. For any G Q,R-submodule V ′ of VR

(with R = Q,R), denote by F 0V ′ the intersection F 0V ∩ (V ′(C) × ϕ(Y+)G). It
is a holomorphic bundle over ϕ(Y+)G .

Let V (0) be the largest G Q,R-submodule of VR on which G N (R)+ acts trivially.
Then we have a unique inclusion

Ỹ univ
P/U ×ỸG F 0V (0)

|ỸG ⊂ X \+

P/U |ỸP/U := π
]−1
P/U (ỸP/U ) (5.2)

where Ỹ univ
P/U is defined by (compatible with (5.1))

0→ F 0VN |ỸG → Ỹ univ
P/U → ỸP/U → 0.

DEFINITION 5.6. (1) A subset Ỹ \ of X \+ is called quasilinear if Ỹ is weakly
special and

Ỹ \
= Ỹ ×ỸP/U

(
Ỹ univ

P/U ×ỸG (L̃
\
× ỸG)×ỸG G N (R)+ K̃ \

)
where L̃\ is an irreducible algebraic subvariety of some fiber of F 0V (0)

|ỸG →

ỸG (which is isomorphic to Ck for some k), and K̃ \ is an irreducible
subvariety of some fiber of F 0VN |ỸG → ỸG .

(2) A subset Y \ of S\ is said to be quasilinear if it is the image of some
quasilinear subset of X \+ under unif\.

It is clear that we can take furthermore assume K̃ \ to satisfy the following
property: K̃ \

⊂ F 0V†
|ỸG for some G Q,R-submodule V † of VR with V †

∩ V (0)
= 0.

Then G N (R)+ K̃ \
∩F 0V (0) is contained in the zero section of F 0VN |ỸG → ỸG .

Before moving on, let us point out the following fact. If K̃ \ is contained in the
fiber of ỹG ∈ ỸG , then(

G N (R)+ K̃ \
)

ỹG
= StabG N (R)+(ỹG)K̃ \, (5.3)

which may be larger than K̃ \.
Note that any quasilinear subset Ỹ \ of X \+ is algebraic. To see this, it suffices

to show that G N (R)+ K̃ \ is algebraic. This is true since, by theory of automorphic
vector bundles, G N (R)+ K̃ \

= G N (C)K̃ \
∩F 0VN |ỸG .

We are now ready to give the characterization of bi-algebraic subvarieties.

THEOREM 5.7. A subset Ỹ \ of X \+ (respectively a subset Y \ of S\) is bi-algebraic
if and only if it is quasilinear.

Proof. The implication ⇐ follows from Lemma 6.1. In this section, we prove
that a bi-algebraic subset Ỹ \ of X \+ is quasilinear. Up to replacing Γ by a finite
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subgroup we assume that Γ = ΓW o ΓG . Then S\P/U is the universal vector
extension of the abelian scheme SP/U over SG . Use the notation of Notation 5.3.

Denote by ΓY \ := Im(π1(Y \,sm) → π1(S\) = Γ ) and by N := (Γ Zar
Y \ )

◦. Then
for any point ỹ\ ∈ Ỹ \, we have ΓY \ · ỹ\ ⊂ Ỹ \. So the bi-algebraicity of Y \ implies

N (R)+WN (C)ỹ\ ⊂ Ỹ \ for any point ỹ\ ∈ Ỹ \. (5.4)

Since Ỹ \ is bi-algebraic, we have that Ỹ is bi-algebraic for ϕ(X +) → S.
By the characterization of bi-algebraic subsets for connected mixed Shimura
varieties [16, Corollary 8.3], Ỹ is a weakly special subset of ϕ(X +), namely
Ỹ = N (R)+UN (C)ỹ for some ỹ ∈ Ỹ and N is a normal subgroup of Q, where (Q,
Y+) is the smallest connected mixed Shimura subdatum of (P, ϕ(X +)) such that
Ỹ ⊂ Y+. Then YP/U → YG is an abelian scheme and S\P/U |YP/U := [π

]

P/U ]
−1(YP/U )

is a vector extension of YP/U over YG .
We claim

Ỹ \
= Ỹ ×ỸP/U Ỹ \

P/U ⊂ ϕ(X +)×ϕ(X+)P/U X \+

P/U = X \+.

This is not hard to see: for any ỹ\P/U ∈ Ỹ \

P/U , the fiber π ]−1(ỹ\P/U )∩(Ỹ×ỸP/U Ỹ \

P/U )

is a U (C)-orbit by the form of Ỹ . But by (5.4), the fiber π ]−1(ỹ\P/U )∩ Ỹ \ is also a
U (C)-orbit. Thus we are done because Ỹ \

⊂ Ỹ ×ỸP/U Ỹ \

P/U .
Now it remains to study Ỹ \

P/U by definition of quasilinear subsets. Use the
notation in (5.2). Let V nt

:= VR/(VN ,R
⊕

V (0)). Consider the vector bundle

F 0Vnt
|ỸG = X \+

P/U |ỸP/U /(Ỹ
univ
P/U ×ỸG F 0V (0)

|ỸG )

and the automorphic quotient bundle

Vnt
|YG := ΓG N \(F 0Vnt

|ỸG )

of ω[πG ]−1(YG )∨/YG

/
ωY∨P/U /YG .

Let Ỹ univ
P/U be as in (5.2). We are left the prove:

Ỹ \

P/U = Ỹ univ
P/U ×ỸG (L̃

\
× ỸG)×ỸG Ỹ \,extr

P/U (5.5)

for some splitting VR/VN ,R = V (0)⊕ V nt as G Q-modules, where L̃\ is an
irreducible algebraic subvariety of some fiber of F 0V (0)

|ỸG → ỸG (which is
isomorphic to Ck for some k), and Ỹ \,extr

P/U ⊂ F 0Vnt
|ỸG which surjects to ỸG

satisfying
Ỹ \,extr

P/U = G N (R)+(Ỹ \,extr
P/U )ỹG,0 (5.6)

for some fixed ỹG,0 ∈ ỸG .
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Let us prove (5.5) and (5.6). First note that Ỹ \

P/U ⊂ X \+

P/U |ỸP/U = π
]−1
P/U (ỸP/U ) =

Ỹ univ
P/U ×ỸG F 0V (0)

|ỸG ×ỸG F 0Vnt
|ỸG . Since each fiber of the projection

p : X \+

P/U |ỸP/U → F 0V (0)
|ỸG ×ỸG F 0Vnt

|ỸG is isomorphic to VN (C), we have
that each nonempty fiber of p|Ỹ \P/U

is the whole fiber of p by (5.4). Thus we have

Ỹ \

P/U = Ỹ univ
P/U ×ỸG Ỹ \,s

P/U

for some Ỹ \,s
P/U in F 0V (0)

|ỸG ×ỸG F 0Vnt
|ỸG . Next take the fiber VN (C)+ L̃\ + K̃ \

of Ỹ \

P/U → ỸG over ỹG ∈ ỸG , with L̃\ ⊂ F 0V (0) and K̃ \
⊂ F 0Vnt. By (5.4), we

then have VN (C)+ L̃\ + gK̃ \
⊂ (Ỹ \

P/U )gỹG for any g ∈ G N (R)+. By furthermore
considering the fibers over gỹG and over ỹG = g−1gỹG , we obtain both (5.5) and
(5.6).

5.3. Weakly special subvarieties. We close this section by defining weakly
special subvarieties of S\ and explain its relation with quasilinear subvarieties.
Note that for mixed Shimura varieties they coincide [16, Corollary 8.3].

DEFINITION 5.8. (1) A subset Ỹ \ of X \+ is said to be weakly special if there
exists a diagram in the category EMSD

(R,Z \+)
ϕ
←− (Q,Y \+)

i
−→ (P,X \+)

and a point z̃\ ∈ Z \+ such that Ỹ \ is a connected component of i(ϕ−1(̃z\)).

(2) A subvariety Y \ of S\ is said to be weakly special if it is the image of some
weakly special subset of X \+ under unif\.

The geometric meaning of weakly special subvarieties is very clear: a
subvariety Y \ is weakly special in S\ if and only if:

• Y \
= Y ×YP/U Y \

P/U .

• Y is weakly special. In particular, YP/U/YG is an abelian scheme.

• Y \

P/U = Y univ
P/U where Y univ

P/U is the universal vector extension of YP/U/YG .

Now it is clear that every weakly special subvariety of S\ is quasilinear. On the
other hand, for any quasilinear

Ỹ \
= Ỹ ×ỸP/U

(
Ỹ univ

P/U ×ỸG (L̃
\
× ỸG)×ỸG F 0V†

|ỸG

)
,

Y \
= Y ×YP/U (Y

univ
P/U ×YG L\YG

×YG V†
|YG ),
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we denote by (Ỹ \)ws
= Ỹ ×ỸP/U (Ỹ

univ
P/U ×ỸG 0), (Y \)ws

:= Y ×YP/U (Y
univ
P/U ×YG 0)

and by
prws

Ỹ \ : Ỹ \
→ (Ỹ \)ws and [pr ]ws

Y \ : Y \
→ (Y \)ws (5.7)

the natural projections (here we identify Ỹ univ
P/U ×ỸG 0 with Ỹ univ

P/U and Y univ
P/U ×YG 0

with Y univ
P/U ).

6. The logarithmic Ax theorem

We prove in this section a transcendence theorem. We start with a criterion of
bi-algebraicity, which will also be used in the next section.

Let S\ be a connected enlarged mixed Shimura variety associated with (P,
X \+) and let unif\ : X \+

→ S\ be the uniformization. Use Notation 5.3. Let Ỹ \ be
a subset of X \+ such that Ỹ is weakly special, and hence Ỹ = N (R)+UN (C)ỹ for
some subgroup N of P and some point ỹ ∈ ϕ(X +). Let Ỹ univ

P/U be as in (5.2).

