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Abstract

The connection between polymorphic and dynamic typing was originally considered by Curry

et al. (1972, Combinatory Logic, vol. ii) in the form of “polymorphic type assignment” for

untyped λ-terms. Types are assigned after the fact to what is, in modern terminology, a

dynamic language. Interest in type assignment was revitalized by the proposals of Bracha

et al. (1998, OOPSLA) and Bank et al. (1997, POPL) to enrich Java with polymorphism

(generics), which in turn sparked the development of other languages, such as Scala, with

similar combinations of features. In such a setting, where the target language already has

a monomorphic type system, it is desirable to compile polymorphism to dynamic typing in

such a way that as much static typing as possible is preserved, relying on dynamics only

insofar as genericity is actually required. The basic approach is to compile polymorphism

using embeddings from each type into a universal “top” type, �, and partial projections that

go in the other direction. This scheme is intuitively reasonable, and, indeed, has been used

in practice many times. Proving its correctness, however, is non-trivial. This paper studies the

compilation of System F to an extension of Moggi’s computational meta-language with a

dynamic type and shows how the compilation may be proved correct using a logical relation.

� This research is sponsored in part by the National Science Foundation under Grant Number 1116703.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.
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Polymorphism in System F Dynamic typing
(Source) (Target)
Before operational semantics After operational semantics
Church style Curry style
Type checking Type assignments
Intrinsic typing Extrinsic typing

Fig. 1. Polymorphism and dynamic typing.

1 Introduction

1.1 Polymorphism and dynamic typing

The connection between polymorphism and dynamic typing was first explored by

Curry et al. (1972) under the name polymorphic type assignment. Types are assigned

to untyped λ-terms using rules such as these:

M : A

M : ∀X.A

M : ∀X.A

M : A[B/X]

According to this view, a term, M, already has an operational meaning, and types

are assigned after the fact to express some aspects of their behavior. For example,

the expression λx.x can be assigned with the types � → �, � → � (booleans to

booleans), or more generally ∀X.X → X. This approach to typing inspired much

work on programming languages, including the original formulation of the ML type

system by Milner (1978).

The type assignment viewpoint, however, is not the only possible way to under-

stand polymorphism in programming languages. The Girard–Reynolds polymorphic

typed λ-calculus, known as System F (Girard, 1972; Reynolds, 1974), expresses a

subtly different concept characterized by these rules:

M : A

ΛX.M : ∀X.A

M : ∀X.A

M B : A[B/X]

Here, type abstraction and application are an explicit part of the construction of the

term. More generally, according to this intrinsic view, types are seen as defining what

terms exist, rather than describing the behavior of pre-existing terms. See Figure 1

for comparison between two regimes.

A key difference between the two approaches lies in their execution behavior

when endowed with an operational semantics. Under a type assignment regime, the

programs are given independently of any type information. Such programs may

be seen as dynamically typed, which, in the presence of multiple classes of data,

implies run-time overhead to express and enforce proper classification of values.

In contrast, under a type checking regime, the formation of programs and their

execution behavior are influenced by, and in some cases determined by, the types

involved. This leads to better execution behavior, because it avoids the overhead

of dynamic class checks from the outset, and hence is more amenable to modular

compilation and composition.
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1.2 Compilation of polymorphism

Interest in polymorphic type assignment was revitalized by the proposals of Bracha

et al. (1998) and Bank et al. (1997) to enrich Java with polymorphism (generics),

which then inspired similar treatment of generics in languages such as C� and

Scala. Such languages are statically typed, but feature a universal type (Object in

Java, but herein called �) of dynamically typed values. The question arose as to

how to compile these extensions, given that little or no change could be made to

the language’s established monomorphic run-time structure. Abstracting from the

language-specific details, the question may be re-phrased as:

How to compile System F to a simply typed language D with

a type of dynamically typed values while preserving static type

information as much as possible?

Classical type assignment effectively erases static types, mapping everything to the

universal type �, which is unsatisfactory. We would rather, for example, translate

the monomorphic doubling function λx:nat.x+x to essentially the same typed code

λx:�.x+x in the target, reserving dynamic typing, and its associated run-time costs,

to the translation of code that actually uses polymorphism. The ideal translation

of a System F type A into a D type A† will preserve the structure of A, except

that source language type variables, X, will be mapped to the target type �. This

immediately raises the question of how to relate (A[B/X])† to A†, which is to say

how to manage polymorphic instantiation. Indeed, this is the heart of the translation

given by the aforementioned authors.

