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Random walks and the “Euclidean”
association scheme in finite vector spaces
Charles Brittenham and Jonathan Pakianathan
Abstract. In this paper, we provide an application to the random distance-t walk in finite planes and
derive asymptotic formulas (as q →∞) for the probability of return to start point after � steps based
on the “vertical” equidistribution of Kloosterman sums established by N. Katz. This work relies on
a “Euclidean” association scheme studied in prior work of W. M. Kwok, E. Bannai, O. Shimabukuro,
and H. Tanaka. We also provide a self-contained computation of the P-matrix and intersection
numbers of this scheme for convenience in our application as well as a more explicit form for the
intersection numbers in the planar case.

1 Introduction

In this paper, we study the unit random walk in finite vector spaces. We also provide
a discussion of a related association scheme that was the subject of the first author’s
thesis work [4] that we latter were informed was previously studied by W. M. Kwok,
E. Bannai, O. Shimabukuro, and H. Tanaka in [2, 12]. In [12], the P-matrix and
intersection numbers of this scheme were worked out in terms of the character
table of the “Euclidean” group over finite fields but had some errors which were
latter corrected in [2] where a connection to Kloosterman sums was also mentioned,
including Kloosterman’s original bound. In this paper, we recap these calculations
first to connect them more explicitly to our applications which use some deeper
distributional data about Kloosterman sums provided by equidistribution results from
number theory. (Along the way we also provide an explicit calculation of the planar
intersection numbers implicitly described in [12].)

The books [5, 7, 17] are good references for the spectral graph theory concepts used
in this paper. The book [5] is a good reference for association schemes. Let Fq be a
finite field of odd prime power order q, and let V = Fd

q be the standard d-dimensional
vector space over Fq . Note that all finite vector spaces of odd characteristic are of this
form.

Equip V with the standard bilinear dot product associated with the nondegenerate
quadratic form Q(v) = v2

1 + ⋅ ⋅ ⋅ + v2
d . The “distance” between two points v and w in

V as determined by this quadratic form is given by Q(v − w), which is the standard
“Euclidean” distance formula without the square root. The quadratic space (V , Q) will
be referred to as d-dimensional Euclidean space over Fq in this paper. Note that it is
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2 C. Brittenham and J. Pakianathan

known that there are only two nondegenerate quadratic forms up to isometry on any
finite vector space (see [16]), besides the one derived from the standard dot product
that we are using, the other one is a “Lorentzian” quadratic form with QLorentz(v) =
v2

1 + ⋅ ⋅ ⋅ + v2
d−1 + ξv2

d , where ξ is any fixed nonsquare element in Fq . Most of what we
discuss will also hold for this other quadratic form but we will stick to the dot product
in this paper for brevity.

For every t ∈ Fq , we may define the distance-t graph whose vertex set is V and
where there is an edge between v , w ∈ V if and only if Q(v − w) = t and v ≠ w. This
regular graph has a qd × qd adjacency matrix At with respect to some fixed ordering
of the vertices of V and common vertex degree ∣St ∣, where St = {v ∈ V/{0}∣Q(v) = t}
is the “sphere of radius t” and has order qd−1(1 + o(1)) when t ≠ 0. (The exact order
is known but here for brevity, we collect secondary terms in o(1) which tends to 0
as q → ∞.) In fact, this graph is a Cayley graph with connection set St and hence
is in fact vertex-transitive (i.e., there is a graph automorphism taking any vertex to
any other vertex). The corresponding Markov chain (see [13] for basic Markov chain
terminology) on this graph is called the distance-t random walk in V with the case
t = 1 called the unit random walk in V. It corresponds to a situation where at each
step, the current state evolves by taking a distance-t step with each such step equally
likely. The transition matrix for this Markov chain is Tt = 1

∣S t ∣
At .

The matrices {At ∣t ∈ Fq} determine a symmetric association scheme with corre-
sponding real and complex Bose–Messner algebras. What this means is that we have
identities of the form

AiA j = ∑
k∈Fq

pk
i , jAk ,

where the intersection numbers pk
i , j correspond to the number of ways that a given

“line segment” of length k can be completed to a triangle of side lengths i , j, and k.
We call this particular scheme the Euclidean association scheme for the finite field
Fq and recompute certain change of basis matrices P and Q (between a geometric
and a spectral basis of the Bose–Messner algebra) which are generally important in
the theory of such schemes. We also compute this association scheme’s intersection
numbers. (In [12], the higher-dimensional numbers were computed in terms of the
planar case which we compute explicitly here.) This first part of the paper’s results
appear in the first author’s thesis as well as in [12] (some errors in [12] were later
corrected in [2] and the connection to Kloosterman sums made more explicit, though
these were also already described earlier in [9]).

The eigenvalues of At are related to twisted Kloosterman sums:

K̃d(a, b) = ∑
x∈Fq−{0}

(x
q
)

d
χ(ax + b

x
),

where (x
q) is the Legendre symbol and χ is a fixed nontrivial additive character given

by χ(x) = e
2πiTr(x)

p , Here, q = p� with p an odd prime and Tr is the Galois trace from
Fq to Fp .
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Random walks and the “Euclidean” association scheme in finite vector spaces 3

In even dimensions d, the twisting by the Legendre symbol disappears and the
eigenvalues are related to Kloosterman sums:

K(a, b) = ∑
x∈Fq−{0}

χ(ax + b
x
).

In general, the K(a, b) are real algebraic integers, contained in Q[e
2πi

p ], the pth
cyclotomic field.

The identities K(0, 0) = q − 1, K(a, b) = K(b, a), K(1, 0) = −1 are trivial to verify
via character orthogonality and coordinate changes, as is the identity K(a, b) =
K(1, ab) when a ≠ 0. By work of Kloosterman and others (see [11, 18]), it is known
∣K(1, α)∣ ≤ 2√q when α ≠ 0 and q = p is an odd prime. One typically writes K(1, α) =
2√q cos(θα ,q), where θα ,q ∈ [0, π]. These numbers occur as spectra of various natural
Cayley graphs and hence in many combinatorial applications (see [1, 6, 8]).

Nick Katz [10] proved the deep result on “vertical equidistribution of Kloost-
erman sums” (see [14]) which states that for any [a, b] ⊆ [0, π], the proportion of
{θα ,q , 1 ≤ α ≤ q − 1} that lie in [a, b] approaches 2

π ∫
b

a sin2(θ)dθ as q → ∞. This
result was obtained by estimating the �th moment of the Kloosterman numbers
Mq ,� = ∑1≤α≤q−1 ∣K(1, α)∣� for all positive integers � reasonably. Useful closed form
formulas for these moments are only known for a finite number of � (see [15]).

In this paper, we calculate Rq ,�,t (see Theorem 7.1), the probability that you return
to the vertex you started from after �-steps in the random distance-t walk, in terms of
these moments of Kloosterman sums. We show that this probability is independent of
your starting state/vertex and is given by the following.

Theorem 1.1 (Probability of return in the distance-t random walk in Fq-planes) Let
q be an odd prime, q = 3 mod 4. Let Rq ,�,t be the probability that you return to the same
vertex after � steps in the distance-t walk where t ≠ 0. Then Rq ,�,t = Rq ,� is independent
of t ≠ 0 and initial state. We have

Rq ,�,t = Rq ,� = 1
q2 (1 + (−1)�

(q + 1)�−1 Mq ,�) .

Furthermore, as q → ∞, we have

Rq ,2� = 1
q2 + q�−1

(� + 1)(q + 1)2�−1 (
2�
�
)(1 + o(1)) = 1

q2 + 1
q�(� + 1)(

2�
�
)(1 + o(1))

and

Rq ,2�+1 =
1

q2 (1 − 1
(q + 1)2� o(q�+1.5)) = 1

q2 (1 + o(q1.5−�)) .