LEMMA 6.1. Let Ỹ \ be an irreducible algebraic subset of X \+ such that

(1) Ỹ \
= Ỹ ×ỸP/U Ỹ \

P/U ⊂ ϕ(X +)×ϕ(X+)P/U X̃ \+

P/U ;

(2) Ỹ is weakly special (and we use the notations above);

(3) Ỹ univ
P/U ⊂ Ỹ \

P/U ;

(4) Ỹ \

P/U = G N (R)+(Ỹ \

P/U )ỹG for one (and hence any) point ỹG ∈ ỸG .

Then Ỹ \ is bi-algebraic.

Proof. It suffices to prove that Ỹ \

P/U is bi-algebraic by condition (1) and (2).
Recall (3.2)

0→ F 0V → X \+

P/U = V
π
]
P/U
−−→ ϕ(X +)P/U = V/F 0V → 0. (6.1)

We have
S\P/U |YP/U = Y univ

P/U ×YG (ω[πG ]−1(XY )∨/YG/ωY∨P/U /YG ), (6.2)

where Y univ
P/U is the universal vector extension of the abelian scheme YP/U/YG . Let

Ỹ univ
P/U be defined by (compatible with (6.1))

0→ F 0VN |ỸG → Ỹ univ
P/U → ỸP/U → 0.

Then the uniformization of (6.2) is

X̃ \+

P/U |ỸP/U (= π
]−1
P/U (ỸP/U )) = Ỹ univ

P/U ×ỸG F 0V s
|ỸG (6.3)

for some G Q-submodule V s of V such that V = VN
⊕

V s.
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Now condition (3) implies

Ỹ \

P/U = Ỹ univ
P/U ×ỸG Ỹ \,s

P/U

and hence
Y \

P/U = Y univ
P/U ×YG unif\,sP/U (Ỹ

\,s
P/U ).

Hence it suffices to prove that unif\,sP/U (Ỹ
\,s
P/U ) is a closed algebraic subvariety of

ω[πG ]−1(YG )∨/YG

/
ωY∨P/U /YG .

Consider the diagram

F 0V s
|ỸG

unif\,sP/U //

��

ω[πG ]−1(YG )∨/YG

/
ωY∨P/U /YG

��
ỸG

unifG // YG

The restriction of unif\,sP/U to any fiber(
F 0V s

|ỸG

)
ỹG
→ (ω[πG ]−1(YG )∨/YG/ωY∨P/U /YG )yG ,

where ỹG ∈ ỸG and yG = unifG(ỹG), is the identity map. So by [22, Theorem 1.9],
there exists a definable fundamental domain F of unifG : ỸG → YG such that

unif\,sP/U |F0Vs|F is definable in the o-minimal structure Ran,exp.

Therefore, Condition (4) implies that unif\,sP/U (Ỹ
s
P/U ) is closed in the usual

topology (and hence a complex analytic subvariety of ω[πG ]−1(YG )∨/YG/ωY∨P/U /YG )
and is definable in the o-minimal structure Ran,exp (because unif\,sP/U (Ỹ

s
P/U ) =

unif\,sP/U (Ỹ
s
P/U∩F 0V s

|F) and Ỹ s
P/U is algebraic). Hence Y \,s

P/U := unif\,sP/U (Ỹ
s
P/U ) is a

closed algebraic subvariety of ω[πG ]−1(YG )∨/YG/ωY∨P/U /YG by the Peterzil–Starchenko
o-minimal GAGA theorem [30, Corollary 4.5].

COROLLARY 6.2. Let Ỹ \ be an irreducible algebraic subset of X \+ such that Ỹ
is weakly special (and hence we can use the notation above Lemma 6.1). Assume
Ỹ \
= N (R)+WN (C)(Ỹ \)ỹG for one (and hence any) point ỹG ∈ ỸG . Then Ỹ \ is

bi-algebraic.

Proof. It is not hard to see that all the conditions of Lemma 6.1 are satisfied.

THEOREM 6.3 (logarithmic Ax). Let S\ be a connected enlarged mixed Shimura
variety associated with (P,X \+) with unif\ : X \+

→ S\. Let Z \ be an irreducible
subvariety of S\. Let Z̃ \ be a complex analytic irreducible component of
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unif\−1(Z \) and let Z̃ \,Zar be the Zariski closure of Z̃ \ in X \+. Then Z̃ \,Zar is
quasilinear.

Proof. Up to replacing Γ by a finite subgroup we assume that Γ = ΓW o ΓG .
Then S\P/U is the universal vector extension of the abelian scheme SP/U over SG .
Use the notation of Notation 5.3.

Denote by ΓZ \ := Im(π1(Z \,sm) → π1(S\) = Γ ) and by N := (Γ Zar
Z \ )

◦. Then
for any point ỹ\ ∈ Z̃ \, we have ΓZ \ · ỹ\ ⊂ Z̃ \. So

N (R)+WN (C)̃z\ ⊂ Ỹ \,Zar for any point z̃\ ∈ Z̃ \,Zar. (6.4)

Denote for simplicity Ỹ \
:= Z̃ \,Zar and use the notation of Notation 5.3. By

logarithmic Ax for connected mixed Shimura varieties [16, Theorem 8.1], Ỹ
is a weakly special subset of ϕ(X +): Ỹ = N (R)+UN (C)̃z for some z̃ ∈ Ỹ
and N is a normal subgroup of Q, where (Q,Y+) is the smallest connected
mixed Shimura subdatum of (P, ϕ(X +)) such that Z̃ ⊂ Y+. But we have
Ỹ \
= N (R)+WN (C)(Ỹ \)ỹG for one (and hence any) point ỹG ∈ ỸG . Now it suffices

to apply Corollary 6.2.

7. The Ax-Lindemann theorem

Let S\ = Γ \X \+ be a connected enlarged mixed Shimura variety associated
with (P,X \+) with unif\ : X \+

→ S\.

7.1. Statement of Ax-Lindemann. We start by giving four equivalent
statements for the Ax-Lindemann(–Weierstraß) theorem and explain their
equivalence. See [14, Section 7].

THEOREM 7.1. Let Y \ be an irreducible subvariety of S\ and let Z̃ \ be an
irreducible algebraic subset of X \+ contained in unif\−1(Y \), maximal for these
properties. Then Z̃ \ is quasilinear.

The next statement we give shall be called the semialgebraic form of Ax-
Lindemann. Recall that a connected semialgebraic subset of X \+ is called
irreducible if its R-Zariski closure in W (C)×X ∨G is an irreducible real algebraic
variety. Note that any connected semialgebraic subset of X \+ has only finitely
many irreducible components.

THEOREM 7.2. Let Y \ be an irreducible subvariety of S\ and let Z̃ \ be a
connected irreducible semialgebraic subset of X \+ contained in unif\−1(Y \),
maximal for these properties. Then Z̃ \ is complex analytic and each complex
analytic irreducible component of Z̃ \ is quasilinear.
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The equivalence of Theorems 7.1 and 7.2 follows easily from [33, Lemma 4.1],
which claims that maximal connected irreducible semialgebraic subsets of X \+

which are contained in unif\−1(Y \) are all algebraic in the sense of Definition 5.4
(there is a typo in the proof of [33, Lemma 4.1]: C2n should be Cn).

The next two forms of Ax-Lindemann have more ‘equidistributional’ taste.

THEOREM 7.3. Let Z̃ \ be an irreducible algebraic subset of X \+. Then
unif\(Z̃ \)Zar is quasilinear.

THEOREM 7.4. Let Z̃ \ be a semialgebraic subset of X \+. Then every irreducible
component of unif\(Z̃ \)Zar is quasilinear.

Let us explain now why Theorem 7.1 implies Theorem 7.3. Let Z̃ \ be as
in Theorem 7.3. Let Y \

:= unif\(Z̃ \)Zar and let W̃ \ be an irreducible algebraic
subset of X \+ which contains Z̃ \ and is contained in unif\−1(Y \), maximal for
these properties. Such a W̃ \ exists by, for example, dimension reason. Then
Y \
= unif\(W̃ \)Zar and W̃ \ is an irreducible algebraic subset of X \+ which

is contained in unif\−1(Y \), maximal for these properties. Theorem 7.1 then
implies that W̃ \ is irreducible bi-algebraic. So Y \

= unif\(W̃ \)Zar
= unif\(W̃ \)

is quasilinear. Theorem 7.2 implies Theorem 7.4 by a similar argument because
any semialgebraic subset of X \+ has only finitely many connected irreducible
components.

Let us explain now why Theorem 7.3 implies Theorem 7.1. Let Y \ and
Z̃ \ be as in Theorem 7.1. Then Theorem 7.3 shows that unif\(Z̃ \)Zar is an
irreducible bi-algebraic subvariety of S, which we shall call Y \

0 . It is clear
that Y \

0 is a subvariety of Y \. Let Ỹ \

0 be the complex analytic irreducible
component of unif\−1(Y \

0 ) containing Z̃ \. Then Ỹ \

0 is irreducible algebraic. But
then the maximality assumption on Z̃ \ implies Z̃ \

= Ỹ \

0 . Hence Z̃ \ is quasilinear.
Theorem 7.4 implies Theorem 7.2 by a similar argument.

7.2. Outline of the proof. We prove the Ax-Lindemann theorem (in the form
Theorem 7.1) in the rest of the section. The proof is a modification of the author’s
previous work on the Ax-Lindemann theorem for mixed Shimura varieties
[16, Sections 9–11]. Consider the diagram

(P,X \+)
π]
//

unif\

��

π \ ,,
(P, ϕ(X +))

π
//

unif

��

(G, ϕ(X +)G),

unifG

��

Z̃ \
_

��

� // Z̃_

��

� // Z̃G_

��
S\

[π]] //

[π \]

33S
[π ] // SG, Z \ � // Z � // ZG
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and use Notation 5.3. First of all we do the following reduction:

• The conclusion is obviously true if Z̃ is a point. Hence we may assume
dim Z̃ > 0.