The translation relies on the existence of an embedding, i, of each D type into the

type �, equipped with a corresponding projection, j, which recovers the embedded

object, which is to say that j is post-inverse (left-inverse) to i, up to observational

equivalence, j ◦ i ∼= id. In the case of compiling to the JVM, i would be realized by

an upcast to Object and j by a (possibly failing) downcast from Object. Notice

that j is not also pre-inverse (right-inverse) to i, that is, i ◦ j �∼= id, because there

is no reason to expect that an arbitrary value of type � lies in the image of the

embedding i. In order-theoretic terms, every D type is a retract of �, with retraction

given by the idempotent composition i ◦ j : �→�.

The embedding of every D type into � lifts functorially into an embedding, I ,

from (A[B/X])† to A†, accompanied by a corresponding projection, J , going in

the other direction. These lifted embeddings and projections are used to mediate

polymorphic instantiation. Consider the polymorphic identity function ΛX.λx:X.x

of type ∀X.X → X in System F which is then translated to λx:�.x of type �→�
in the target language. An instantiation of this polymorphic function at the type �
is translated to the following function of type �→ �:

λx:�.jnat((λx:�.x) (inat(x))),

where inat and jnat are, respectively, the embedding and the projection for �.

The pre- and post-compositions with the embeddings and projections arise from the

functorial action of the type constructor X → X, thought of as a function of X. The
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projection to type � → � requires that we embed the argument into �, execute

the translation of the polymorphic identity, and project the result back to �. This

function is observationally equivalent to the identity on �, because the context may

only provide natural numbers as arguments, and expect natural numbers as results.

1.3 Our contribution: correctness proof

At a very high level, the form of our proof is that of an adequacy theorem for

a paradigmatic denotational metalanguage with dynamic typing (which we call D)

with respect to an operational semantics (represented by conversion rules) of a

paradigmatic polymorphic calculus (which is System F).

Using embeddings and projections, as sketched above, we can give a straightfor-

ward translation of System F into D. The goal of the correctness proof is to show

that an expression and its compilation are appropriately related. The contribution

of this work is in the method of proof. In the literature, we identified two relevant

results, neither of which are readily applicable to the present problem:

• Meyer & Wand (1985) give a logical relation argument for correctness of

continuation-passing style translation for the simply typed lambda calculus,

but our projection j is not an pre-inverse (right-inverse) of i as in their work.

• Igarashi et al. (2001) show the correctness of compiling generics in (core) Java,

but their treatment seems inextricable from the source language, Featherweight

Java, which involves a number of object-oriented concepts such as a class table.

Here, we present a carefully formulated parametric logical relation that directly

relates terms with their translations, together with a key lemma that captures the

way in which the relation respects the embeddings and projections. This is, to our

knowledge, the first correctness proof of this method of compiling polymorphism in

System F to dynamic typing. Compared to the bisimulation theorem by Igarashi et al.

(2001), our logical relation (cf. Lemma 7) additionally permits foreign functions as

long as they follow the embedding and projection invariants specified in the logical

relation, which may be seen as a technical advantage.

2 Languages

Throughout the paper, we work modulo α-conversion. So bound variables are

assumed to be renamed if collision would happen in substitutions, and variables

appearing in contexts are always distinct.

2.1 Source language

Our source language is System F, the Girard–Reynolds polymorphic lambda calculus.

As in Girard’s original formulation, we include a base type of natural numbers. In

our case, they provide the observable outcomes that are used to distinguish programs.

The syntax, the typing rules, and the conversion rules are shown in Figure 2. We

say a type A is closed if · � A. The calculus is presented with β-conversions (≡β), a
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Fig. 2. Syntax, type rules, and conversion rules for System F.

thin abstraction over reductions or the operational semantics. It is compatible with

both the call-by-value and call-by-name reductions, or any reasonable operational

semantics because the calculus is strongly normalizing.

2.2 Target language

Our source language is pure and strongly normalizing, but the target language has

to have some effects. First, the presence of a universal type that will essentially be

a model of an untyped lambda calculus means, because one can express fixed point

combinators, that the target has to include non-terminating expressions. Second,

there needs to be some error mechanism in the target, which we can invoke when

projections from the universal type should fail.