Note that the first 1
q2 term in these asymptotic formulas is what one would expect if

the location after � steps were equally likely to be anywhere in the plane and the second
term represents an arithmetic bias against that happening. In particular, we see that
for � ≥ 5, we have Rq ,� is 1

q2 (1 + o(1)) but for smaller � arithmetic bias is significant
and so we need at least five steps to achieve uniformity. Note Rq ,1 = 0, Rq ,2 = 1

q
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4 C. Brittenham and J. Pakianathan

(1 + o(1)), Rq ,4 = 3
q2 (1 + o(1)) are all “arithmetically biased.” Similar results hold for

q = 1 mod 4 and can be seen in the paper.
Though the main terms in these formulas can be derived using just the spectral gap

when � ≥ 5, the explicit nature of the second-order term requires, and is equivalent to,
the deeper vertical equidistribution results.

2 Association scheme definitions

See [5] for a discussion of the essentials of the theory of association schemes. There
are various equivalent definitions of association schemes, for us the following is most
convenient.

Definition 2.1 (Association scheme) An association scheme is a set X equipped with
a surjective “distance function” d ∶ X → Δ with distance set Δ which contains a formal
zero element {0̄} such that:

(1) d(x , y) = 0̄ if and only if x = y.
(2) d(x , y) = d(y, x) all x , y ∈ X.
(3) Given x , y ∈ X, k, i , j ∈ Δ with d(x , y) = k, the number pk

i , j(x , y) of z ∈ X such
that d(x , z) = i , d(z, y) = j only depends on i , j, k and not x , y. Thus, pk

i , j(x , y) = pk
i , j

and these are called the “intersection numbers” of the association scheme.

The best way to think of this last condition is to think of x , y giving a segment
of length k and then noting that (3) states that the number of ways to complete this
segment into a “triangle” only depends on the side lengths of the triangle and not the
endpoints of the segment itself.

Though it is nice to think of an association scheme “geometrically” do note that we
do not require the “distance” to satisfy the triangle inequality nor for the set Δ to be
numerical. The elements of Δ can be any objects such as colors, etc.

For any x ∈ X and j ∈ Δ, the sphere of radius j about x is denoted

S j(x) = {y ∈ X∣d(x , y) = j}.

Note in any finite association scheme, setting x = y in (3), we see that

p0̄
i , j = δ i , j ∣S j(x)∣

is independent of x. Here, δ i , j is the Kronecker Delta function which is 1 when i =
j and 0 otherwise. Furthermore, by (2), we may reverse the role of x and y and so
conclude that

pk
i , j = pk

j, i

for all i , j, k ∈ Δ.
Given an association scheme (X , d), we define the distance-t graph for any t ∈ Δ

as the graph on vertex set X and where two vertices x , y ∈ X are adjacent if and only
if d(x , y) = t. As ∣St(x)∣ is independent of x, the distance-t graph is ∣St ∣-regular.

In the case X is finite, we denote the adjacency matrix of the graph (with respect
to some linear ordering of X) as At . Thus, A0̄ = I and ∑ j∈Δ A j = J, where J is the all 1
matrix. It is easy to check that condition (2) is equivalent to the At being symmetric
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matrices and condition (3) is equivalent to

AiA j = ∑
k

pk
i , jAk .

As pk
i , j = pk

j, i , this says the matrices {Ai ∣i ∈ Δ} all commute with each other. Note as
we require d ∶ X × X → Δ to be surjective, no A j is the zero matrix and so the fact that
they sum to J shows that the {Ai ∣i ∈ Δ} are a linearly independent set in Mat∣X∣(R).
Condition (3), guarantees that their span is an algebra.

Definition 2.2 (Bose–Messner algebra) LetA = (X , d) be a finite association scheme
with distance set Δ such that ∣Δ∣ = D + 1. We say (X , d) has D (nonzero) classes. The
Bose–Messner algebra of the scheme is defined as

BM(A) = R − span of {A j ∣ j ∈ Δ} ⊆ Mat∣X∣(R).

It is a (D + 1)-dimensional R-commutative algebra with basis {A j ∣ j ∈ Δ} and
multiplication determined by the rule AiA j = ∑k pk

i , jAk .
The complexification of this algebra is called the complex Bose–Messner algebra

and consists of the C-span of the same A j matrices.

Example 2.3 Let X = (V , E) be a distance regular graph of diameter D, then V
equipped with the graph metric is an association scheme on D (nonzero) classes. The
theory of association schemes was introduced historically as a generalization of the
theory of distance regular graphs.

The next example is the primary example considered in this paper.

Example 2.4 (Euclidean association scheme) Let q be an odd prime power, n ≥ 2,
and V = Fn

q equipped with the “Euclidean” quadratic form Q(v) = v2
1 + ⋅ ⋅ ⋅ + v2

n and
“distance” Q(v − w). Then given x ≠ y, v ≠ w ∈ V with Q(x − y) = Q(v − w), Witt’s
theorem shows there is a isometry of V (consisting of a composition of a translation
and matrix multiplication by A, where A ∈ O(n, q) = {A ∈ Matn(Fq)∣AT A = I} is an
“orthogonal” matrix), taking the pair x , y to the pair of v , w.

When n ≥ 3 or n = 2 and q = 1 mod 4, it is possible Q(x − y) = 0 but x ≠ y and so
we distinguish between distance 0 and distance 0̄ by declaring d(x , y) = 0̄ if and only
if x = y and d(x , y) = Q(x − y) whenever x ≠ y. Thus in Z2

5 ,

d((0, 0), (1, 2)) = 12 + 22 = 5 = 0 ≠ 0̄.

The distance set is Δ = Fq ∪ {0̄} when n ≥ 3 or n = 2, q = 1 mod 4 but when n = 2,
q = 3 mod 4, Δ = (Fq − {0}) ∪ {0̄} as Q(x − y) ≠ 0 when x ≠ y in that case.

Witt’s theorem establishes that (V , d) is an association scheme by establishing
property (3).

Example 2.5 Let q be an odd prime power, q = 3 mod 4, then −1 is not a square in Fq
and so the Galois extension E = Fq[i] of Fq is a degree 2 extension where i is a root of
x2 + 1. The Galois norm map N ∶ E× → F×q has N(a + bi) = (a + bi)(a − bi) = a2 +
b2 and this agrees with the Euclidean quadratic form Q on V = F2

q and so Q(x − y) =
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0 ⇐⇒ x = y in this case. Note as N is a homomorphism,

∣S j((0, 0))∣ = ∣N−1( j)∣ = q2 − 1
q − 1

= q + 1

for all j ∈ F×q = Fq − {0}. Thus, in the corresponding association scheme, p0̄
j, j = q + 1

whenever j ∈ F×q while p0̄
0̄,0̄ = 1.

Given a finite association scheme A = (X , d) on D classes, the matrices {A j ∣ j ∈ Δ}
are a real basis for the corresponding Bose–Messner algebra BM(A). As the matrices
are symmetric and as they commute, they can be simultaneously (orthogonally)
diagonalized on their action on RX and this vector space splits as an orthogonal
direct sum of simultaneous eigenspaces of all the A j operators. These simultaneous
eigenspaces are called weight spaces. Let {E i , i ∈ Δ′} be the collection of orthogonal
projection operators to the individual weight spaces. Linear algebra guarantees that
each E i is a polynomial expression in the A j ’s and hence lies in the Bose–Messner
algebra and thus is a linear combination of the A j . Conversely, as each A j is constant
on the image of any E i , each A j can be trivially written as a linear combination of the
E i . Thus, the {E i ∣i ∈ Δ′} are a different, “spectral basis” of the Bose–Messner algebra
BM(A) and hence ∣Δ∣ = ∣Δ′∣. We will refer to the original basis {A j ∣ j ∈ Δ} of BM(A)
as the geometric basis of the Bose–Messner algebra as these encode the distances of
the scheme.