• Let (P ′,X ′,\+) be the smallest connected enlarged mixed Shimura subdatum
of (P,X \+) such that Z̃ \

⊂ X ′,\+ and let S′,\ be the corresponding connected
enlarged mixed Shimura subvariety of S\. Then (P ′,X ′,\+) has generic
Mumford–Tate group by Proposition 3.11. Replace (P,X \+) by (P ′,X ′,\+),
S\ by S′,\, unif\ by unif′,\ : X ′,\+ → S′,\ and Y \ by the irreducible component
Y ′,\ of Y \

∩ S′,\ such that Z̃ \
⊂ (unif′,\)−1(Y ′,\), then Z̃ \ is an irreducible

algebraic subset of X ′,\+ contained in (unif′,\)−1(Y ′,\) and is maximal for
these properties. By definition, Z̃ \ is bi-algebraic in X ′,\+ if and only if it is
bi-algebraic in X \+. So making the replacement above does not change the
assumption or the conclusion of the theorem.

• Replace (P,X \+) by (P,X \+)/Z(P) = (P/Z(P),X \+) and other objects
accordingly.

• Let Y \

0 := unif\(Z̃ \)Zar, then Z̃ \ is an irreducible algebraic subset of X \+

contained in unif\−1(Y \

0 ) and is maximal for these properties. Hence we may
assume Y \

= Y \

0 .

• After the previous reduction, there is a unique complex analytic irreducible
component of unif\−1(Y \) containing Z̃ \, which we denote by Ỹ \.

• Replace Γ by a neat subgroup contained in Pder(Q) (Remark 5.2(3)).

Let F̃ \ be the smallest quasilinear subset of X \+ containing Ỹ \. Let N be
the connected algebraic monodromy group associated with Y \,sm and let WN :=

W ∩ N (UN := U ∩ N ). Denote by F̃ := π ](F̃ \) and F̃G := π(F̃). Then by
Theorem 6.3, we have

F̃ = N (R)+UN (C)̃z and F̃G = G N (R)+ z̃G

where z̃ ∈ Z̃ and z̃G = π(̃z).
Let (Q,Y+) the the smallest connected mixed Shimura subdatum of

(P, ϕ(X +)) such that Z̃ ⊂ Y+. Let ΓQ := Γ ∩ Q(Q). Then F̃ is Hodge
generic in Y+, N � Q and N � Qder. Define

ΓZ̃ \ := {γ ∈ ΓQ|γ · Z̃ \
= Z̃ \
} and ΓG Q ,Z̃G := {γ ∈ ΓG Q |γ · Z̃G = Z̃G}

and HZ̃ \ := (Γ Zar
Z̃ \ )

◦, HZ̃ Q := (Γ Zar
G Q ,Z̃ Q

)◦. Then HZ̃ \ (respectively HZ̃G ) is the
largest connected subgroup of Qder (respectively Gder) such that HZ̃ \(R)+WHZ̃\

(C)
(respectively HZ̃G (R)+) stabilizes Z̃ \ (respectively Z̃G).
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Define UHZ̃\
:= U ∩ HZ̃ \ and WHZ̃\

:= W ∩ HZ̃ \ . Both of them are normal in
HZ̃ \ . Define VHZ̃\

:= WHZ̃\
/UHZ̃\

and G HZ̃\
:= HZ̃ \/WHZ̃\

.

REMARK 7.5. We know that P(R)W (C) acts on ϕ(X +) but not on
X + ⊂ X \+. However, its subgroup P(R)U (C) (as a Lie group) acts on both,
and the isomorphism ϕ : X + → ϕ(X +) is P(R)U (C)-equivariant. One should
not be confused with the different formulas for the action of P(R)U (C) on
ϕ(X +) ' X + in different coordinates. For example Z̃ \ being WHZ̃\

(C)-stable
implies that Z̃ = π ](Z̃ \) is stable under WHZ̃\

(C), and hence (ϕ|X+)−1(Z̃) is
stable under WHZ̃\

(R)UHZ̃\
(C).

LEMMA 7.6. The set Ỹ \ is stable under HZ̃ \(R)+WHZ̃\
(C).

Proof. Every fiber of X \+
→ ϕ(X +)G can be canonically identified with W (C).

So it is enough to prove that Ỹ is stable under HZ̃ (R)+: If WHZ̃\
(R)ỹ ⊂ Ỹ \ for

ỹ\ ∈ Ỹ \, then WHZ̃\
(C)ỹ\ ⊂ Ỹ \ because Ỹ \ is complex analytic and WHZ̃\

(C)ỹ\ is
the smallest complex analytic subset of X \+ containing WHZ̃\

(R)ỹ\.
If not, then since HZ̃ \(Q) is dense (in the usual topology) in HZ̃ \(R)+, there

exists h ∈ HZ̃ \(Q) such that hỸ \
6= Ỹ \. Then Z̃ \

⊂ Ỹ \
∩ hỸ \, and hence

contained in a complex analytic irreducible component Ỹ ′,\ of it. Consider the
Hecke correspondence Th

Γ \X \+ [h]
←− (Γ ∩ h−1Γ h)\X \+ [1]

−→ Γ \X \+.

Then Th(Y \) = unif\(h · unif\−1(Y \)). Hence

Y \
∩ Th(Y \) = unif\(unif\−1(Y \) ∩ (h · unif\−1(Y \))).

On the other hand, Th(Y \) is equidimensional of the same dimension as Y \, hence
by reason of dimension, hỸ \ is an irreducible component of unif\−1(Th(Y \)) =

Γ hΓ Ỹ \. So unif(hỸ \) is an irreducible component of Th(Y \).
Since Ỹ \,′ is a complex analytic irreducible component of Ỹ \

∩ hỸ \, it is also a
complex analytic irreducible component of unif

\
−1(Y \)∩ (hỸ \) = Γ Ỹ \

∩ hỸ \. So
Y \,′
:= unif\(Ỹ \,′) is a complex analytic irreducible component of Y \

∩ unif(hỸ \).
So Y \,′ is a complex analytic irreducible component of Y \

∩ Th(Y \), and hence is
algebraic since Y \

∩ Th(Y \) is.
Since hỸ \

6= Ỹ \ and Y \ is irreducible, dim(Y \,′) < dim(Y \). But Z̃ \
⊂ Ỹ \

∩

hỸ \
⊂ unif

\
−1(Y \,′). This contradicts the minimality of Y \.

LEMMA 7.7. HZ̃ \ � N.
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Proof. We have Z̃ \
⊂ F̃ \. Consider prws

F̃\ , the projection of F̃ \ to its weakly special
part (F̃ \)ws (see (5.7)). Let (Q,Y \+) be the enlarged mixed Shimura subdatum of
(P,X \+) associated to (Q,Y+). Then the image of prws

F̃\ (Z̃
\) under (Q,Y \+)→

(Q,Y \+)/N is a Hodge-generic point (since F̃ is Hodge generic in Y+), which is
stable under HZ̃ \/(HZ̃ \ ∩ N ). So HZ̃ \ < N .

Let H ′ be the algebraic group generated by γ −1 HZ̃ \γ for all γ ∈ ΓY \,sm , where
ΓY \,sm is the monodromy group of Y \,sm. Since H ′ is invariant under conjugation by
ΓY \,sm , it is invariant under (ΓY \,sm)Zar, therefore invariant under conjugation by N .

By Lemma 7.6, Ỹ \ is invariant under HZ̃ \(R)+WHZ̃\
(C). On the other hand, Ỹ \

is also invariant under ΓY \,sm . So Ỹ \ is invariant under the action of H ′(R)+WH ′(C)
where WH ′ := W ∩ H ′. Since H ′(R)+WH ′(C)Z̃ \ is semialgebraic, there exists an
irreducible algebraic subset of X \+, say Ẽ \, which contains H ′(R)+WH ′(C)Z̃ \

and is contained in Ỹ \ by [33, Lemma 4.1]. Now Z̃ \
⊂ Ẽ \

⊂ Ỹ \, so Z̃ \
=

Ẽ \
= H ′(R)+WH ′(C)Z̃ \ by maximality of Z̃ \, and therefore H ′ = HZ̃ \ by the

maximality of HZ̃ \ . So HZ̃ \ is invariant under conjugation by N . But HZ̃ \ < N , so
HZ̃ \ is normal in N .

COROLLARY 7.8. G HZ̃\
� Gder

Q .

Proof. We have G HZ̃\
� G N � Gder

Q , and so G HZ̃\
� Gder

Q since all the three groups
are reductive.

LEMMA 7.9. (1) The variety YG is weakly special. Hence ỸG = F̃G =

G N (R)+ ỹG for any ỹG ∈ ỸG .

(2) We have unif(Z̃G)
Zar
= YG .

Proof. We have unif(Z̃G)
Zar
= YG because Y \

= unif\(Z̃ \)Zar. The Ax-Lindemann
Theorem for Shimura varieties [22] implies that YG = Z Zar

G is weakly special.

PROPOSITION 7.10. We have Z̃G = G HZ̃\
(R)+ z̃G . Hence Z̃G is weakly special.

The proof of Proposition 7.10 will occupy Section 7.3. Here we show how to
prove the Ax-Lindemann theorem assuming this proposition. We shall also use
the following theorem, which we prove as Theorem 7.15.

THEOREM 7.11. The Ax-Lindemann theorem (Theorems 7.1–7.4) is true if Z̃G is
a point.