Once the target has side-effects, we have to decide how eager to make the

translation. For System F, any sensible translation will have a corresponding

correctness theorem that shows, among other things, that the translation of a

closed source program actually never exhibits any effects, but different translations
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can nevertheless translate a source term into ones that can be distinguished in the

target. Here, we choose to work with a call-by-value translation, as that is what one

would want to use in the most common real-world situation, in which the source

language also has some effects, and has a call-by-value semantics.

We could take the target to be a monomorphic ML-like language with a particular

universal type and notion of error. That would work out perfectly well, but we

instead translate directly into a slightly more explicit metalanguage for the semantics

of such a language, namely a version of Moggi’s (1991) computational metalanguage,

λMLT . The computational metalanguage is a simply typed lambda calculus with a

type constructor, T(·), corresponding to a strong monad with an injective unit; we

further add a universal type and errors. See Figure 3 for the relevant fragment of

its syntax, typing rules, and equations.

The equations for D should be understood as real denotational equalities. The

source language System F is treated more syntactically: The translation is defined

structurally on actual terms (just modulo α-conversion) and we only later show that

it respects β-conversions in the source language as a separate lemma. (We say a

relation is admissible if it respects β-conversions (Equation (1) on page 12), and the

admissibility of the translation relation is stated as Lemma 4.)

Taking D to be the computational meta-language is largely a matter of taste, but

has some advantages. We will be doing a great deal of equational reasoning and,

unlike a call-by-value lambda calculus, λMLT satisfies unrestricted β and η laws.

The fastidious distinction between value types, D, and computation types, T(D),

means that the type system makes it clear where there is a possibility of an error or

divergence and where there is not, so various erroneous definitions one might make

simply will not typecheck. And finally, we can be generic in exactly what the monad

is—the proof will work for any T(·) that satisfies the equations we use.

As mentioned above, the monad is used to account for the possibility of divergence

that is forced by the presence of a universal type, and also for the runtime errors

that should arise, for example, when one injects a function value into the universal

type and then attempts to project (cast) it back out as a natural number. We will

require that T(·) comes equipped with a polymorphic constant err : T(D) for any

D, but there are many concrete examples of monads that will suit our purposes. For

example, in the category of ω-cpos (predomains)

1. take T(D) = D⊥, the lifting monad, and err = ⊥, so dynamic errors are just

modeled by divergence;

2. take T(D) = (1 + D)⊥, the lifted error (maybe, option) monad, and err =

[inl(∗)], so dynamic errors are modeled by a terminating, failing computation.

But everything that follows works for any monad that satisfies our conditions. We

write [·] for the unit of the monad and also abbreviate the usual monadic bind

construct let x⇐ d in e by just x← d; e.

The target language D has a base type � for the natural numbers. If n : � is a

numeral, we write n for the corresponding System F normal form suc(. . . (suc(z)) . . .).
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Syntax

(x is a variable name.)

Types D,E ..= � | D → E | T(D) |� | . . .
Classes c ..= num | fun | . . .
Terms d, e ..= x | 0 | d + 1 | ifz(d; e0; x.e1) | λx:D.d | d e | [d] | err | x← d; e | c (d) | c? (d) | . . .
Contexts Γ ..= · | Γ, x:D

Γ � d : D

Γ, x:D,Γ′ � x : D Γ � 0 : �
Γ � d : �

Γ � d + 1 : �

Γ � d : � Γ � e0 : D Γ, x:� � e1 : D

Γ � ifz(d; e0; x.e1) : D

Γ, x:D � d : E

Γ � λx:D.d : D → E

Γ � d : D → E Γ � e : D

Γ � d e : E

Γ � d : D

Γ � [d] : T(D)
Γ � err : T(D)

Γ � d : T(D) Γ, x:D � e : T(E)

Γ � x← d; e : T(E)

Γ � d : �

Γ � num (d) : �

Γ � d : �

Γ � num? (d) : T(�)

Γ � d : �→ T(�)

Γ � fun (d) : �

Γ � d : �

Γ � fun? (d) : T(�→ T(�))
· · ·

Equations

(λx:D.d) e = d[e/x]

x /∈ FV(d) =⇒ (λx:D.d x) = d

ifz(0; d0; x.d1) = d0

ifz(n + 1; d0; x.d1) = d1[n/x]

ifz(d; e 0; x.e (x + 1)) = e d

x← [d]; e = e[d/x]

x← d; [x] = d

x2 ← (x1 ← d1; d2); e = x1 ← d1; x2 ← d2; e

[d] = [e] =⇒ d = e

c? (c (d)) = [d]

c �= c′ =⇒ c? (c′ (d)) = err

· · ·

Fig. 3. Syntax, type rules, and equations for the relevant fragment of the metalanguage D