Many of the main results of association schemes, and distance regular graphs, in
particular, arise from the interactions between the geometric and spectral basis of the
Bose–Messner algebra of the scheme.

In particular, two fundamental change of basis matrices are defined as follows.

Definition 2.6 Let (X , d) be a finite association scheme on D (nonzero) classes,
and let {A j ∣ j ∈ Δ} and {E i ∣i ∈ Δ′} denote the “geometric” and “spectral” basis of the
corresponding Bose–Messner algebra. The (D + 1) × (D + 1) real matrices P and Q
are defined via

A j = ∑
i∈Δ′

Pi , jE i for all j ∈ Δ

and

E i =
1
∣X∣ ∑j∈Δ

Q j, i A j for all i ∈ Δ′ .

Thus PQ = ∣X∣I = QP.

Note that the {Pi , j ∣i ∈ Δ′} are just the eigenvalues of A j , the adjacency matrix of
the distance-j graph of the scheme. Note that ∣Δ′∣ = ∣Δ∣ = D + 1 is usually much smaller
than ∣X∣ and so the ∣X∣ × ∣X∣ matrix A j has lots of multiplicities in its eigenvalues,
encoded by rank(E i) which is the dimension of the ith weight space.

Definition 2.7 (Intersection matrices) Given an association scheme on D (nonzero)
classes with intersection numbers pk

i , j , i , j, k ∈ Δ. The (D + 1) × (D + 1) intersection
matrix L i is defined via (L i)k , j = pk

i , j for all i ∈ Δ.
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It turns out the eigenvalues of L j are the same as the eigenvalues of the ∣X∣ × ∣X∣
matrix A j , i.e., are also {Pi , j ∣i ∈ Δ′}.

The matrices P, Q , L j , A i , E j satisfy many interesting identities in an associa-
tion scheme. For our purpose, we focus on Delsarte’s linear programming bound.
Let (X , d) be a finite association scheme and Y ⊆ X. For each j ∈ Δ, define a j =
∣{(y1 , y2)∈Y×Y ∣d(y1 , y2)= j}∣

∣Y ∣ = χT
Y A j χY

χT
Y χY

∈ Q≥0, where χY is the characteristic column vector
of Y. Then, the row vector a = (a j) j∈Δ is called the inner distribution of Y as it
encodes the frequency of various distances on the pairs in the subset Y. This inner
distribution satisfies Delsarte’s linear programming bound condition aQ ≥ 0 as well
as ∑ j∈Δ a j = ∣Y ∣ and these conditions give us many constraints on distances induced
on subsets Y of the scheme.

3 Eigenvalues of the distance-t graphs

For any t ∈ Fq , let X(q, t)denote the associated distance-t graph onFd
q . In this section,

we describe the spectrum of the adjacency matrix of this graph, At , when t ≠ 0̄, i.e.,
for t ∈ Fq . This spectrum was previously computed by various authors, for example,
in [9, 17] but we include a brief discussion here to be self-contained.

Standard spectral theory of finite Cayley graphs over Abelian groups, shows that
the complex eigenfunctions of this graph’s adjacency operator At are the characters
χm(x) = χ(m ⋅ x) as m ranges overFd

q . Here, ⋅ stands for dot product. The correspond-
ing eigenvalue of At on χm which we will denote λm ,t ,d (recall d is the dimension of
V) is given by

λm ,t ,d = ∑
x∈S t ,d

χm(x) = ∑
x≠0,Q(x)=t

χ(m ⋅ x).

Clearly, λ0,t ,d = ∣St ,d ∣. The size of these spheres were originally calculated by
Minkowski, and there are at most three distinct sphere sizes corresponding to t = 0,
t a nonsquare in Fq , and t a nonzero square in Fq . This is because scaling by λ ∈ F×q
gives a bijection between St ,d and Sλ2 t ,d .

When m, t are both nonzero, these eigenvalues are given by twisted Kloosterman
sums. We provide the calculation for the convenience of the reader. First, note that by
character orthogonality, we have 1

q ∑s∈Fq
χ(sL) = δL ,0, where δL ,0 = 1 if L = 0 and 0

otherwise. Then we compute, when t ≠ 0,

λm ,t ,d = ∑
{x ∣Q(x)=t}

χ(m ⋅ x) = 1
q ∑

s∈Fq

∑
x∈V

χ(m ⋅ x)χ(s(Q(x) − t))

= 1
q ∑

s∈Fq

χ(−st) ∑
x1 , . . . ,xd∈Fq

χ(m1x1 + ⋅ ⋅ ⋅ + md xd + s(x2
1 + ⋅ ⋅ ⋅ + x2

d))

= 1
q ∑

s∈Fq

χ(−st)
d
∏
i=1

∑
x i∈Fq

χ(m i x i + sx2
i )
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= qd−1δm ,0 + 1
q ∑

s≠0
χ(−st)

d
∏
i=1

∑
x i∈Fq

χ(m i x i + sx2
i )

= qd−1δm ,0 + 1
q ∑

s≠0
χ(−st)

d
∏
i=1

∑
y i∈Fq

χ(sy2
i −

m2
i

4s
),

where in the last step, we completed the square and substituted y i = x i + m i
2s . Letting

G(s) = ∑y∈Fq
χ(sy2) denote the corresponding Gauss sum, we conclude that

λm ,t ,d = qd−1δm ,0 + 1
q ∑

s≠0
χ (−st − Q(m)

4s
)G(s)d .

When t = 0, the only correction needed is to exclude x = 0 from the set Q(x) = 0
which results in reducing this quantity by 1. Thus, we have generally that

λm ,t ,d = qd−1δm ,0 − δt ,0 + 1
q ∑

s≠0
χ (−st − Q(m)

4s
)G(s)d .

It is a well-known result of Gauss that G(s) = (s
q)ε(q)√q, where (s

q) is the
Legendre symbol which is +1 when s is a nonzero square modulo q, and −1 when s
is a nonsquare modulo q. The quantity ε(q) = 1 when q ≡ 1 mod 4 and ε(q) = i when
q ≡ 3 mod 4. Thus, we conclude

λm ,t ,d = qd−1δm ,0 − δt ,0 + q
d
2 −1ε(q)d K̃d (−t, −Q(m)

4
) ,

where K̃d(a, b) = ∑s≠0 (s
q)

d χ(as + b
s ) is a twisted Kloosterman sum. Note that the

dependence of K̃d(a, b) on d is weak and only depends on the parity of d. When d
is even, K̃d(a, b) = K(a, b) = ∑s≠0 χ(as + b

s ) is the regular Kloosterman sum. Note
that the m-dependence of the eigenvalue λm ,t ,d is only through Q(m) = ∣∣m∣∣ = m2

1 +
⋅ ⋅ ⋅ + m2

d and whether m is the origin or not. Following the convention adopted in
association schemes, we will write Q(m) = 0̄ if m = 0 and Q(m) = 0 if m ≠ 0 but m2

1 +
⋅ ⋅ ⋅ + m2

d = 0.
Thus Span{χm ∣Q(m) = k} = Lk is contained in an eigenspace of At for each t, k ∈

Fq ∪ {0̄}. The complex vector spaceC[V], of all complex functions on V, decomposes
as a orthogonal direct sum of the Lk with respect to the standard Hermitian inner
product. The Lk are simultaneous eigenspaces of all the At operators and L0 is 0 if
and only if S0 = ∅. Thus, the number of nonzero Lk is the same as the dimension of
the corresponding Euclidean association scheme and so the nonzero Lk are exactly
the weight spaces in the decomposition of the complex Bose–Messner algebra of the
scheme. Note that L0̄ = Span{χ0} = Span{1} consists of the constant functions.