Proof of Theorem 7.1. We divide the proof into the following steps.
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Step I. Prove Z̃ \
= HZ̃ \(R)+WHZ̃\

(C)(Z̃ \)̃zG for some z̃G ∈ Z̃G .
Consider a fiber of Z̃ \ over a Hodge-generic point z̃G ∈ Z̃G such that π \|Z̃ \

is flat at z̃G (such a point exists by [1, Section 4, Lemma 1.4] and generic
flatness). Suppose that K̃ \ is an irreducible algebraic component of Z̃ \

z̃G
such

that dim(Z̃ \

z̃G
) = dim(K̃ \), then the flatness of π \|Z̃ \ at z̃G implies dim(Z̃ \) =

dim(Z̃G)+ dim(Z̃ \

z̃G
) = dim(Z̃G)+ dim(K̃ \).

Consider the set Ẽ \
:= HZ̃ \(R)+WHZ̃\

(C)K̃ \. It is semialgebraic (since K̃
is algebraic and the action of P(R)+W (C) on X \+ is algebraic). The fact
K̃ \
⊂ Z̃ \ implies that Ẽ \

⊂ Z̃ \. Now Proposition 7.10 implies that π \(Ẽ \) =

G HZ̃\
(R)+ z̃G = Z̃G and that the R-dimension of every fiber of π \|Ẽ\ is at least

dimR(K̃ \). So

dim(Z̃ \)> dim(Ẽ \)> dim(π \(Ẽ \))+dim(K̃ \)= dim(Z̃G)+dim(K̃ \)= dim(Z̃ \).

So Ẽ \
= Z̃ \ since Z̃ \ is irreducible.

Next let K̃ \,′ be an irreducible algebraic subset which contains Z̃ \

z̃G
and is

contained in unif\−1(Y \)̃zG , maximal for these properties. Then K̃ \,′ is quasilinear
by Theorem 7.11. We have K̃ \,′

⊂ Ỹ \ since Ỹ \ is an irreducible component of
π
\
−1(Y \). Consider Ẽ \,′

:= HZ̃ \(R)+WHZ̃\
(C)K̃ \,′. Then Ẽ \,′

⊂ Ỹ \ by Lemma 7.6.
But Ẽ \,′ is semialgebraic, so by [33, Lemma 4.1], there exists an irreducible
algebraic subset of X \,+, say Ẽ \,′

alg which contains Ẽ \,′ and is contained in Ỹ \. So
Z̃ \
= Ẽ \

⊂ Ẽ \,′

alg ⊂ Ỹ \. Now the maximality of Z̃ \ implies that

Z̃ \
= Ẽ \,′

alg = Ẽ \,′
= HZ̃ \(R)+WHZ̃\

(C)K̃ \,′ and K̃ \,′
= Z̃ \

z̃G
. (7.1)

Step II. Prove Z̃ \
= HZ̃ \(R)+UHZ̃\

(C)̃z\.
Since K̃ \,′ is quasilinear, we can write K̃ ′(:= π ](K̃ \,′)) = W ′(R)U ′(C)̃z with

W ′ < W , U ′ = U ∩ W ′ and z̃ ∈ Z̃ z̃G . Then WHZ̃\
< W ′ and K̃ \,′ is stable

under W ′(C). The complex structure of π−1(̃zG) comes from W (R)U (C) '
W (C)/F0

z̃G
W (C), where F0

z̃G
W (C) = exp(F0

z̃G
LieWC). So the fact that Z̃ z̃G is a

complex subspace of π−1(̃zG) implies that W ′/U ′ is a MT(̃zG) = G Q-module.
Hence W ′ is a G Q-group.

Define Q ′ := W ′HZ̃ \ , then Q ′ is a subgroup of Q since W ′ > WHZ̃\
and

G HZ̃\
W ′
= W ′. Now we have that Z̃ \

= HZ̃ \(R)+WHZ̃\
(C)K̃ \,′ is stable under

Q ′. So HZ̃ \ = Q ′ because HZ̃ \ is the largest subgroup of Qder such that
HZ̃ \(R)+WHZ̃\

(C) stabilizes Z̃ \. So WHZ̃\
= W ′ is a G Q-group. Therefore, Z̃ =

HZ̃ \(R)+UHZ̃\
(C)̃z.

Step III. Prove HZ̃ \ � Q, and hence Z̃ is weakly special and HZ̃ \ = N .
First of all, UHZ̃\

� Q by Proposition 3.11(2).
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Next consider the complex structure of π−1(̃zG)which comes from W (R)U (C)
'W (C)/F0

z̃G
W (C). So the fact that Z̃ z̃G is a complex subspace of π−1(̃zG) implies

that VHZ̃\
is a MT(̃zG)= G Q-module. Hence WHZ̃\

is a G Q-group. Besides, G HZ̃\
�

G Q by Proposition 7.10. In particular, G HZ̃\
is reductive.

Then let us prove WHZ̃\
� Q. It suffices to prove WHZ̃\

� WQ . For any z̃ ∈ Z̃ ,
we have proved in Step I that Z̃ z̃G = WHZ̃\

(R)UHZ̃\
(C)̃z is weakly special. Hence

there is a connected mixed Shimura subdatum (R,Z+) ↪→ (Q,Y+) such that
z̃ ∈ Z+ and WHZ̃\

� R. Define W ∗ to be the G Q-subgroup (of WQ) generated by
WR := Ru(R), then WHZ̃\

� W ∗ since WHZ̃\
is a G Q-group.

Fix a Levi decomposition HZ̃ \ = WHZ̃\
o G HZ̃\

and choose a compatible Levi
decomposition Q = WQ o G Q (as is shown in [16, Lemma 9.7]). Let Q∗ be
the group generated by G Q R, then Ru(Q∗) = W ∗ and Q∗/Q∗ = G Q . The
group Q∗ defines a connected mixed Shimura datum (Q∗,Y∗+) with Y∗+ =
Q∗(R)+U ∗Q(C)̃z. Now Z̃ = HZ̃ \(R)+UHZ̃\

(C)̃z ⊂ Y∗+. But Z̃ is Hodge generic
in Y+ by assumption, hence Q = Q∗ and WQ = W ∗. So WHZ̃\

� WQ and hence
WHZ̃\

� Q.
Use the notation in Section 3.3. We are done if we can prove:

(u, v, 1)(0, 0, g)(−u,−v, 1) ∈ HZ̃ \ for any u ∈ UQ, v ∈ VQ and g ∈ G HZ̃\
.

By [16, Corollary 2.14], there exist decompositions UQ = UN ⊕ U⊥N and VQ =

VN ⊕ V⊥N as G Q-modules such that G N acts trivially on U⊥N and V⊥N . Now

(u, v, 1)(0, 0, g)(−u,−v, 1) = (u, v, g)(−u,−v, 1)
= (u − g · u, v − g · v, g)

= ((uN + u⊥N )− g · (uN + u⊥N ), (vN + v
⊥

N )

− g · (vN + v
⊥

N ), g)
= (uN − g · uN , vN − g · vN , g)
= (uN , vN , 1)(0, 0, g)(−uN ,−vN , 1) ∈ HZ̃ \,

where the last inclusion follows from Lemma 7.7.

Conclusion In view of Step I and Step III, we can apply Corollary 6.2 to Z̃ \. So
Z̃ \ is bi-algebraic, and hence is quasilinear by Theorem 5.7.

7.3. Estimate. The goal of this subsection is to prove Proposition 7.10.
Keep notation and assumptions as in the previous subsection. Consider

X \+
|Y+ := π ]−1(Y+). For the uniformization unif\ : X \+

|Y+ → S\|SQ :=

[π ]]−1(SQ), there exists a fundamental set F\ such that unif\|F\ is definable in the
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o-minimal structure Ran,exp: by [16, Section 10.1] there exists a fundamental set
F for unifQ : Y+→ SQ such that unifQ|F is definable in Ran,exp. It suffices to take

F\ := π ]−1
P/U (FQ/UQ )×FQ/UQ

F ⊂ π ]−1
P/U (Y+Q/UQ

)×Y+Q/UQ
Y+ = X \+

|Y+ .

Recall that G HZ̃\
�G N �Gder

Q by Corollary 7.8. Since Gder
Q is semisimple, there

exists a semisimple subgroup G0 of G N and a semisimple subgroup G ′ of G Q

such that G N = G HZ̃\
G0 and G Q = G N G ′ as almost direct products.

We wish to prove G0 = 1. The almost direct product G Q = G HZ̃\
G0G ′ induces

a decomposition of Shimura data

(Gad
Q ,Y+G Q

) ' (Gad
HZ̃\
,Y+G HZ̃\

)× (G0,Y+G0
)× (G ′,Y+G ′).

Under this decomposition, Z̃G = Y+G HZ̃\
× Z̃G0 × {point} for some Z̃G0 ⊂ Y+G0

.

Assume that G0 is nontrivial. Then Lemma 7.9 implies that dim Z̃G0 > 0.
Fix a point z̃\ ∈ F\ ∩ Z̃ \. Take an algebraic curve CG ⊂ Z̃G passing through

π \(̃z\) such that

the image of CG under the projection Y+G Q
→ Y+G HZ̃\

is a point. (7.2)

Now π \(Z̃ \
∩ π \−1(CG)) = Z̃G ∩ CG = CG , and hence there exists an algebraic

curve C \ in Z̃ \
∩ π \−1(CG) passing through z̃\ such that dim(π \(C \)) = 1.