The language D also has a universal type � equipped with operations

num (d : �) : � num? (d : �) : T(�)

fun (d : �→ T(�)) : � fun? (d : �) : T(�→ T(�))

subject to the equations listed in Figure 3. We know these requirements are consistent,

as they can be canonically satisfied by taking � to be the least solution to the
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A†

nat† = �

X† = �

(A→ B)† = A† → T(B†)

(∀X.A)† = A†

Γ†

·† = ·
(Γ, x:A)† = Γ†, x:A†

Fig. 4. Translation of types and contexts

recursive predomain equation

� ∼= T(� + (�→ T(�)))

with

num (d) = roll([inl(d)])

num? (d) = d′ ← unroll(d); case d′ of inl(n)⇒ [n] | inr( )⇒ err

fun (d) = roll([inr(d)])

fun? (d) = d′ ← unroll(d); case d′ of inl( )⇒ err | inr(e)⇒ [e]

where roll(·) and unroll(·) are the components of the isomorphism in the solution

of the equation for �. However, nothing that follows relies on any domain theory:

We just need the equations.

It is interesting to observe that the correctness of the translation does not actually

require any interesting properties of errors. In particular, we do not need to specify

that err is natural, that the monad is strict in errors (i.e. that x ← err; d = err),

or even that errors are disjoint from values (∀d, err �= [d]), though these properties

do hold for our examples of concrete monads. Indeed, one could remove errors

entirely, replacing them with arbitrary default values, without materially affecting

what follows. The reason for this is that the correctness theorem only talks about

error-free behavior—if everything in the context is error-free then the translated

term is also error-free—so the precise nature of errors is not very important.

But in a more practical setting, one would want to use a well-structured error

mechanism.

3 Translation

The translation and interpretation of types follows Moggi’s (1991) call-by-value

translation, with type variables interpreted as the universal type, �. This is shown

in Figure 4.
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iA : A† →� and jA : �→ T(A†)

inat(x) = num (x)

jnat(x) = num? (x)

iX(x) = x

jX(x) = [x]

iA→B(f) = fun (λd:�.v ← jA(d); r ← f v; [iB(r)])

jA→B(f) = f′ ← fun? (f); [λa:A†.r ← f′(iA(a)); jB(r)]

i∀X.A(x) = iA(x)

j∀X.A(x) = jA(x)

Fig. 5. Embeddings and projections

3.1 Embeddings and projections

Before we can define the translation of terms, we need some auxiliary definitions on

the target side. First, we have an embedding, i, and a projection, j, mapping between

A† and � for each source type A. The definitions are shown in Figure 5. Note that

the embedding is total (any value of type A† can be mapped into the universal

domain), although the projection is partial, which is why the monad appears in

the return type. Only well-behaved elements of � may be mapped back to A†;

projecting an ill-behaved value may fail immediately or, in the case of function

types, when the projected value is later actually applied.

An embedding followed by the corresponding projection is always morally the

identity (actually, the unit of the monad):

Lemma 1

For any System F type A and D term x : A†,

jA(iA(x)) = [x].

Proof

Induction on the structure of A.

• Case nat:

jnat(inat(x)) = num? (num (x)) = [x]

• Case X:

jX(iX(x)) = [x]
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• Case A→ B:

jA→B(iA→B(f))

= f′ ← fun? (fun (λd:�.v ← jA(d); r ← f v; [iB(r)])); [λa:A†.r ← f′(iA(a)); jB(r)]

= f′ ← [λd:�.v ← jA(d); r ← f v; [iB(r)]]; [λa:A†.r ← f′(iA(a)); jB(r)]

= [λa:A†.r ← (λd:�.v ← jA(d); r ← f v; [iB(r)]) (iA(a)); jB(r)]

= [λa:A†.r ← (v ← jA(iA(a)); r ← f v; [iB(r)]); jB(r)]

= [λa:A†.r ← (v ← [a]; r ← f v; [iB(r)]); jB(r)]

= [λa:A†.r ← (r ← f a; [iB(r)]); jB(r)]

= [λa:A†.r ← f a; r ← [iB(r)]; jB(r)]