We record these results in the following theorem.

Theorem 3.1 Let q be an odd prime power and Fq the finite field of order q. For d an
integer ≥ 2, m ∈ Fd

q , t ∈ Fq we have that the eigenvalue λm ,t ,d of the adjacency matrix
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At of the distance-t graph of V = Fd
q on the character χm(x) = χ(m ⋅ x) is given by

λm ,t ,d = qd−1δm ,0 − δt ,0 + q
d
2 −1ε(q)d K̃d (−t, −Q(m)

4
) ,

where K̃d(a, b) = ∑s≠0 (s
q)

d χ(as + b
s ) is a twisted Kloosterman sum.

If Wk = Span{χm ∣Q(m) = k} inC[V], thenC[V] = ⊕k∈Fq∪{0̄}Wk is an orthogonal
direct sum decomposition of the vector space of complex-valued functions on V into
simultaneous eigenspaces of all the At operators, t ∈ Fq ∪ {0̄}. The orthogonal projection
Ek onto the (nonzero) Wk give the spectral basis of the complex Bose–Messner algebra
of the corresponding Euclidean association scheme.

Note it is not hard to see that the complex conjugate of K̃d(a, b) is

∑
s≠0

(s
q
)

d
χ (−as − b

s
) = ∑

s≠0
(−s

q
)

d
χ (as + b

s
)

and so K̃d(a, b) is real if either d is even or q ≡ 1 mod 4 (i.e., when −1 is a square
modulo q) but is purely imaginary when d is odd and q ≡ 3 mod 4. However, the
quantity ε(q)d K̃d(a, b) and hence λm ,t ,d are real numbers of course as they are
eigenvalues of symmetric matrices.

4 Some properties of (twisted) Kloosterman sums

Let q = p� be an odd prime power and define K̃d(a, b) = ∑s≠0 (s
q)

d χ(as + b
s ) for a, b ∈

Fq .
Let ξp = e

2πi
p be a primitive pth root of unity and Q[ξp] be the corresponding

cyclotomic field. Note as χ(x) = ξTr(x), where Tr ∶ Fq → Fp is the Galois trace, we have
that K̃d(a, b) are elements in the ring of integers ofQ[ξp]. Recall that the Galois group
Gal(Q[ξp]/Q) is Abelian of order p − 1 and contains automorphisms of the form ψa
determined by the property that they take ξ to ξa for all a ∈ F∗p and fix the rational
subfield.
Proposition 4.1 Let p be an odd prime and q = p� and define

K̃d(a, b) = ∑
s≠0

(s
q
)

d
χ (as + b

s
)

for a, b ∈ Fq . These are algebraic integers in the cyclotomic field Q[ξp] which satisfy:
(1) K̃d(a, b) = K̃d(b, a).
(2) K̃d(a, b) = (a

q)
d K̃d(1, ab) when a ≠ 0.

(3) The quantity K̃d(0, 0) is equal to q − 1 when d is even and equal to 0 when d is
odd. Thus K̃d(0, 0) = (q − 1) (−1)d+1

2 .
(4) The quantity K̃d(1, 0) = K̃d(0, 1) equals −1 when d is even and G(1) when d is

odd where G(1) = ∑s∈Fq
χ(s2) = ε(q)√q is a quadratic Gauss sum.

(5) For c ∈ F∗p, we have that ψc(K̃d(a, b)) = K̃d(ca, cb), where ψc is the Galois
automorphism of Q[ξp] over Q which takes ξp to ξc

p.
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10 C. Brittenham and J. Pakianathan

Proof To prove (1), use the change of variable s → 1
s . To prove (2), use the change

of variable s′ = as for nonzero a. (3) follows trivially once one notes that in any finite
field, an equal number of elements are nonzero squares as are nonsquares.

For (4), first note that when d is even we have K̃d(1, 0) = ∑s≠0 χ(s) which by
character orthogonality is equal to −χ(0) = −1. When d is odd, we have K̃d(1, 0) =
∑s≠0 (s

q)χ(s) = ∑s∈Fq
(s

q)χ(s) = ∑s∈Fq
((s

q) + 1)χ(s) = ∑u∈Fq
χ(u2) = G(1).

Finally, for (5), we note that K̃d(a, b) = ∑s≠0 (s
q)

d ξTr(as+ b
s )

p and apply the Galois
automorphism ψc to get

ψc(K̃d(a, b)) = ∑
s≠0

(s
q
)

d
ξcTr(as+ b

s )
p = ∑

s≠0
(s

q
)

d
ξTr(cas+ cb

s )
p = K̃d(ca, cb)

as the Galois trace Tr ∶ Fq → Fp is Fp-linear. ∎

Note that when d is even, the K̃d(a, b) coincide with (untwisted) Kloosterman
sums K(a, b) = ∑s≠0 χ(as + b

s ) and the properties above apply to those also. In
particular, when q = p, this implies that the {K(1, u)∣u a nonzero square} are all
Galois conjugates inQ[ξp]. This is because for c ≠ 0, ψc(K(1, 1)) = K(c, c) = K(1, c2).

We will need one more property of these Kloosterman numbers that requires some
Fourier analysis. Recall if f ∶ V → C, then we define the Fourier transform

f̂ (m) = 1
qd ∑

x∈V
f (x)χ(−m ⋅ x).

It is easy to show via character orthogonality that we can recover f via

f (x) = ∑
m∈V

f̂ (m)χ(m ⋅ x).

Note if we let St denote the indicator function of the corresponding t-sphere, t ∈ Δ,
then qd Ŝt(m) = ∑x∈Fd

q
St(x)χ(−m ⋅ x) = ∑x∈S t

χ(m ⋅ x) = λm ,t ,d from the previous
section. (We define λm ,0̄,d = 1 to also make it work in that case.) By disjointness of
spheres of different radii, it follows that for any i ≠ j ∈ Δ,

0 = S i(x)S j(x) = ( ∑
m∈V

Ŝ i(m)χ(m ⋅ x))(∑
n∈V

Ŝ j(n)χ(n ⋅ x))

0 = ∑
t∈V

( ∑
m∈V

Ŝ i(m)Ŝ j(t − m)) χ(t ⋅ x).

By character independence, we conclude that ∑m∈V Ŝ i(m)Ŝ j(t − m) = 0 for all t ∈
Fd

q when i ≠ j ∈ Δ. When i = j, as S i(x)S i(x) = S i(x), we instead conclude Ŝ i(t) =
∑m∈V Ŝ i(m)Ŝ i(t − m).

Using that qd Ŝt(m) = λm ,t ,d and that Ŝt(m) = Ŝt(−m), this becomes the next
proposition.

Proposition 4.2 Consider the Euclidean association scheme on V = Fd
q with distance

set Δ. Let λm ,t ,d be as in Theorem 3.1 with λm ,0̄,d = 1. Then for any i ≠ j ∈ Δ and t ∈ V,
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we have
∑

m∈V
λm , i ,d λt−m , j,d = 0,

and, in particular, when t = 0,
∑

m∈V
λm , i ,d λm , j,d = 0.

When i = j, we instead have
∑

m∈V
λm , i ,d λt−m , i ,d = qd λt , i ,d

and
∑

m∈V
λ2

m , i ,d = qd λ0, i ,d = q2d Ŝ i(0) = qd ∣S i ∣.

5 The P and Q matrices of the Euclidean association scheme

The calculation of the P-matrix of the Euclidean scheme in this section was first
done in [12] with corrections in [2] but we provide the details independently here
in language more connected to our applications.