Recall that the set FG is a fundamental set of unifG Q and unifG Q |FG is definable.
We define for any irreducible semialgebraic subvariety A\ (respectively AG) of
unif\−1(Y \) (respectively unif−1

G (YG)) the following sets: define

Σ(A\) := {g ∈ Qder(R) = (WQ Gder
Q )(R)| dim(g A\ ∩ unif\−1(Y \) ∩ F\) = dim(A\)}

(respectively ΣG(AG) := {g ∈ Gder
Q (R)| dim(g AG ∩ unif−1

G Q
(YG) ∩ FG) = dim(AG)})

and
Σ(A\) := {g ∈ Q(R)|g−1F\ ∩ A\ 6= ∅}

(respectively ΣG(AG) := {g ∈ G Q(R)|g−1FG ∩ AG 6= ∅}).

Then Σ(A\) and ΣG(AG) are by definition definable.

LEMMA 7.12. Σ ′(A\) ∩ ΓQ = Σ(A\) ∩ ΓQ (respectively Σ ′G(AG) ∩ ΓG Q =

ΣG(AG) ∩ ΓG Q ).

Proof. First Σ(A\) ∩ ΓQ ⊂ Σ
′(A\) ∩ ΓQ by definition. Conversely for any γ ∈

Σ ′(A\) ∩ ΓQ , the set γ −1F\ ∩ A\ contains an open subspace of A\ since F\ is by
choice open in X \+

|Y+ . Hence γ A\∩unif\−1(Y \)∩F\ = γ A\∩F\ contains an open
subspace of γ A\ which must be of dimension dim(A\). Hence γ ∈ Σ(A\) ∩ ΓQ .
The proof for AG is the same.
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This lemma implies

Σ(C\) ∩ ΓQ = Σ
′(C\) ∩ ΓQ ⊂ Σ

′(Z̃\) ∩ ΓQ = Σ(Z̃\) ∩ ΓQ

(respectively ΣG(CG) ∩ ΓG Q = Σ
′
G(CGi ) ∩ ΓG Q ⊂ Σ

′
G(Z̃

\
G) ∩ ΓG Q = Σ(Z̃

\
G) ∩ ΓG Q ).

(7.3)
For T > 0, define

ΘG(CG, T ) := {γG ∈ ΓG Q ∩ΣG(CG)|H(γG) 6 T }.

LEMMA 7.13. (i) We have π \(ΓQ ∩Σ(C \)) = ΓG Q ∩ΣG(CG).

(ii) There exists a constant c′ > 0 such that the following statement holds.
For any γ ∈ ΓQ ∩ Σ(C \) such that π \(γ ) ∈ ΘG(CG, T ), we have that
H(γ ) 6 c′T .

Proof. By Lemma 7.12, it suffices to prove π \(Γ ∩Σ ′(C \))= ΓG Q∩Σ
′

G(CG). The
inclusion ⊂ is clear by definition. For the other inclusion, ∀γG ∈ ΓG Q ∩Σ

′

G(CG),
∃cG ∈ CG such that γG · cG ∈ FG .

Take a point c\ ∈ C \ such that π \(c\) = cG and define cG := π
\(c\) ∈ Y+G Q

.
Let γG ∈ ΓG Q be such that γG · c\ ∈ π \−1(FG). Therefore, there exist γV ∈ ΓVQ ,

γU ∈ ΓUQ such that (γU , γV , γG)c\ ∈ F\. Denote by γ = (γU , γV , γG), then γ ∈
ΓQ ∩Σ

′(C \) and π \i (γ ) = γG . This proves (i).
For (ii), recall that the algebraic structure on X \+ is given by the inclusion

X \+
' W (C)×X +G ⊂ W (C)×X ∨G . We furthermore decompose W (C) ' U (C)×

V (C) as varieties. We shall use the `∞ norms on the complex vector spaces U (C)
and V (C).

Denote by CG the Zariski closure of CG in X ∨G . Then CG is a complex analytic
irreducible component of CG ∩ XG . But XG is a compact subset of X ∨G via the
Harish-Chandra realization, and C \

→ CG is a finite map. Hence for any point
c = (cU , cV , cG) ∈ C \, we have that ‖cU‖ and ‖cV‖ are uniformly bounded only
in terms of C \. Call this bound c′ − 1 where c′ > 1 is a number.

Now let γ = (γU , γV , γG) ∈ ΓQ be such that γ · c ∈ F\. We have γ · c =
(γU + γG · cU , γV + γG · cV , γG · cG). If H(γG) 6 T , then

H(γU ) 6 H(γG)‖cU‖ + 1 6 c′T, H(γV ) 6 H(γG)‖cV‖ + 1 6 c′T .

PROPOSITION 7.14. There exists a constant δ > 0 such that for all T � 0,
|ΘG(CG, T )| > T δ.

Proof. This follows directly from [22, Theorem 1.3] applied to ((G Q,X +G Q
),

SG, Z̃G).
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Let us prove how these facts imply Hi < G HZ̃\
. Take a faithful representation

G Q ↪→ GLn which sends ΓG Q to GLn(Z). Consider the definable set ΣG(CG).
By the theorem of Pila–Wilkie [32, Theorem 3.6], there exist J = J (δ) definable
block families

B j
⊂ ΣG(CG)× Rl, j = 1, . . . , J

and c = c(δ) > 0 such that for all T � 0,ΘG(CG, T 1/2n) is contained in the union
of at most cT δ/4n definable blocks of the form B j

y (y ∈ Rl). By Proposition 7.14,
there exist a j ∈ {1, . . . , J } and a block BG := B j

y0
ofΣG(CG) containing at least

T δ/4n elements of ΘG(CG, T 1/2n).
Let Σ := Σ(C \) ∩ Σ(Z̃ \), which is by definition a definable set. Consider

X j
:= (π

\

i × 1Rl )−1(B j) ∩ (Σ × Rl), which is a definable family since π \ is
algebraic. By [47, Ch. 3, 3.6], there exists a number n0 > 0 such that each fiber
X j

y has at most n0 connected components. So the definable set π \−1(BG) ∩Σ has
at most n0 connected components. Now

π \(π \−1(BG)∩Σ∩ΓQ)= BG∩π
\(Σ(C \)∩ΓQ)= BG∩ΣG(CG)∩ΓG Q = BG∩ΓG Q

by (7.3) and Lemma 7.13(i). So there exists a connected component B of
π \−1(BG) ∩ Σ such that π \(B ∩ ΓQ) contains at least T δ/4n/n0 elements of
ΘG(CG, T 1/2n). By Lemma 7.13(ii) B contains at least T δ/4n/n0 elements of
height 6 c′T 1/2n . Again by Pila–Wilkie [32, Theorem 3.6], there exists a number
n1 > 0 and a block B ′ in B such that π \(B ′ ∩ ΓQ) contains at least T δ/4n/n1

elements of ΘG(CG, T 1/2n).
We have B ′ Z̃ \

⊂ unif\−1(Y \) since Σ(Z̃ \)Z̃ \
⊂ unif\−1(Y \) by analytic

continuation, and Z̃ \
⊂ σ−1 B ′ Z̃ \ for any σ ∈ B ′ ∩ ΓQ . But B ′ is connected,

and therefore σ−1 B ′ Z̃ \
= Z̃ \ by maximality of Z̃ \ and [33, Lemma 4.1]. So

B ′ ⊂ σStabQ(R)(Z̃ \) for any σ ∈ B ′ ∩ ΓQ .
Fix a γ0 ∈ B ′ ∩ ΓQ such that π \(γ0) ∈ ΘG(CG, T 1/2n). We have already shown

that π \(B ′ ∩ ΓQ) contains at least T δ/4n/n1 elements of ΘG(CG, T 1/2n). For any
γ ′G ∈ π

\(B ′ ∩ΓQ)∩ΘG(CG, T 1/2n), let γ ′ be one of its pre-images in B ∩ΓQ . By
(7.2), both π \(γ0) and γ ′G satisfy the following property: the images are 1 under
the projections G Q → Gad

HZ̃
and G Q → G ′,ad induced by almost direct product

G Q = G HZ̃\
G0G ′.

Now γ := γ ′−1γ0 is an element of ΓQ ∩ StabQ(R)(Z̃ \) = ΓZ̃ \ such that
H(π \(γ )) � T 1/2. Therefore, for T � 0, π \(ΓZ̃ \) contains at least T δ/4n/n1

elements γG such that H(γG) 6 T . Moreover under the projections G Q → Gad
HZ̃

and G Q → G ′,ad induced by the almost direct product G Q = G HZ̃\
G0G ′, the

images of these γG are 1.
Hence under the projection G Q → G0 induced by the almost direct product

G Q = G HZ̃\
G0G ′, the image of π \(HZ̃ \) is of positive dimension because it
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contains infinitely many rational points. But this contradicts the maximality of
HZ̃ \ . Hence G0 = 1 and we are done.

7.4. Proof for the Fiber. In this subsection we prove Ax-Lindemann for the
fiber of S\→ SG . More precisely the following statement.

THEOREM 7.15. Let S\ be a connected enlarged mixed Shimura variety
associated with (P,X \+). Let E \ be a fiber of S\→ SG . Let Y \ be an irreducible
closed subvariety of E \. Assume Z̃ \ is an algebraic subset of X \+ contained in
unif\−1(Y \), maximal for this property. Then Z̃ \ is quasilinear.

As before we may and do assume that Y \
= unif\(Z̃ \)Zar. Let N be the

connected algebraic monodromy group of Y \. Let HZ̃ \ be as defined above
Remark 7.5. Note that in this case, N = WN and HZ̃ \ is also a unipotent group,
which we denote by W0. Again we have W0 � WN by Lemma 7.7.

Let us fix some extra notations for the proof. These notations will only be used
in this subsection.

W (C) π \ //

unif\

��

V (C)
π
]
V //

unif\V
��

V (C)/F0V (C),

unifV

��

K̃ \ � //
_

��

K̃ \

V
� //

_

��

K̃V_

��
E \ // A\ // A K \ � // K \

V
� // KV

(7.4)
Fix an isomorphism ΓV ' Z2n , which induces an isomorphism V (C)/F0V (C) '
R2n . Let FV := (−1, 1)2n . Then FV is a fundamental set for unifV . Let F\V :=
(π

]

V )
∗FV . Then F\V is a fundamental set for unif\V .