= [λa:A†.r ← f a; jB(iB(r))]

= [λa:A†.r ← f a; [r]]

= [λa:A†.f a]

= [f]

• Case ∀X.A:

j∀X.A(i∀X.A(x)) = jA(iA(x)) = [x]

�

3.2 Lifted embeddings and projections

The translation A† of a type A with a free type variable X has � in positions

corresponding to the occurrences of X in A. Type application in the source involves

substitution of a type B for those occurrences of X; translating the application

requires the use of functions JB
X.A from A† to T(A[B/X]†), the monad applied to the

translation of the substituted type. The result is wrapped in the monad because �-

values produced by the argument in places corresponding to positive occurrences of

X in A are not necessarily well-behaved. Just as with the embeddings and projections

of the previous section, the definition of JB
X.A is not only inductive on A, but mutually

inductive with that of a function going in the other direction, IBX.A from A[B/X]† to

A†. The definitions are shown in Figure 6.

The following is a lifted version of Lemma 1.

Lemma 2

If Δ, X � A and Δ � B, then for any D term d : A†,

JB
X.A(IBX.A(d)) = [d].

Proof

Induction on the structure of A.

• Case X.X:

JB
X.X(IBX.X(d)) = jB(iB(d)) = [d]
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Fig. 6. Lifted embeddings and projections.

• Case X.Y (where X and Y are different variables):

JB
X.Y (IBX.Y (d)) = JB

X.Y (d) = [d]

• Case X.nat:

JB
X.nat(I

B
X.nat(d)) = JB

X.nat(d) = [d]

• Case X.A1 → A2:

JB
X.A1→A2

(IBX.A1→A2
(f))

=[λa:(A2[B/X])†.r ← IBX.A1→A2
(f)(IBX.A1

(a)); JB
X.A2

(r)]

=[λa:(A2[B/X])†.r ← (λa:A†1.a
′ ← JB

X.A1
(a); r ← f a′; [IBX.A2

(r)])(IBX.A1
(a)); JB

X.A2
(r)]

=[λa:(A2[B/X])†.r ← (a′ ← JB
X.A1

(IBX.A1
(a)); r ← f a′; [IBX.A2

(r)]); JB
X.A2

(r)]

=[λa:(A2[B/X])†.r ← (a′ ← [a]; r ← f a′; [IBX.A2
(r)]); JB

X.A2
(r)]

=[λa:(A2[B/X])†.r ← (r ← f a; [IBX.A2
(r)]); JB

X.A2
(r)]

=[λa:(A2[B/X])†.r ← f a; r ← [IBX.A2
(r)]; JB

X.A2
(r)]

=[λa:(A2[B/X])†.r ← f a; JB
X.A2

(IBX.A2
(r))]

=[λa:(A2[B/X])†.r ← f a; [r]]

=[λa:(A2[B/X])†.f a]

=[f]

• Case X.∀Y .A:

JB
X.∀Y .A(IBX.∀Y .A(x)) = JB

X.A(IBX.A(x)) = [x]

�
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Fig. 7. Term translation.

3.3 Term translation

Just as was the case for types, the translation (·)∗ of terms in context is Moggi’s

usual call-by-value translation, extended to use JB
X.A to translate type application.

The formal definition is shown in Figure 7.

Note that uniqueness of typing in the source language ensures that the type A

appearing on the right-hand side of the application case is uniquely determined, so

this is indeed a good definition. It is also appropriately typed:

Lemma 3

If Δ; Γ �M : A, then Γ† � (Δ; Γ �M : A)∗ : T(A†).

4 Logical relation

If B is a closed source type, write CT(B) = {M | ·; · � M : B} for the set of closed

terms of type B. Given R ⊆ CT(B)×�, a relation between closed source terms of

type B and elements of �, then we say R is admissible if it respects the equivalence

of the source language; that is

(M, d) ∈ R ∧ M ≡β M ′ =⇒ (M ′, d) ∈ R (1)

We write Δ � w to mean that the type environment w is a map from the finite set

of type variables Δ to pairs comprising a closed type and an admissible relation on

that type. Formally,

w : Δ→ F , where F =
∑
{B|·�B}

{R ⊆ CT(B)×� | R is admissible}.