Let Δ be the “distance” set of the Euclidean association scheme on V = Fd
q . Thus,

if d ≥ 3 or (d = 2, q = 1 mod 4), we have Δ = {0̄} ∪ Fq whereas when (d = 2, q = 3
mod 4), we have Δ = {0̄} ∪ F×q .

By Theorem 3.1, it follows that both the spectral and geometric basis of the complex
Bose–Messner algebra can be indexed by the distance set Δ. Fix a linear ordering of
Δ where 0̄ comes first and if 0 ∈ Δ, it comes second. For example, the ordering 0̄ <
0 < 1 < ⋅ ⋅ ⋅ < q − 1 works when (d = 2, q = 1 mod 4) or d ≥ 3 and when otherwise, i.e.,
when (d = 2, q = 3 mod 4) we drop 0 from the list.

Then when i , j ∈ Δ, we have Pi , j is by definition the eigenvalue of A j on the ith
weight space Wi which was denoted λm , j,d in previous sections where m ∈ V is any
vector with Q(m) = i. In other words, by definitions, it follows that λm , j,d = PQ(m), j
for all m ∈ V , j ∈ Δ.

In particular, P0̄,t = λ0,t ,d = qd Ŝt(0) = ∣St ∣ for all t ∈ Δ and thus the top row of P
lists the sphere sizes. Also Pi ,0̄ = λm ,0̄,d = 1 (here, m is any vector with Q(m) = i).
Thus, the leftmost column of P is all 1’s (eigenvalues of A0̄ which is the identity
operator).

On the other hand, if 0 ∈ Δ, P0,t = λm ,t ,d for some nonzero vector m of length
Q(m) = 0. By Theorem 3.1, P0,t = −δt ,0 + q d

2 −1ε(q)d K̃d(−t, 0) = P0̄,t − qd−1 = ∣St ∣ −
qd−1. Thus, the 0-row (which would be listed second if it occurs) consists of the
deviations of sphere sizes from the expected size qd−1.

Proposition 4.2 can be recast in terms of the entries of P as follows: When i ≠ j ∈
Δ, we have ∑m∈V λm , i ,d λm , j,d = 0. Lumping terms in this sum by the length t of the
vector m yields

∑
t∈Δ

∣St ∣Pt , iPt , j = 0.

Similarly, we get when i = j ∈ Δ, ∑t∈Δ ∣St ∣P2
t , i = qd ∣S i ∣.
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12 C. Brittenham and J. Pakianathan

It follows that PT DP = qd D, where D is a diagonal matrix with the sizes of the
spheres along the diagonal in the same order as they appear in the top row of P.

As no sphere sizes are zero (we only index distances that occur), D is invertible and
it follows that P−1 = 1

qd D−1PT D.
As the Q-matrix is defined uniquely (as inverses are unique) by the condition PQ =

qd I = QP, it follows that Q = D−1PT D. We summarize this next in the following.

Theorem 5.1 Let q be any odd prime power, d ≥ 2 and consider the Euclidean associa-
tion scheme with distance set Δ. Then ∣Δ∣ = q + 1, when 0 ≠ 0̄ ∈ Δ and ∣Δ∣ = q otherwise
when 0 ∉ Δ, i.e., when (d = 2 and q = 3 mod 4).

The ∣Δ∣ × ∣Δ∣ matrices P and Q of the association scheme (relative to some linear
ordering of Δ for which 0̄ comes first) have: P0̄, j = ∣S j ∣ for all j ∈ Δ, Pi ,0̄ = 1 for all i ∈ Δ
and otherwise for i , j ∈ Δ − {0̄} we have

Pi , j = −δ j,0 + q
d
2 −1ε(q)d K̃d(− j, − i

4
),

where K̃d(a, b) = ∑x∈F×q (x
q)

d χ(ax + b
x ) is a twisted Kloosterman sum and ε(q) is

either 1 or i depending if q is 1 or 3 mod 4.
If D is the diagonal matrix whose diagonals are the sphere sizes (following the chosen

linear ordering of Δ), then Q = D−1PT D and QP = PQ = qdI. Thus Q i , j = ∣S j ∣

∣S i ∣
Pj, i .

Note that when d = 2, q = 3 mod 4, then 0 ∉ Δ and Pi , j = −K(− j, −i
4 ) = −K(1, i j

4 )
for any i , j ∈ Δ − {0̄} and so other than the first row and column ofP, the other entries
are negatives of Kloosterman numbers. In this case, we also have ∣S i ∣ = q + 1 for all
i ≠ 0̄ and ∣S0̄∣ = 1. If we denote 1 to be the (q − 1)-dimensional column vector of all 1s,
and K to the symmetric (q − 1) × (q − 1) matrix with K i , j = K(1, i j

4 ) = K j, i , i , j ∈ F×q ,
then we have

P = [1 (q + 1)1T

1 −K ] = Q .

Thus, P2 = q2I for the Euclidean association scheme when d = 2, q = 3 mod 4.
On the other hand, when d = 2, q = 1 mod 4, then 0 ∈ Δ, ∣S i ∣ = q − 1 if i ≠ 0, 0̄ and

∣S0∣ = 2q − 2, ∣S0̄∣ = 1. With respect to any linear ordering with 0̄ < 0 < F×q , the (q + 1) ×
(q + 1) P and Q matrices are given in this case by

P =
⎡⎢⎢⎢⎢⎢⎣

1 2q − 2 (q − 1)1T

1 q − 2 −1T

1 (−2)1 K

⎤⎥⎥⎥⎥⎥⎦
and again one can verify that P = Q using the formulas of the last theorem. Thus again
one has P2 = q2I though the dimensions of P are one larger in this case compared to
the last one.

We record these dimension 2 results in the next proposition.

Proposition 5.2 LetFq be a finite field of odd characteristic and consider the Euclidean
association scheme when dimension d = 2. Let 1 to be the (q − 1)-dimensional column
vector of all 1s, and K be the symmetric (q − 1) × (q − 1) matrix with K i , j = K(1, i j

4 ) =
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K j, i , i , j ∈ F×q (with respect to some linear ordering of F×q ). Order the distance set Δ via
a linear ordering with 0̄ < 0 < F×q .

Then if q = 3 mod 4, we have

P = [1 (q + 1)1T

1 −K ] = Q

are q × q matrices.
On the other hand, when q = 1 mod 4, we have

P =
⎡⎢⎢⎢⎢⎢⎣

1 2q − 2 (q − 1)1T

1 q − 2 −1T

1 (−2)1 K

⎤⎥⎥⎥⎥⎥⎦
= Q

are (q + 1) × (q + 1) matrices.
In either case, P2 = q2I.

The case when d ≥ 3 is a bit trickier as the dimension of spheres can vary more.
In general, for any λ ∈ F×q , scaling by λ gives a bijection between the sphere of radius
j about the origin and the sphere of radius λ2 j about the origin. Thus, there are in
general four distinct sizes of spheres ∣S0̂∣ = 1, ∣S0∣, ∣SSq ∣ and ∣SSqc ∣, where ∣SSq ∣ is the
common size of S j when j is a nonzero square in Fq and ∣SSqc ∣ is the common size of
S j when j is a nonsquare in Fq . As these spheres partition Fd

q , we have

qd = 1 + ∣S0∣ +
q − 1

2
∣SSq ∣ +

q − 1
2

∣SSqc ∣

for all integers d ≥ 3 and odd prime powers q.
Pick a primitive generator θ of the multiplicative group of Fq (which is a cyclic

group of order q − 1). Then θ j is a square in Fq if and only if j is even and so the
Legendre symbol (θ j

q ) is equal to (−1) j for all integers j. We order the distance set Δ =
{0̄} ∪ Fq via 0̄ < 0 < θ0 < θ1 < θ2 < ⋅ ⋅ ⋅ < θq−2. Note 4 = θ s for unique integer s with
0 ≤ s ≤ q − 2.