As algebraic varieties we have W (C) ' U (C) × V (C). Fix an isomorphism
ΓU ' Zm , which induces an isomorphism U (C) ' Cm . Hence W (C) ' Cm

×

V (C). Let
F\ = {z = (zi) ∈ Cm

: |Re(zi)| < 1} × F\V .

Then F\ is a fundamental set for unif\.
Let Z̃ \

V = π
\(Z̃ \). Let U0 = W0 ∩U and V0 = W0/U0.

PROPOSITION 7.16. Let v\ ∈ Z̃ \

V , and take any irreducible component K̃ \ of the
fiber (Z̃ \)v\ . Then the fiber K̃ \

= U ′(C)+ z̃\ for some U ′ < U and z̃\ ∈ Z̃ \

v\
.

Proof. Define

Ξ
\

U := {u ∈ U (R)| dim((u + K̃ \) ∩ unif\−1(Y \) ∩ F\) = dim Z̃ \

v\
}.
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Then Ξ \

U is definable and

Ξ
\

U ∩ ΓU = {γU ∈ ΓU |(γU + F\
v\
) ∩ K̃ \

6= ∅}. (7.5)

For any integer M > 0, let

Θ
\

U (K̃
\,M) := {γU ∈ ΓU ∩Ξ

\

U |H(γU ) 6 M}.

CLAIM 1. Assume dim K̃ \ > 0. Then |Θ\

U (K̃
\,M)| � M .

Proof. Define the norm of x = (x1, . . . , xm) ∈ U (C) to be ‖x‖ := max(|x1|, . . . ,

|xm |). It is clear that there exists a constant c1 > 0 such that

H(γU ) 6 c1 ‖ x ‖ (7.6)

for any x ∈ U (C) and any γU ∈ ΓU such that γU+x ∈ F\
v\

. Let ω :=
∧dim K̃ \

(dx1∧

dx1+· · ·+dxm∧dxm) and let K̃ \(M) := {̃u ∈ K̃ \
| ‖ũ‖ 6 M}. Then there exists

a constant c′2 such that∫
K̃ \(M)∩(γU+F

\

v\
)

ω =

∫
(K̃ \(M)−γU )∩F

\

v\

ω

6
∑

I⊂{1,...,m},|I |=dim K̃ \

deg(pI |(K̃ \−γU )∩F
\

v\
)

∫
pI ({x∈F

\

v\
|Im(x)6M})

ω

= c′2 M
∑

I⊂{1,...,m},|I |=dim K̃ \

deg(pI |(K̃ \−γU )∩F
\

v\
).

The functionΞ \

U → Z, u 7→ deg(pI |(K̃ \−γU )∩F
\

v\
) is a definable function with value

in Z, and hence is uniformly bounded. Therefore, there exists a constant c2 such
that ∫

K̃ \(M)∩(γU+F
\

v\
)

ω 6 c2 M. (7.7)

By [21, Theorem 0.1] there exists a constant c3 > 0 such that∫
K̃ \(M)

ω > c3 Mdim K̃ \

> c3 M2. (7.8)

Now we have

K̃ \(M) =
⋃
γU∈ΓU

(γU+F
\

v\
)∩K̃ \

6=∅

(γU + F\
v\
) ∩ K̃ \(M) ⊂

⋃
γU∈Θ

\
U (K̃

\,2M)

(γU + F\
v\
) ∩ K̃ \(M)

by (7.6) and H(γU ) 6 M ⇒ γU + K̃ \(M) ⊂ (γU + K̃ \)(2M). Integrating both
sides with respect to ω we can conclude by (7.7) and (7.8).
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Assume dim K̃ \ > 0. By Pila–Wilkie [32, Theorem 3.6], there exists a positive
dimensional connected semialgebraic subset K ⊂ Ξ \

U containing arbitrarily many
points γU ∈ ΓU . Fix a σU ∈ K ∩ ΓU . We have K ⊂ StabW (R)(K̃ \)σU . So (K ∩
ΓU )σ

−1
U ⊂ StabW (R)(K̃ \) ∩ ΓU . Therefore, the Q-group

U ′v\ := (StabW (R)(K̃ \) ∩ ΓU )
Zar,

which is the largest subgroup of U such that K̃ \ is stable under U ′(C), is of
positive dimension. This group is normal in P by Proposition 3.11(2), so we can
consider λv\ : (P,X \+)→ (P,X \+)/U ′

v\
. Note that K̃ \

= λ−1
v\
(λv\(K̃ \)).

COROLLARY 7.17. For the quotient λ : (P,X \+)→ (P,X \+)/U0, we have that
each fiber of λ(Z̃ \) over Z̃ \

V is a point.

Proof. It suffices to prove the following statement: there exists a subgroup U ′ <
U such that the following properties hold.

(i) The subvariety Z̃ \ is stable under U ′(C).

(ii) For the quotient λ : (P,X \+) → (P,X \+)/U ′, we have that each fiber of
λ(Z̃ \) over Z̃ \

V is a point.

For any v\ ∈ Z̃ \

V , recall our assumption that Z̃ \ is algebraic. So there exists
an integer n > 0 such that Z̃v\ has 6 n irreducible components for each v\.
Generic flatness of algebraic varieties says that dim Z̃ \

= dim Z̃ \

V + dim Z̃ \

v\
for

a generic v\ ∈ Z̃ \

V . We have that dim Z̃ \

v\
equals the dimension of one of its

irreducible components, and these irreducible components can be chosen such
that their union is connected. Apply Proposition 7.16 to each v\ and the irreducible
component of Z̃ \

v\
chosen above, we obtain a subgroup U ′

v\
of U .

Now let C̃ \

V be any complex analytic irreducible curve in Z̃ \

V . There are
uncountably many points in C̃ \

V and there are only countably many subgroups of
U , hence there exists a subgroup U ′ of U such that U ′

v\
= U ′ for uncountably

many v\ ∈ C̃ \

V . Replacing (P,X \+) by (P,X \+)/U ′ (this can be done since
U ′ � P by Proposition 3.11(2)) and every other object accordingly, we see that
U ′
v\,i ⊂ U ′ for all i except for countably many v\ ∈ C̃ \

V by generic flatness (in the
complex analytic geometry sense) and dimension reasons. But dim U ′

v\
is constant

except for countably many v\ ∈ C̃ \

V by generic flatness (in the complex analytic
geometry sense) and dimension reasons. Hence U ′

v\
= U ′ except for countably

many v\ ∈ C̃ \

V . But then we must have U ′
v\
= U ′ for all v\ ∈ C̃ \

V (this can be seen
by, for example, considering the smallest complex analytic irreducible subvariety
containing

⋃
v\∈C̃\

V , U ′
v\
=U ′ Z̃ \

v\
). By varying C̃ \

V we get U ′
v\
= U ′ for all v\ ∈ Z̃ \

V .

Hence we are done since Z̃ \ is irreducible.
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Now we replace (P,X \+) by (P,X \+)/U0 and S\ accordingly. Hence we may
and do assume that every fiber of Z̃ \

→ Z̃ \

V is a point and that U0 = 1. Thus the
natural projection W0 → V0 is an isomorphism. But we still distinguish W0 and
V0 to make precise which group we are considering.

PROPOSITION 7.18. We have Z̃ \

V = VN (C) + v\0 + L\ for some v\ ∈ V (C) and
L\ ⊂ F0V (C). In particular, V0 = VN .

Proof. For any algebraic subvariety K̃ \ of W (C), we define

Ξ \(K̃ \) := {v ∈ W (R) : dim(wK̃ \
∩ unif\−1(Y \) ∩ F\) = dim K̃ \

}.

Then we have
Ξ \(K̃ \) ∩ Γ = {γ ∈ Γ : γF\ ∩ K̃ \

6= ∅}. (7.9)

Now consider Z̃ \. Let C̃ \ be any algebraic curve in Z̃ \. Then

Ξ \(C̃ \) ∩ Γ ⊂ Ξ \(Z̃ \) ∩ Γ

by (7.9).
For any integer M > 0, let

Θ\(C̃ \,M) = {γ ∈ Γ ∩Ξ \(C̃ \) : H(γ ) 6 M}.

LEMMA 7.19. If dimπ
]

V (C̃
\

V ) > 0, then |Θ\(C̃ \,M)| � M.

Proof. This follows from the choice of F\V , the fact that V is a unipotent group,
and the assumption that U0 = 1.

Let us fix a decomposition V = V0 ⊕ V2 of Q-groups. Then we have Z̃ \

V =

V0(C) × Z̃ \

V,2. If π ](Z̃ \

V,2) > 0, then we can take an algebraic curve C̃ \
⊂ Z̃ \

such that C̃ \

V = {pt} × C̃ \

2 and dimπ ](C̃ \

V ) = 1. Then again by Lemma 7.19 and
Pila–Wilkie, we have that π \(W0) contains a positive- dimensional subgroup of
V2 because W0 is the largest subgroup of W that stabilizes Z̃ \. But this contradicts
V2 ∩ V0 = 0. So Z̃ \

V,2 ⊂ F0V (C). So we have Z̃ \

V = V0(C) + v\0 + L\ for some
v
\

0 ∈ VN (C) and L\ ⊂ F0V (C).
Denote by Z̃ = π ](Z̃ \), Y = [π ]](Y \) and the notations in (7.4).
Next by Remark 7.5, we have Z̃V = V0(R) + v. But Z̃V is complex analytic,

so V0(R) is complex in V (R) ' V (C)/F0V (C). Hence V0 is a G Q-module. Then
V0 gives rise to an abelian subvariety A0 := unifV (V0(R)) of A.