If Δ = ·, X1, . . . , Xn and w(Xj) = (Bj,Rj) for each 1 � j � n, then we define the

relations Rw
A ⊆ CT(A[Bj/Xj]) × A† and TRw

A ⊆ CT(A[Bj/Xj]) × T(A†), for each A

such that Δ � A, by mutual induction on A as shown in Figure 8. The relation TRw
A

is a particular choice of “monadic lifting” of the relation Rw
A. Figure 8 also defines
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Rw
A ⊆ CT(A[Bj/Xj])× A† and TRw

A ⊆ CT(A[Bj/Xj])× T(A†)

Rw
Xi

= Ri (where w(Xi) = (Bi,Ri))

Rw
nat = {(M, n) |M ≡β n}

Rw
A1→A2

= {(M, d) |M ≡β λx:A1[Bj/Xj].M
′∧

∀(M2, d2) ∈ Rw
A1
, (M ′[M2/x], d d2) ∈ TRw

A2
}

Rw
∀X.A = {(M, d) |M ≡β ΛX.M ′ ∧ ∀(B,R) ∈ F , (M ′[B/X], d) ∈ Rw,X �→(B,R)

A }
TRw

A = {(M, [d]) | (M, d) ∈ Rw
A}

R̂w
A ⊆ CT(A[Bj/Xj])×�

R̂w
A = {(M, d) | (M, jA(d)) ∈ TRw

A}

Fig. 8. Logical relations

the shorthand R̂w
A, which relates source terms to target values of type �. We will

have (A[Bj/Bj], R̂w
A) ∈ F .

Observe that, as in previous work on relationally parametric models of polymor-

phism (Reynolds, 1983), the clause for polymorphic types involves quantification over

all relations from a pre-defined set. This enforces parametricity and also avoids the

potential circularity due to impredicativity, which would arise were one to consider

instantiating just with Rw
B for each B; an instance of ∀X.A, say A[B/X], could

be “larger” than ∀X.A and break the naive induction ordering. A more detailed

discussion about the potential impredicativity issues can be found in Chapter 48 of

the third author’s text (Harper, 2012).

Lemma 4 (Admissibility)

For all w and A, Rw
A and TRw

A are admissible.

Lemma 5 (Weakening)

If Δ � A and Δ � w, then for any B and R,

Rw,X �→(B,R)
A = Rw

A

and TRw,X �→(B,R)
A = TRw

A

The crucial lemma is the following, which connects the logical relation at a

substituted type, A[B/X], with the relation at the type A in an extended type

environment, mediated by the lifted embeddings and projections. The statement

involves instantiating a type variable with a particular, well chosen, relation.

Lemma 6 (Type substitution)

Let Δ � B, Δ � w, and w(Xj) = (Bj,Rj) for each j. Define the extended type

environment w′ = w,X �→ (B[Bj/Xj], R̂w
B). Then, for any A and M, with Δ, X � A,

·; · �M : (A[B/X])[Bj/Xj], the following hold:
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1. For any d, (M, d) ∈ Rw
A[B/X] implies (M, IBX.A(d)) ∈ Rw′

A .

2. For any d, (M, d) ∈ Rw′

A implies (M, JB
X.A(d)) ∈ TRw

A[B/X].

A natural first attempt at a logical relations proof would replace “implies” by

“iff” in the above, strengthening the lemma significantly. Our proof of Lemma 6

almost works for this stronger version, except for the second case of function types.

That is, it is unclear how to show the following statement:

(M, JB
X.A1→A2

(d)) ∈ TRw
(A1→A2)[B/X] implies (M, d) ∈ Rw′

A1→A2
.

Ignoring monads for the moment, the problem is that at some point, we want

I (J (d)) = d, which is false in general. Lemma 6 is carefully formulated so that

we no longer need this false statement, and yet is still strong enough to derive

the correctness theorem for the translation. Here is a failed proof attempt of the

strengthened version of Lemma 6.

Proof Attempt

From the assumption (M, JB
X.A1→A2

(d)) ∈ TRw
(A1→A2)[B/X], we know

M ≡β λx:A1[B/X][Bj/Xj].M
′

for some M ′. By the definition of (M, d) ∈ Rw′

A1→A2
, it is sufficient to show that

(M ′[M2/x], d d2) ∈ TRw′

A2

for any (M2, d2) ∈ Rw′

A1
. By the definition of TRw′

A2
, there will be r such that d d2 = [r]

and (M ′[M2/x], r) ∈ Rw′

A2
. By inductive hypothesis applied to (M ′[M2/x], r) ∈ Rw′

A2

and the equations in D, it is equivalent to show that

(M ′[M2/x], (r ← d d2; J
B
A2

(r))) ∈ TRw
A2[B/X].