We define the (q − 1) × (q − 1) matrix K̃d (whose rows and columns are indexed
by {0, 1, . . . , q − 2} in the natural order) via

(K̃d)i , j = ε(q)d K̃d(−θ j , −θ i

4
)

= ε(q)d(−θ j

q
)

d

K̃d(1, θ i θ j

4
)

= ε(q)d(−1
q
)

d
(−1) jd K̃d(1, θ i+ j−s),

where K̃(a, b) are the (twisted) Kloosterman sums. The second equality follows from
part (2) of Proposition 4.1.

This matrix is always a real matrix from the earlier discussion about twisted
Kloosterman sums. When d is even, it is symmetric and circulant. Recall, a circulant
matrix is one such that each row of the matrix is the cyclic shift of the row above it, one
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notch to the left. When d is odd, it is no longer circulant or symmetric but is signed-
circulant, i.e., each row is the negative of the cyclic shift of the row above it, one notch
to the left.

Using these conventions and Theorem 5.1, the following proposition follows by a
simple computation with the help of the identities in Proposition 4.1.

Proposition 5.3 LetFq be a finite field of odd characteristic and consider the Euclidean
association scheme of dimension d ≥ 3. Fix a primitive generator θ of F×q , then 4 = θ s for
unique integer 0 ≤ s ≤ q − 2.

Let (K̃d)i , j = ε(q)d(−1
q )

d(−1) jd K̃d(1, θ i+ j−s) whose rows and columns are indexed
by {0, . . . , q − 2}. It is a real, symmetric, and circulant matrix when d is even and it is
a real, signed-circulant matrix when d is odd.

Let 1 be the (q − 1)-dimensional column vector of all ones, and let η̂ be the (q − 1)-
dimensional row vector whose entries alternate between ∣SSq ∣ and ∣SSqc ∣, starting with
the former. Let μ̂ be the (q − 1)-dimensional column vector whose entries are (−1)id as
i ranges from 0 to q − 2. (So it always starts at 1 and alternates sign if d is odd, but is the
all one vector when d is even.)

With respect to the ordering 0̄ < 0 < θ0 < θ1 < θ2 < ⋅ ⋅ ⋅ < θq−2 of the distance set Δ,
the P matrix of the Euclidean association scheme is a (q + 1) × (q + 1) matrix given by

P =
⎡⎢⎢⎢⎢⎢⎣

1 ∣S0∣ η̂
1 α βμ̂T

1 βμ̂ − 1 q d
2 −1K̃d

⎤⎥⎥⎥⎥⎥⎦

where α = −1 + q d
2 −1ε(q)d(q − 1) (−1)d+1

2 and β = −q d
2 −1ε(q)d when d even, β =

(−1
q )q d−1

2 ε(q)d+1 when d odd.

The Q matrix has Q i , j = ∣S j ∣

∣S i ∣
Pj, i . Due to varying sizes of spheres when d ≥ 3, one no

longer has Q = P in general.

The above proposition also works for the d = 2 case though in the case q = 3 mod 4
one should throw out the second row and column as the distance 0 does not occur.

6 Equidistribution

Through work of Kloosterman and A. Weil, for any odd prime power q and a ∈ F×q , it
is known that the Kloosterman numbers Kq(1, a) = ∑x∈F×q χ(x + a

x ) satisfy

Kq(1, a) = √q(e iθq ,a + e−iθq ,a) = 2√q cos(θq ,a)

for a unique “Kloosterman” angle θq ,a ∈ [0, π].
Using the sophisticated tools of lisse sheafs and etale cohomology, N. Katz (slightly

simplified proofs later by Adolphson), proved the “vertical equidistribution” of these
numbers that states that as q → ∞, the distribution of these angles approaches the
Sato–Tate measure on [0, π]. We discuss this more carefully next.
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Definition 6.1 (Sato–Tate measure) The Sato–Tate Borel probability measure μST on
[0, π] is given by the condition

μST([a, b]) = 2
π ∫

b

a
sin2(θ)dθ

for all 0 ≤ a < b ≤ π.
μST is characterized as the unique Borel measure being absolutely continuous with

respect to Lebesgue measure with Radon–Nikodym derivative 2
π sin2(θ).

For any continuous f ∶ [0, π] → R, we write

EST[ f ] = 2
π ∫

π

0
f (θ)sin2(θ)dθ

for the expectation of f with respect to this probability measure.

Definition 6.2 (Kloosterman angle average) For any odd prime power q, let θa ,q be
the Kloosterman angles associated with the Kloosterman sums K(1, a), a ∈ F×q . Given
a continuous function f ∶ [0, π] → R, we let

EK ,q[ f ] = 1
q − 1 ∑

a∈F×q
f (θq ,a)

be the “sample average” of f over these Kloosterman angles.

We are now ready to state the deep vertical equidistribution theorem of N. Katz
(see [10]).

Theorem 6.3 (Vertical equidistribution of Kloosterman sums) For any sequence of
odd prime powers qn → ∞, and any continuous function f ∶ [0, π] → R, we have

lim
n→∞

EK ,qn [ f ] = EST[ f ].

Next, we will discuss some graph theoretical equivalents to the equidistribution
theorem. First, some basic trigonometric facts will be collected.

Proposition 6.4 For any nonnegative integers m, n, we have:
(1) 2

π ∫
π

0 cos(mθ) cos(nθ)dθ = δm ,n + δm ,n δm ,0 .
(2) EST[cos(nθ)] = 0 if n ≠ 0, 2. EST[cos(2θ)] = − 1

2 .
The Sato–Tate probability measure is characterized by these expectations amongst

continuous probability measures on [0, π].
(3) For every � ≥ 1, we have

22�−1 cos2�(θ) =
�−1
∑
k=0

(2�
k
) cos((2� − 2k)θ) + 1

2
(2�
�
).

(4) For every � ≥ 1, we have

22� cos2�+1(θ) =
�

∑
k=0

(2� + 1
k

) cos((2� + 1 − 2k)θ).
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(5) For positive integer m, we have EST[cos2m+1(θ)] = 0 and

EST[cos2m(θ)] = 1
22m−1 (

−1
2
( 2m

m − 1
) + 1

2
(2m

m
)) = 1

22m(m + 1)(
2m
m

).

Proof Proof of (1): Follows from the trigonometric identity

cos(mx) cos(nx) = 1
2

cos((m + n)x) + 1
2

cos((m − n)x)

and simple integration.
Proof of (2): Follows from (1), once one notes that sin2(θ) = 1−cos(2θ)

2 . The charac-
terization of Sato–Tate measure from these expectations follows from the density of
the algebra generated by the cos(nθ) in the ring of continuous real-valued functions
on [0, π] (with the supremum metric) which itself follows from a generalized Stone–
Weierstrass theorem, together with the Riesz representation theorem.

Proof of (3): Write 2 cos(θ) = e iθ + e−iθ and raise both sides to the 2� power to
conclude

22� cos2�(θ) =
2�
∑
k=0

(2�
k
)(e iθ)2�−k(e−iθ)k =

2�
∑
k=0

(2�
k
)(e iθ)2�−2k .

Finish by grouping the k = j and k = 2� − j terms for each j.
Proof of (4): Follows the same procedure as for (3).
Proof of (5): Follows from using (3), (4) in (2). ∎

Definition 6.5 (Kloosterman moments) For any odd prime power q, and positive
integer �, let

Mq ,� = ∑
a∈F×q

Kq(1, a)� = 2�q
�
2 (q − 1)EK ,q[cos�(θ)]

be the �th Kloosterman moment.

