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Abstract

Student’s t test is valid for statistical inference under the normality assumption or asymptot-
ically. By contrast, although the bootstrap t test was proposed in 1993, it is seldom adopted in
medical research. We aim to demonstrate that the bootstrap t test outperforms Student’s t test
under normality in data. Using random data samples from normal distributions, we evaluated
the testing performance, in terms of true-positive rate (TPR) and false-positive rate and
diagnostic abilities, in terms of the area under the curve (AUC), of the bootstrap t test and
Student’s t test. We explore the AUC of both tests with varying sample size and coefficient
of variation. We compare the testing outcomes using the COVID-19 serial interval (SI)
data in Shenzhen and Hong Kong, China, for demonstration. With fixed TPR, the bootstrap
t test maintained the equivalent accuracy in TPR, but significantly improved the true-negative
rate from the Student’s t test. With varying TPR, the diagnostic ability of bootstrap t test
outperformed or equivalently performed as Student’s t test in terms of the AUC. The
equivalent performances are possible but rarely occur in practice. We find that the
bootstrap t test outperforms by successfully detecting the difference in COVID-19 SI,
which is defined as the time interval between consecutive transmission generations, due to
sex and non-pharmaceutical interventions against the Student’s t test. We demonstrated
that the bootstrap t test outperforms Student’s t test, and it is recommended to replace
Student’s t test in medical data analysis regardless of sample size.

Introduction

Statistical hypotheses testing is an essential approach adopted for medical and healthcare data
analysis [1]. Student’s t test is one of the crucial tests that is widely used to conduct statistical
inference for normally (or approximately normally) distributed dataset or those with suffi-
ciently large sample size when the central limit theorem (CLT) is applicable [2, 3].
Student’s t test may yield unsatisfactory testing outcome when samples are skewed [4], mostly
likely with small sample size. Bootstrap methods have been proposed in 1970s, and have been
used to analyse such as not normally distributed data [5, 6]. It is (asymptotically) more accur-
ate than the standard estimates using sample variance and based on the assumptions of nor-
mality [7, 8]. Although a bootstrap t test was proposed by Efron and Tibshirani in 1993 [9], it
was considered the percentile of bootstrapped test statistic samples at the significant level. To
avoid repetition, we omit the algorithm of bootstrap t test in this study since the detailed algo-
rithm was already introduced in [9]. This improved version of t test is seldom adopted in med-
ical research.

Objectives

As mentioned, it is commonly accepted to use Student’s t test when normality of the data suf-
fices, whereas the bootstrap approach could be adopted to resolve the situation without nor-
mality. In this study, we demonstrated that for data from normal population, the bootstrap t
test outperforms Student’s t test in terms of different measures of the testing accuracy. We
explored the general features of the data sample with which bootstrap t tests are likely to
have more plausible testing outcome.
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Methods

The details of the testing procedures of bootstrap t test could be
found in [9]. The pairwise two-sample t tests are conducted
based on the null hypothesis, H0, that assumes the means of the
two populations equal. Data samples are randomly generated
from normally distributed populations, which will be used to
compare the testing outcome based on data samples and the
facts of populations. We evaluated the testing performance in
two scenarios including

• scenario (i): the H0 is true; and
• scenario (ii): the H0 is false.

Then, the possibility that H0 was not rejected in scenario (i) is
the true-positive rate (TPR), i.e. sensitivity. The possibility that H0

was rejected in scenario (ii) is the true-negative rate (TNR), i.e.
specificity. Theoretically, the TPR is (1− α), where α is known

as the rate of the type I error, i.e. false-alarm rate, and similarly,
TNR is (1− β), where β is the rate of the type II error, i.e. miss
rate. It is a common practice to set α at 5%, and the test is formu-
lated with the aim to minimise β [1, 10].

Fixed TPR

With TPR = (1− α) = 95%, i.e. α = 5%, we evaluated

(i) the consistency in TPR,
(ii) the levels of TNR and
(iii) informedness (i.e. Youden’s J statistic)

of two types of t tests with varying sample size and coefficient of
variation (CV) = S.D./difference in mean, in the samples [11].
Here, the informedness = TPR + TNR− 1, ranging from 0 to 1
(inclusive), is a single statistic that estimates the probability of
an informed decision [12], which evaluates the performance of

Fig. 1. Relations between the testing accuracies of the bootstrap t test (blue) and Student’s t test (black), including informedness, TPR and TNR, and the features of
the data samples including sample size and CV. Panels (a) and (b) show the relations between informedness ( = TPR + TNR − 1) and sample size and CV respectively.
Panels (c) and (d) show the relations between TPR and sample size and CV respectively. Panels (e) and (f) show the relations between TNR and sample size and CV
respectively. The CVs (of the data samples) were determined by

��

n
√ × t∗P=0.975,df=n, where n denotes the sample size, t* is the quantile of the t distribution and ‘df’ is

the degree of freedom, in panels (a), (c) and (e). The sample size was fixed to be 30 in panels (b), (d) and (f). The level of α was fixed to be 5% in all panels. The
vertical bars in each panel represent the 95% CIs.
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diagnostic tests. The informedness is 0 when a diagnostic test
gives the same proportion of positive results for both true and
false groups, which implies the testing outcome is totally unin-
formed. The informedness 1 indicates an ideal situation that
TPR = TNR = 1, which implies that the testing outcome is per-
fectly informed. Since the test statistic of t test is mainly deter-
mined by CV and sample size, these two factors are thus
included in the testing performance evaluation.