Thus YV = unifV (Z̃V )
Zar
= unifV (Z̃V ) is the translate of A0 by a point. Hence

VN = V0.
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Now let us finish the proof of Theorem 7.15. Recall that each fiber of Z̃ \
→ Z̃ \

V
is a point. We use A\0 to denote the universal vector extension of A0 as a subvariety
of A\.

We start with the case VN = 0. In this case we have that unif\V |L\ is the identity
map. So Z \ is closed in the usual topology. It is complex analytic since Z̃ \ is. So
Z \ is a holomorphic section of the T -torsor E \

|a\0+L\ → a\0 + L\. Thus this torsor
is trivial. So Z̃ \ is the image of an algebraic map ρ : L\ → U (C) ' Gk

a(C), and
Z \ is the image of the composite of ρ with exp : U (C) ' Gk

a(C) → T (C) '
Gk

m(C). Now Ax-Lindemann for algebraic tori implies that ((exp ◦ρ)(L\))Zar

is bi-algebraic. Thus Y \
= (Z \)Zar is bi-algebraic. Hence by the maximality of

Z̃ \, we have that Z̃ \ is bi-algebraic. In particular, Z \ is a constant section.
Let us go back to the general case. For each l\ ∈ L\, consider

Z̃ \

l\ := Z̃ \
∩ (π \)−1(VN (C)+ v\0 + l\).

Recall that each fiber of Z̃ \
→ Z̃ \

V is a point. Moreover Z̃ \ is stable under VN (C).
(Here we identify VN = V0 with W0 ' V0.) Hence Proposition 7.18 implies that
Z̃ \

l\ is a VN (C)-orbit. As VN is a Q-group, we have that unif\(Z̃ \

l\) is closed in the
usual topology. But then it is a holomorphic section of the T -torsor E \

|A\0+a\0+l\ →

A\0 + a\0 + l\, thus making the T -torsor trivial. On the other hand, Z̃l\ := π
](Z̃ \

l\)

is a VN (R)-orbit, and hence unif(Z̃l\) is a holomorphic section of the T -torsor
E |A0+a0 → A0 + a0. Thus unif(Z̃l\) gives rise to a holomorphic morphism
A0 + a0 → T , which must be trivial. So unif(Z̃l\) is a constant section. Back
to Z̃ \

l\ , we then have that unif\(Z̃ \

l\) is a constant section.
This argument applies to all l\ ∈ L\. So we can take the quotient of the T -torsor

E \
|A\0+a\0+L\ → A\0 + a\0 + L\ by A\0, namely we have the following Cartesian

diagram

E \
|A\0+a\0+L\

[p] //

��

E
\

��
A\0 + a\0 + L\ // L\

with the right morphism being a T -torsor, and the bottom map being the natural
projection. Thus we can conclude by the previous paragraph and by the case
VN = 0.

8. The Ax-Schanuel conjecture

8.1. Formulation of the conjecture. For mixed Shimura varieties we have
the following Ax-Schanuel conjecture: let S be a connected mixed Shimura
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variety associated with (P,X +) and let unif : X + → S be the uniformization.
Let prX+ : X + × S→ X + and prS : X + × S→ S be the natural projections.

CONJECTURE 8.1 (Ax-Schanuel for mixed Shimura varieties). Let ∆ ⊂ X + × S
be the graph of unif. Let Z = graph(Z̃

unif
−→ Z) be a complex analytic irreducible

subvariety of ∆ and let B be its Zariski closure in X + × S. Let F be the smallest
bi-algebraic (that is, weakly special) subvariety of S which contains Z = prS(Z).
Then

dimB− dimZ > dim F.

Note that Z is a priori a disastrous set. But F is well defined: it is the smallest
bi-algebraic subvariety of S which contains Z Zar.

We explain this conjecture. First replace Z by a complex analytic irreducible
component of B∩∆. Then denote by X̃ := prX+(B) and Y := prS(B). We have
X̃ ⊂ F̃ , Y ⊂ F and B ⊂ X̃ × Y . Therefore, Conjecture 8.1 implies

dim X̃ + dim Y − dim Z̃ > dimB− dimZ > dim F. (8.1)

On the other hand, let Ỹ (respectively F̃) be the complex analytic irreducible
component of unif−1(Y ) (respectively of unif−1(F)) containing Z̃ , then Z̃ is a
complex analytic irreducible component of X̃ ∩ Ỹ since Z is a complex analytic
irreducible component of B ∩∆. Hence we always have

dim Z̃ > dim X̃ + dim Ỹ − dim F̃ . (8.2)

Now (8.1) and (8.2) together imply

dimB = dim X̃ + dim Y, dim Z̃ = dim X̃ + dim Ỹ − dim F̃,

so Conjecture 8.1 is equivalent to:

• B = X̃ × Y ;

• X̃ and Ỹ intersect properly in F̃ .

Moreover by the first bullet point above, B being Zariski closed in X +×S implies
that X̃ is Zariski closed in X + and Y is Zariski closed in S. Hence X̃ = Z̃ Zar and
Y = Z Zar.

As we shall see, logarithmic Ax and Ax-Lindemann for mixed Shimura
varieties are special cases of this conjecture. We wish to make a similar conjecture
for enlarged mixed Shimura varieties. However, the naive guess is NOT always
true: if Z̃ \ is contained in a fiber of X \+

→ ϕ(X +), then unif\|Z̃ \ is the identity
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map for some Cn , and so Z\
:= graph(Z̃ \ unif\

−−→ Z \) is algebraic. So (Z\)Zar
=

Z\
6= Z̃ \

× Z \ and dim(Z\)Zar
− dimZ = 0.

Counterexamples to the naive guess as above exist due to the existence of those
F \ such that (∆\

∩(F̃ \
×F \))Zar

6= F̃ \
×F \, and the existence of such F \ is due to

the nonlinear part of F \. However, evidences suggest that this should be the only
obstacle. So we make the following conjecture: let S\ be a connected enlarged
mixed Shimura variety associated with (P,X \+) and let unif\ : X \+

→ S\ be the
uniformization.

CONJECTURE 8.2 (Ax-Schanuel for enlarged mixed Shimura varieties). Let

∆\
⊂ X \+

× S\ be the graph of unif\. Let Z\
= graph(Z̃ \ unif\

−−→ Z \) be a complex
analytic irreducible subvariety of ∆\. Let F \ (respectively F̃ \) be the smallest
bi-algebraic, or equivalently quasilinear, subvariety of S\ (respectively subset of
X \+) which contains Z \ (respectively Z̃ \). In particular, F \

= unif\(F̃ \).

(1) Let X̃ \
:= (Z̃ \)Zar and Y \

:= (Z \)Zar. Then

dim X̃ \
+ dim Y \

− dim Z̃ \ > dim F \.

(2) Let B\
:= (Z\)Zar

⊂ X \+
× S\. Let [pr ]ws

F\ and prws
F̃\ be as in (5.7). Denote

for simplicity by prws
F\ := (prws

F̃\ , [pr ]ws
F\) : F̃ \

× F \
→ (F̃ \)ws

× (F \)ws. Then

dim prws
F\(B

\)− dim prws
F\(Z

\) > dim(F \)ws

REMARK 8.3. The two parts of Conjecture 8.2 do not imply each other: the first
part implies logarithmic Ax (Theorem 6.3) and Ax-Lindemann (Theorem 7.1)
while the second part does not, and the second part implies Conjecture 8.1 while
the first part does not.

8.2. Ax-Schanuel (Conjecture 8.2) implies logarithmic Ax (Theorem 6.3).

THEOREM 8.4. (1) The Ax-Schanuel conjecture implies the logarithmic Ax
theorem.

(2) The Ax-Schanuel conjecture is true if Z \ is algebraic: it is implied by
logarithmic Ax.

Proof. For (1): let Z \ be an irreducible subvariety of S\ and let Z̃ \ be a complex
analytic irreducible component of unif\−1(Z \). We want to prove that X̃ \

= Z̃ \,Zar

https://doi.org/10.1017/fms.2019.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.10


EMSV, bi-algebraic system, Ax type transcendental results 59

is bi-algebraic assuming Conjecture 8.2. But the first part of Conjecture 8.2
implies (since Y \

= Z \)

dim X̃ \
= dim X̃ \

+ dim Y \
− dim Z̃ \ > dim F̃ \.

Therefore, X̃ \
= F̃ \ is bi-algebraic since X̃ \

⊂ F̃ \.
For (2): logarithmic Ax implies X̃ \

= F̃ \. Hence the first part is proven. Now it
suffices to prove prws

F\(B
\) = (F̃ \)ws

× [pr ]ws
F\(Z

\).
The group P(R)W (C) acts on X \+

× S\ by its action on the first factor.
Let ΓZ \ := Im(π1(Z \) → π1(S\) = Γ ) be the monodromy group of Z \ and
let N := (Γ Zar

Z \ )
◦. Then for any point z̃\ ∈ Z̃ \, we have ΓZ \ · z̃\ ⊂ Z\. So

N (R)+WN (C)̃z\ ⊂ B\. So prws
F\(B

\)[pr ]ws
F\
(z\) := prws

F\(B
\
∩ pr−1

S\ (z
\)) is bi-

algebraic, and hence equals (F̃ \)ws, for any z\ ∈ Z \ by (the last paragraph of
the proof of) logarithmic Ax. Now we are done.

8.3. Ax-Schanuel (Conjecture 8.2) implies Ax-Lindemann (Theorem 7.1).

THEOREM 8.5. (1) The Ax-Schanuel conjecture implies the Ax-Lindemann
theorem.

(2) The Ax-Schanuel conjecture is true if Z̃ \ is algebraic: it is implied by Ax-
Lindemann.