Using little-oh notation and the trigonometric identities in Proposition 6.4, we find
that the vertical equidistribution of Kloosterman sums is equivalent to establishing the
following behavior for Kloosterman moments:

Mq ,2�+1 = o(q�+1.5)

and

Mq ,2� = q�+1 1
� + 1

(2�
�
)(1 + o(1))

as q → ∞.
The quantity C� = 1

�+1(
2�
�
) in the last limit is the �th Catalan number which occurs

frequently in combinatorics. It is, for example, the number of ways to bracket a given
(� + 1)-fold product in terms of pairwise multiplications.

Recall, in a graph, two edges are incident if they share a common vertex and a walk
of length � is a sequence of � edges, where each edge is incident to the previous one. If
A is the adjacency matrix of the graph with respect to some vertex ordering, then the
(v , w)-entry of A� is the number of walks of length � from vertex v to vertex w in the
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graph. Such a walk is called closed if v = w. Thus, Trace(A�) is the number of closed
walks of length � in the graph.

Let q be an odd prime power, q = 3 mod 4. Fix any t ∈ F×q then we have seen that
the spectrum of At , the adjacency matrix of the distance-t graph for the plane F2

q is
the multiset

{{(q + 1)(1) , −Kq(1, a)(q+1)∣a ∈ F×q}},

where the superscripts indicate the multiplicity of each eigenvalue in the multiset.
Thus

Trace(A�
t) = (q + 1)� + (q + 1)(−1)� ∑

a∈F×q
Kq(1, a)� = (q + 1)� + (q + 1)(−1)�Mq ,� .

On the other hand, when q = 1 mod 4, the spectrum of At is

{{(q − 1)(1) , (−1)(2q−2) , Kq(1, a)(q−1)∣a ∈ F×q}}

and so

Trace(A�
t) = (q − 1)� + (2q − 2)(−1)� + (q − 1) ∑

a∈F×q
Kq(1, a)�

= (q − 1)� + (2q − 2)(−1)� + (q − 1)Mq ,� .

We record these results in the next proposition.

Proposition 6.6 Let q be an odd prime power, and let t ∈ F×q and At be the adjacency
matrix of the distance-t graph for the plane F2

q . Then if q = 3 mod 4, we have the number
of closed walks of length � is

Trace(A�
t) = (q + 1)� + (q + 1)(−1)�Mq ,� .

If q = 1 mod 4, we have

Trace(A�
t) = (q − 1)� + (2q − 2)(−1)� + (q − 1)Mq ,�,

where Mq ,� is the �th Kloosterman moment.
Vertical equidistribution of Kloosterman angles is equivalent to

Mq ,2�+1 = o(q�+1.5)

and

Mq ,2� = q�+1 1
� + 1

(2�
�
)(1 + o(1))

as q → ∞.

Corollary 6.7 For any odd prime power q, we have Mq ,1 = 1 and Mq ,2 = q2 − q − 1.
Thus, the equidistribution conditions hold for these moments.

Proof We prove the q = 3 mod 4 case with similar calculations working for the q =
1 mod 4 case. Setting t = 1 in Proposition 6.6, we see Trace(A1) = 0 as there are no
closed walks of length one. Thus (q + 1) − (q + 1)Mq ,1 = 0 giving Mq ,1 = 1. A closed
walk of length two consists of walking out using an edge and returning using the same
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edge and so the number of those is q2(q + 1) as there are q2 choices of initial vertices
and q + 1 many adjacent vertices to walk to. Thus, q2(q + 1) = Trace(A2

1 ) = (q + 1)2 +
(q + 1)Mq ,2 yielding the stated formula for Mq ,2. ∎

7 An application to the random walk in finite planes of odd order

Fix t ≠ 0 in Fq and let At be the adjacency matrix for the distance-t graph in the plane
F2

q . Define Tt = 1
∣S t ∣

At to be the transition matrix of the corresponding random walk
Markov chain. The (i , j)-entry of T�

t represents the probability of transitioning from
the ith vertex to the jth vertex after � steps in this Markov chain. As the At-graph
is vertex transitive, the diagonal entries of T�

t are all equal as the probability that we
return to vertex i after � steps, if we start at vertex i, will be independent of the vertex.
Thus (T�

t )i , i = 1
q2 Trace(T�

t ) for any i.
Using Bayesian conditioning, it follows that for any initial probability distribution

p i on the vertices, the chance that you start and end at the same vertex after � steps
is ∑q2

j=1(T�
t ) j, j p j = 1

q2 Trace(T�
t )∑

q2

j=1 p j = 1
q2 ∣S t ∣�

Trace(A�
t) is the probability that you

return to where you start after � steps (it is independent of initiate state). Let us call
this quantity the probability of return and denote it Rq ,�,t . Now ∣St ∣ = q ± 1 where
the sign depends if q is 1 or 3 mod 4 so we find that this probability is Rq ,�,t =

1
q2(q±1)� Trace(A�

t).
By Corollary 6, we see that if q = 3 mod 4, and positive �, we have

Rq ,�,t = Rq ,� = 1
q2 (1 + (−1)�

(q + 1)�−1 Mq ,�)

does not depend on t ≠ 0. Note the first 1
q2 term is what one would expect if the

location after � steps were equally likely to be anywhere in the plane and the second
term represents an arithmetic bias against that happening. Vertical equidistribution
of Kloosterman sums, tells us furthermore that

Rq ,2� = 1
q2 + q�−1

(� + 1)(q + 1)2�−1 (
2�
�
)(1 + o(1)) = 1

q2 + 1
q�(� + 1)(

2�
�
)(1 + o(1))

and

Rq ,2�+1 =
1

q2 (1 − 1
(q + 1)2� o(q�+1.5)) = 1

q2 (1 + o(q1.5−�))

as q → ∞ through such prime powers.
Thus we have proven:

Theorem 7.1 (Probability of return in the distance-t random walk in Fq-planes) Let
q be an odd prime, q = 3 mod 4. Let Rq ,�,t be the probability that you return to the same
vertex after � steps in the distance-t walk where t ≠ 0. Then Rq ,�,t = Rq ,� is independent
of t ≠ 0 and initial state. We have

Rq ,�,t = Rq ,� = 1
q2 (1 + (−1)�

(q + 1)�−1 Mq ,�).

https://doi.org/10.4153/S0008414X24000518 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000518


Random walks and the “Euclidean” association scheme in finite vector spaces 19

Furthermore, as q → ∞, we have

Rq ,2� = 1
q2 + q�−1

(� + 1)(q + 1)2�−1 (
2�
�
)(1 + o(1)) = 1

q2 + 1
q�(� + 1)(

2�
�
)(1 + o(1))

and

Rq ,2�+1 =
1

q2 (1 − 1
(q + 1)2� o(q�+1.5)) = 1

q2 (1 + o(q1.5−�)).

8 Intersection numbers and matrices of the scheme

In this section, we calculate the intersection numbers pk
i , j of the d-dimensional

Euclidean association scheme. Recall pk
i , j = pk

j, i is the number of ways a pair of points
{x , y} in Fd

q with d(x , y) = k can be completed to a triangle {x , y, z} of side lengths
i , j, k. Note p0̄

i , j = δ i , j ∣S i ∣ and pk
0̄, j = δ j,k so we may assume i , j, k ∈ Fq and so are not 0̄.

We will concentrate on the planar, d = 2 case as the higher-dimensional cases were
reduced to this case in [12]. This case was partially computed in [3] in a different
context.

Theorem 8.1 (Intersection numbers of planar Euclidean association scheme) Let q
be an odd prime power, and let pk

i , j be the intersection numbers of the planar (d = 2)
Euclidean association scheme for i , j, k ∈ Fq not equal to 0̄.

If q = 1 mod 4, we have p0
i , j = 1 + (q − 2)δ i , jδ i ,0 − δ i , j .