Varying TPR

With varying TPR, i.e. (1− α), we couldmeasure the diagnostic per-
formanceof both tests by usingTPRandTNR inpairs.With all pairs
of TPR and TNR, we could construct the receiver operating charac-
teristic (ROC) curve to illustrate the diagnostic abilities of the two t
tests in terms of the area under the curve (AUC).

Testing performance evaluation

For each set of sample size, CV and α, we tested 10 000 pairs of
random-generated data samples to estimate the TPR and TNR,
and then to calculate the informedness and AUC. We ran 1000
bootstrap samples to conduct the bootstrap t test. We also ran
1000 bootstrap samples in the testing outcomes of the two t test
to generate the 95% confidence intervals (CIs) of the estimated
metrics.

For demonstration, we compare the testing outcomes by using
the COVID-19 serial interval (SI), which is defined as the time
interval between consecutive transmission generations, data in
Shenzhen and Hong Kong, China. This demonstrative example
is considered as a part of results (instead of methodology), and
thus elaborated in the next section.

Results and discussion

We found that the informedness of bootstrap t test outperformed
Student’s t test for both a wide range of varying sample sizes and
CVs, see Figure 1(a) and (b). Since the TPRs were consistently
stabilised at 95%, see Figure 1(c) and (d), the difference in the
informedness was due to the differences in the TNRs, see
Figure 1(e) and (f). With fixed α, the bootstrap t test maintained
the equivalent accuracy in TPR, but significantly improved the
TNR compared to the Student’s t test, see Figure 1(c)–(f). This
can be interpreted as the bootstrap t test is more likely to exclude
the unrealistic hypothesis, when H0 is false, compared to the
Student’s t test and meanwhile maintained its judgement to the
true statement, when H0 is true. Since the null hypothesis is
known a priori to be false [13], H0 is commonly expected to be
rejected based on sufficient (statistical) evidence [1, 4, 10]. Thus,
the improvement in TNR was remarkably desirable.

In Figure 2, the diagnostic ability of bootstrap t test outperformed
orequivalentlyperformedas Student’s t test in termsof theAUC.The
diagnostic ability of bootstrap t test outperformed Student’s t test not

Fig. 2. ROC curves and AUCs of the bootstrap t test (blue) and Student’s t test (black) with varying sample sizes, n, and CVs of the data samples. The diagonal
dashed lines show the testing performance of a random classifier.
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only when the sample size is small, e.g. see Figure 2(b) and (c), but
also when the sample size becomes large, e.g. see Figure 2(i) and
(k). Although Student’s t test can be conducted with sufficiently
large sample size when the CLT is applicable [2, 3], we found that
bootstrap t test outperformed or equivalently performed as
Student’s t test regardless of the sample size.

On one hand, the AUC of Student’s t test approached that of
bootstrap t test, i.e. equivalent performance, when the sample size
became larger and CV became smaller, e.g. see Figure 2(e) and
( j). Under these circumstances, the distributions of samples to
be tested are distinguishably separated, and thus straightfor-
wardly, the two tests could yield ‘to reject H0’ outcomes equiva-
lently. This finding indicated that given sufficiently large sample
size, Student’s t test was capable of achieving equivalent diagnos-
tic ability as bootstrap t test when the two datasets were discrim-
inative in the central tendency and had low dispersion. It is also
interesting to note that the equivalent performance only appears
when the values of the AUC of two tests equal to 0.5, i.e. random
classifier, or 1, i.e. perfect classifier. Either AUC = 0.5 or AUC = 1
would rarely occur due to the unusual features of the testing data-
sets, e.g. extremely large sample size and small CV or extremely
small sample size and large CV.

On the other hand, when the sample size is small and CV is
large, e.g. see Figure 2(b), (c), (d), (g) and (h), the distributions
of samples to be tested are difficult to differentiate. In these situa-
tions, the diagnostic ability of bootstrap t test outperformed
Student’s t test in terms of the AUC.

In summary, for data samples from normally distributed
populations, both testing performance and diagnostic abilities of
the bootstrap t test outperformed Student’s t test regardless of
varying sample size and CV. We have summarised our findings
and the situation when normality fails in Table 1. Specially, for
small samples, when data fail to meet normality assumption,
other non-parametric tests and their bootstrap versions are also
recommended to fit the study purpose.