Proof. For (1): Let Z̃ \ be an irreducible algebraic subset of X \+ and let Z \
:=

unif\(Z̃ \). We want to prove that Y \
= Z \,Zar is bi-algebraic. But the first part of

Conjecture 8.2 implies (since X̃ \
= Z̃ \)

dim Y \
= dim X̃ \

+ dim Y \
− dim Z̃ \ > dim F \,

and therefore Y \
= F \ is bi-algebraic since Y \

⊂ F \.
For (2): Ax-Lindemann implies Y \

= F \. Hence the first part is proven. Now it
suffices to prove prws

F\(B
\) = prws

F̃\ (Z̃
\)× (F \)ws.

We start by the case where prws
F̃\ (Z̃

\) is a curve. The Ax-Lindemann theorem
implies Z \,Zar

= F \. So prws
F\(B

\) ⊂ prws
F̃\ (Z̃

\) × (F \)ws and surjects to prws
F̃\ (Z̃

\)

and (F \)ws. Therefore, either prws
F\(B

\) = prws
F̃\ (Z̃

\) × (F \)ws or prws
F\(B

\) →

(F \)ws is quasifinite. Suppose that we are in the latter case. Up to replacing
S\ by a finite cover we may assume that prws

F\(B
\) → (F \)ws is a bijection.

Let U \ be a nonempty open subvariety of (F \)ws such that prws
F̃\ (Z̃

\)|U \ :=

prws
F̃\ (Z̃

\) ∩ unif\−1(U \) is smooth. Now we define i : U \
→ prws

F̃\ (Z̃
\)|U \ , s\ 7→

prws
F\(B

\)s\ . This map is algebraic and bijective, and hence is an isomorphism
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of algebraic varieties since prws
F̃\ (Z̃

\)|U \ is smooth. But unif\|prws
F̃\
(Z̃ \)|U\

, which is
not algebraic, is the inverse of i . This is a contradiction. Hence we must have
prws

F\(B
\) = prws

F̃\ (Z̃
\)× (F \)ws when prws

F̃\ (Z̃
\) is a curve.

Now we turn to prws
F̃\ (Z̃

\) of arbitrary dimension. Let z̃\ ∈ prws
F̃\ (Z̃

\) and denote
by z\ := unif\(̃z\). Let C̃ \ be any algebraic curve in prws

F̃\ (Z̃
\) passing through

z̃\. By the last paragraph we have C̃ \
⊂ prws

F\(B
\)z\ := prws

F\(B
\
∩ pr−1

S\ (z
\)). By

varying C̃ \ we get prws
F̃\ (Z̃

\) ⊂ prws
F\(B

\)z\ . By varying z̃\ we get prws
F̃\ (Z̃

\) ×

[pr ]ws
F\(Z

\) ⊂ prws
F\(B

\). So

prws
F̃\ (Z̃

\)×(F \)ws
= (prws

F̃\ (Z̃
\)×[pr ]ws

F\(Z
\))Zar

⊂ prws
F\(B

\)⊂ prws
F̃\ (Z̃

\)×(F \)ws

and we are done.

9. Special subvarieties

Let S\ be a connected enlarged mixed Shimura variety associated with
(P,X \+) and let unif\ : X \+

→ S = Γ \X \+ be the uniformization. Use notation
of Section 3.4.

DEFINITION 9.1. (1) A subset Ỹ \ of X \+ is said to be special if it is the
underlying space of some connected enlarged mixed Shimura subdatum
(Q,Y \+) ↪→ (P,X \+) (in the category EMSD). Special points of X \+

are precisely the special subsets of dimension 0.

(2) A subset Y \ of S\ is called a special subvariety if it is the image of some
subset of X \+ under unif\ (Proposition 4.6(1) implies that any such defined
subset of S\ is a closed algebraic subvariety of S\). Special points of S\ are
precisely the special subvarieties of dimension 0.

REMARK 9.2. The definition of morphisms EMSD (Definition 3.4) yields the
following direct corollary: under the geometric comparison π ] : X \+

→ ϕ(X +)
(see Section 3.4), there is a bijection

{special subsets of X \+
}
∼

−→ {special subsets of ϕ(X +)}, Ỹ \
7→ Ỹ := π ](Ỹ \),

which induces {special points of X \+
}
∼

−→ {special points of ϕ(X +)}.

THEOREM 9.3. Let Y \ be a special subvariety of S\. Then the set of special points
contained in Y \ is Zariski dense.

Proof. Use Notation 5.3. Then YG is a special subvariety of SG and, by the theory
of Shimura varieties, the set of special points of SG contained in YG is Zariski
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dense. Because Y \ is special, we have that Y \ is a torsor over the universal vector
extension of the abelian scheme YP/U/YG , and hence the fibers of Y \

→ YG are
of constant dimension, say n.

Let Z \
⊂ Y \ be the Zariski closure of the set of special points of S\ contained

in Y \. Let yG ∈ YG be a special point of SG , then the set of special points of S\

contained in the fiber Y \
yG

is Zariski dense in Y \
yG

: to see this it suffices to prove
that the set of special points of S\P/U contained in Y \

P/U,yG
is Zariski dense, which

is true because Y \

P/U,yG
is the universal vector extension of the abelian variety

YP/U,yG . Hence dim Z \
yG
= dim Y \

yG
= n for any special point yG ∈ YG . However,

the semicontinuity implies that the set

Σ := {yG ∈ YG | dim Z \
yG
> n},

which contains all special points of YG by the argument above, is Zariski closed
in YG . Hence Σ = YG . Therefore, Z \

= Y \.

The converse of Theorem 9.3 is an ‘André–Oort’ type conjecture.

CONJECTURE 9.4 (André–Oort for enlarged mixed Shimura varieties). Let Y \ be
an irreducible subvariety of a connected enlarged mixed Shimura variety S\. If
the set of special points of S\ contained in Y \ is Zariski dense in Y \, then Y \ is a
special subvariety.

Conjecture 9.4 implies directly the mixed André–Oort conjecture:

CONJECTURE 9.5 (mixed André–Oort). Let Y be an irreducible subvariety of a
connected mixed Shimura variety S. If the set of special points of S contained in
Y is Zariski dense in Y , then Y is a special subvariety of S.

But in fact, we have

LEMMA 9.6. Conjectures 9.4 and 9.5 are equivalent.

Proof. We only need to prove Conjecture 9.4 assuming Conjecture 9.5. Let Y \ be
as in Conjecture 9.4 and let Σ \ be the set of special points of S\ contained in Y \.
Use Notation 5.3. Then Σ := [π ]](Σ) is a set of special points of S such that
ΣZar
= Y . Hence Y is a special subvariety of S by Conjecture 9.5.

Let Z \ be the special subvariety of S\ which maps to Y under the bijection

{special subvarieties of S\}
∼

−→ {special subvarieties of S}
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given by Remark 9.2. But [π ]] : Σ \
→ Σ is a bijection by Remark 9.2. So the

set of special points of S\ contained in Z \ is Σ \. Now Theorem 9.3 implies that
(Σ \)Zar

= Z \. Hence Y \
= Z \ is special.

REMARK 9.7. A key point to prove Lemma 9.6 is that the bijection in Remark 9.2
preserves 0-dimensional special subvarieties. In general this is not true: an r -
dimensional special subvariety of S\ is often mapped to a special subvariety of
S of smaller dimension.

Conjecture 9.5 has been intensively studied. It is proven unconditionally for any
mixed Shimura variety of abelian type (that is, its pure part is of abelian type) by
Pila-Tsimerman [34], Tsimerman [41] and Gao [16]. It is also proven under the
generalized Riemann Hypothesis (for CM fields) for all mixed Shimura varieties
by Klingler–Ullmo–Yafaev [22], Ullmo [42], Ullmo–Yafaev [45], Daw–Orr [13]
and Gao [15]. Then Lemma 9.6 implies the corresponding results for enlarged
mixed Shimura varieties.

Taking into account of not only special points but also special subvarieties of
higher dimensions, we have a ‘Zilber–Pink’ type conjecture.

CONJECTURE 9.8 (Zilber–Pink for enlarged mixed Shimura varieties). Let Y \

be an irreducible subvariety of a connected enlarged mixed Shimura variety S\.
Assume that S\ has no proper special subvariety which contains Y \. Then⋃

S\′ special,
dim(S\′)<codim(Y \)

S\′ ∩ Y \

is not Zariski dense in Y \.

The Zilber–Pink conjecture is naturally a generalization of the André–Oort
conjecture. Unlike the André–Oort conjecture, there is no immediate equivalence
(as given by Lemma 9.6) between Conjecture 9.8 and the Zilber–Pink conjecture
for mixed Shimura varieties (see Remark 9.7). There are some results about this
conjecture in some special cases (Habegger–Pila [19, 20], Orr [28], Gao [17]), but
in general little is known.

We finish this paper by the following lemma, which explains the relation
between special and weakly special subvarieties (Definition 5.8).

LEMMA 9.9. A subset Ỹ \ of X \+ is special if and only if Ỹ \ is weakly special and
contains a special point. Equivalently, a subvariety Y \ of S\ is special if and only
if it is weakly special and contains a special point.
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Proof. The ‘only if’ part is clear. We prove the ‘if’ part. Let (Q,Y \+) be as in
Definition 5.8(1) defining Ỹ \ and let N := Kerϕ. Let (T, ỹ\) be the connected
enlarged mixed Shimura datum giving a special point contained in Ỹ \. Let Q ′ be
the subgroup of P generated by i(N ) and T . Then (Q ′, Q ′(R)+WQ′(C)ỹ\) defines
a connected enlarged mixed Shimura subdatum of (P,X \+) (in the category
EMSD), and Ỹ \

= Q ′(R)+WQ′(C)ỹ\. Hence Ỹ \ is special.
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