Otherwise, k ≠ 0 and we have

pk
i , j = (4σ2 − σ 2

1
q

) + 1,

where (x
q) is the usual Legendre symbol, σ1 = i + j + k, σ2 = i j + jk + ki.

Furthermore, when i , j, k ∈ Fq are the distances in a triple of points of F2
q , we have

4σ2 = σ 2
1 if and only if {i , j, k} are the distances of a collinear triple of points (a triple of

points that lies on an affine line).

Proof WLOG we may take x = (0, 0) and Witt’s theorem guarantees pk
i , j will be

independent of y = (u1 , v1) ≠ (0, 0) but only depend on its length u2
1 + v2

1 = k. We may
furthermore assume u1 ≠ 0.

Then by definition, any z = (u2 , v2) making {x , y, z} a i − j − k triangle must
satisfy u2

2 + v2
2 = i , (u2 − u1)2 + (v2 − v1)2 = j. Given u1 , v1 , i , j, k, we need to count

the number, pk
i , j , of z = (u2 , v2) that solve these equations. Plugging the first two

equations into the last one, we get u1u2 + v1v2 = k+i− j
2 . The set of (u2 , v2) solving this

equation is an affine line (not necessarily through the origin) perpendicular to the line
through y = (u1 , v1). It is not hard to see that in fact (u2 , v2) = ( k+i− j

2u1
, 0) + s(v1 , −u1)

for some s ∈ Fq . However, we still need u2
2 + v2

2 = i which yields ( k+i− j
2u1

+ sv1)2 +
s2u2

1 = i. This yields the equation ks2 + (k + i − j) v1
u1

s + (( k+i− j
2u1

)2 − i) = 0 which is a
quadratic equation unless k = 0.
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When k = 0, v2
1 = −u2

1 ≠ 0 so the resultant linear equation has a unique solution
for s whenever j ≠ i and p0

i , j = 1 for all i ≠ j ∈ Fq . When k = 0 and i = j, the equation
cannot hold unless i = 0 also in which case any s works as long as x ≠ y and x ≠ z so
there are (q − 2) such s. (In this case, as k = 0 the original line through y = (u1 , v1) is
its own perpendicular and so one must avoid the two choices of s where z coincides
with x = (0, 0) or y.) Thus p0

i , i = (q − 2)δ i ,0. Note this k = 0 case can occur only when
q = 1 mod 4.

Otherwise, k ≠ 0 and we get a quadratic equation for s whose discriminant can be
calculated to be (k + i − j)2( v1

u1
)2 − 4k(( k+i− j

2u1
)2 − i) = 1

u2
1
((k + i − j)2v2

1 − k(k + i −
j)2 + 4kiu2

1 ). Using v2
1 = k − u2

1 this becomes 4ki − (k + i − j)2 = 2(ki + i j + jk) −
(k2 + i2 + j2) = 4σ2 − σ 2

1 .
Thus, there are (4σ2−σ 2

1
q ) + 1 solutions for s where (x

q) is the usual Legendre symbol.

For the last statement, let B = [u1 u2
v1 v2

] and note that BT B = [ k k+i− j
2

k+i− j
2 i

] by the

calculations above. The triple of points {(0, 0), (u1 , v1), (u2 , v2)} is collinear if and

only if rank(B) < 2 if and only if det(B) = 0 if and only if det([ k k+i− j
2

k+i− j
2 i

]) =

4σ2−σ 2
1

4 = 0. ∎

We record the following corollary, which exploits the odd behavior of isotropic
lines when they exist.

Corollary 8.2 Let q be an odd prime power with q = 1 mod 4. Let E ⊆ F2
q have ∣E∣ > q

and Δ′(E) be the nonzero distances achieved by E. Then ∣E∣ ≤ q + ∣Δ′(E)∣(∣Δ′(E)∣ − 1).

Proof As ∣E∣ > q, there exist two distinct points x , y ∈ E with d(x , y) = 0. Let E′ =
E/L, where L is the line through x and y. This line L is isotropic in the sense that
distances between distinct points on the line are always zero. Note that ∣E′∣ ≥ ∣E∣ − q.

By Theorem 8.1, p0
i , j = 1 for all i , j ∈ F×q with i ≠ j and p0

i , i = 0 unless i = 0. Further-
more, by the collinearity condition 4σ2 − σ 2

1 = 0, it is easy to check that a point z ≠ x , y
is collinear with x and y if and only if d(z, x) = d(z, y) = 0 also.

It follows that each point z off the isotropic line L through x and y is uniquely
determined in the plane by the pair of unequal, nonzero distances i = d(z, x) and j =
d(z, y). Thus ∣E∣ − q ≤ ∣E′∣ ≤ ∣Δ′(E)∣(∣Δ′(E)∣ − 1) from which the corollary follows.

∎

We now recall the definition of the intersection matrices of an association scheme.

Definition 8.3 (Intersection matrices) Let (V , d) be an association scheme with
distance set Δ and intersection numbers pk

i , j . We define ∣Δ∣ many ∣Δ∣ × ∣Δ∣ intersection
matrices of the scheme L i , i ∈ Δ via

(L i)k , j = pk
i , j .

In general, these satisfy L0̄ = I and L i L j = ∑k∈Δ pk
i , jLk . Thus the map

R[A i , i ∈ Δ] → R[L i , i ∈ Δ]
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is an algebra epimorphism from the Bose–Messner algebra to the real algebra gener-
ated by these intersection matrices. Note the dimensions ∣V ∣ × ∣V ∣ of the A i matrices
are in general quite different than the size of the L i matrices.

The eigenvalues of the L i matrix are the same as that of the A i matrix but
with different multiplicities. In fact the columns of the scheme’s Q matrix are the
corresponding simultaneous (right) eigenvectors of the L i while the rows of the P
matrix are the (left) eigenvectors of the L i . These facts follow from the identity

PL jP−1 = diag(P0̄, j , . . . , Pd , j)

(see section 11.2 of [5]).

We now record the intersection matrices for the planar Euclidean association
scheme.

Theorem 8.4 Let q be an odd prime power and consider the planar Euclidean associ-
ation scheme on F2

q . Note L0̄ is always an identity matrix. Recall when q = 1 mod 4, we
have 0̄ ≠ 0 ∈ Δ also.

When i , j ∈ F×q , we have (L i)0̄, j = p0̄
i , j = δ i , j ∣S i ∣ = δ i , j(q − ε2

q) and (L i)0, j = p0
i , j =

1 − δ i , j .
We have (L i) j,0̄ = p j

i ,0̄ = δ i , j and (L i)0̄,0̄ = p0̄
i ,0̄ = 0.

When i , j ∈ Fq ,k ∈ F×q , we have

(L i)k , j = pk
i , j = (4σ2 − σ 2

1
q

) + 1 ∈ {0, 1, 2},

where σ2 = i j + jk + ki , σ1 = i + j + k and (x
q) is the Legendre symbol.

When q = 3 mod 4, the spectrum of L i is {{(q + 1)(1) , −Kq(1, a)(1) , a ∈ F×q}} for any
i ∈ F×q . Thus Trace(L�

i ) = (q + 1)� + (−1)�Mq ,�.
When q = 1 mod 4, the spectrum of L i is {{(q − 1)(1) , −1(1) , Kq(1, a)(1) , a ∈ F×q}} for

any i ∈ F×q . Thus Trace(L�
i ) = (q − 1)� + (−1)� + Mq ,�.

Note that the entries of L i keep track of which triangles exist in the plane F2
q and

through the last theorem, implicitly determine the Kloosterman moments Mq ,� for all
�. As it is well known that a finite multiset of complex numbers is determined by all
its moments, this means the Kloosterman sums as a set are determined by exactly the
data of which triangles exist in the plane F2

q .
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