Demonstrative example of COVID-19

We demonstrate the performance of bootstrap t test against
the Student’s t test by using the COVID-19 SI dataset from the
early outbreaks in Shenzhen and Hong Kong, two neighbour cit-
ies on the southeast coast of China. In infectious disease transmis-
sion, the SI is defined as the difference between the onset date of
a secondary case and that of its associated primary case in a
consecutive transmission chain [16]. With the pathogen’s

transmissibility fixed, a shorter SI implies that the disease may
transmit more rapidly in terms of the epidemiological outcomes
at the population scale, e.g. number of cases. The SI is one of
the key epidemiological parameters to characterise the disease
transmission process, and it is of importance in determining
the changing patterns of the epidemic curve [17–20]. The SI
can be inferred from the contact tracing surveillance data and
reconstruction of the transmission chains, which is well studied
in previous studies [21–33], and widely adopted in modelling ana-
lysis [34–47].

The SI datawere collected via thepublic domains until 22February
2020 for Shenzhen, and until 15 February 2020 for Hong Kong. The
study periods cover the major epidemic wave in Shenzhen and the
first-epidemic wave in Hong Kong. This dataset was published previ-
ously in [48, 49] as well as studied in [50]. We extract transmission
pairs, i.e. one secondary case is epidemiologically linked to one and
only one primary case, with no missing information of the primary
case’s sex. We obtained a total of 34 transmission pairs including 22
(14 male and 8 female primary cases) from Shenzhen, and 12 (6
male and 6 female primary cases) from Hong Kong. There were 33
(out of a total of 34) transmission pairs with primary cases’ symptoms
onset date in January 2020, see Figure 3.

We evaluate the two t tests by examining whether they are able
to identify the difference in COVID-19 SI due to sex and non-
pharmaceutical interventions (NPIs). Thus, we conduct the t

Table 1. Summary of the situations to be tested and the recommendation of Student’s or Bootstrap t tests

Normality Sample size Dispersion Student’s or Bootstrap t test Remark Reference

No Small Small Bootstrap t test Non-parametric tests are also preferred 7, 14, 15

Large

Large Small None

Large None

Yes Small Small Bootstrap t test None This study

Large Bootstrap t test None

Large Small Both Equivalent AUC

Large Bootstrap t test None

Note: The ‘dispersion’ in this study is measured by the CV.

Fig. 3. SIs of the COVID-19 transmission pairs in Shenzhen and Hong Kong, China,
during the early outbreaks. The SI with male or female primary case is represented
by upward or downward triangle, respectively. The hollow or filled (red for female
and blue for male) triangle represents the SI data excluded or included in the t
tests, respectively. The green shading area highlights the CLNY.
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test on two groups of SI samples separated from the original data-
set based on two epidemiological evidences. They include

• evidence (i): according to the previous studies [28, 50], a female
COVID-19 primary case is likely having longer SI than male;
and

• evidence (ii): due to non-NPIs, e.g. social distancing, city lock-
down, travel suspension, wearing face mask, regular sterilisation,
the SI was shortened, i.e. became smaller, over time [31, 50].

Hence, we divide the COVID-19 SI samples based on the sex
of primary case, and Chinese Lunar New Year (CLNY) from 23 to
26 January 2020 [51], after which most of the NPIs (including city
lockdown) were implemented and enhanced. Two groups of SI
samples are selected for the t tests. They are

• samples from population (i): SI samples with female primary
case whose symptoms onset was before CLNY (sample size is
3, see red dots in Fig. 3), and

• samples from population (ii): SI samples with male primary
cases whose symptoms onset was after CLNY (sample size is
10, see blue dots in Fig. 3).

Straightforwardly, the mean SI of population (i) is expected
higher than the mean SI of population (ii), which is also sup-
ported by the evidence found in previous studies [28, 31, 50].

As for the outcomes from the t tests, we report the one-side
bootstrap t test yields a P value = 0.04 of statistical significance,
whereas the one-side Student’s t test yields a P value = 0.05.
Therefore, we demonstrate that the bootstrap t test outperforms
the Student’s t test by successfully detecting the difference in
COVID-19 SI due to sex and NPIs.

Limitations

This comparison analysis study has limitations. As one of the
classic drawbacks mentioned in [52], for the bootstrap on samples
from a population without a finite variance, the bootstrap will be
unlikely to converge. However, medical data samples are (com-
monly) from the real-world samples and thus the variance are
expected to be finite. Although we have demonstrated the testing
performances by using large sets of randomly generated data sam-
ples, the study would benefit from real-world examples that have
different conclusions from the bootstrap t test and Student’s t test,
respectively.

Conclusions

We demonstrated that the bootstrap t test outperforms Student’s t
test, and it is recommended to replace Student’s t test in medical
data analysis regardless of sample size.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821001047
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