Again by the assumption (M, JB
X.A1→A2

(d)) ∈ TRw
(A1→A2)[B/X], and the definition of

JB
X.A1→A2

, we have

(M, [λa:(A1[B/X])†.r ← d(IBX.A1
(a)); JB

X.A2
(r)]) ∈ TRw

(A1→A2)[B/X],

which by the definition of TRw
(A1→A2)[B/X] and the injectivity of [·] is

(M, (λa:(A1[B/X])†.r ← d(IBX.A1
(a)); JB

X.A2
(r))) ∈ Rw

(A1→A2)[B/X].

Moreover, by inductive hypothesis applied to (M2, d2) ∈ Rw′

A1
, we know (M2, J

B
X.A1

(d2)) ∈ TRw
A1[B/X], which means there is d′2 such that JB

X.A1
(d2) = [d′2] and (M2, d

′
2) ∈

Rw
A1[B/X]. Thus, by the definition of Rw

(A1→A2)[B/X] and the equations in D,

(M ′[M2/x], (d′2 ← JB
X.A1

(d2); r ← d(IBX.A1
(d′2)); J

B
X.A2

(r))) ∈ TRw
A2[B/X].

Comparing this to the goal, we wish to show the following equation:

r ← d d2; J
B
A2

(r) = d′2 ← JB
X.A1

(d2); r ← d(IBX.A1
(d′2)); J

B
X.A2

(r)

which would be true if IBX.A1
were a post-inverse (left-inverse) of JB

X.A1
, or that

IBX.A1
(d′2) = d2, which does not hold.
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We now present the proof of the correct version of Lemma 6, which evades the

difficulty and yet is sufficient for our main result.

Proof

The two parts are proved by simultaneous induction on A. Note that the type

environment w remains free (universally quantified) in the induction hypothesis

because in the case A = ∀Y .A′, the environment will be extended.

• Case X:

1. By assumption (M, d) ∈ Rw
B , and by the definition of TRw

B , (M, [d]) ∈ TRw
B .

Then, by Lemma 1, jB(iB(d)) = [d], and thus

(M, jB(iB(d))) ∈ TRw
B.

Therefore, by the definition of R̂w
B , (M, iB(d)) ∈ R̂w

B . Then, by the construc-

tion of w′, R̂w
B = Rw′

X , and also IBX.X = iB , and thus

(M, IBX.X(d)) = (M, iB(d)) ∈ R̂w
B = Rw′

B .

2. By the construction of w′, Rw′

X = R̂w
B , and thus

(M, d) ∈ R̂w
B.

By the definition of R̂w
B , and also the fact that JB

X.X(d) = jB(d),

(M, JB
X.X(d)) = (M, jB(d)) ∈ TRw

B = TRw
X[B/X].

• Case Y (a variable different from X):

1. By Lemma 5 (weakening) ,Rw′

Y = Rw
Y . Also, IBX.Y (d) = d. Therefore,

(M, IBX.Y (d)) = (M, d) ∈ Rw
Y = Rw′

Y .

2. By Lemma 5 (weakening), Rw′

Y = Rw
Y . Also, JB

X.Y (d) = [d]. Therefore, by

the definition of TRw
Y ,

(M, JB
X.Y (d)) = (M, [d]) ∈ TRw

Y = TRw
Y [B/X].

• Case nat:

1. By Lemma 5 (weakening), Rw′
nat = Rw

nat. Also, IBX.nat(d) = d. Therefore,

(M, IBX.nat(d)) = (M, d) ∈ Rw
nat = Rw′

nat.

2. By Lemma 5 (weakening), Rw′
nat = Rw

nat. Also JB
X.nat(d) = [d]. Therefore,

by the definition of TRw
nat,

(M, JB
X.nat(d)) = (M, [d]) ∈ TRw

nat = TRw
nat[B/X].

• Case A1 → A2:

In either part M ≡β λx:A1[B/X][Bj/Xj].M
′ for some M ′.

1. It is sufficient to show that, for any (M2, d2) ∈ Rw′

A1
,

(MM2, I
B
X.A1→A2

(d)(d2)) ∈ TRw′

A2
.
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Expanding the definition of IBX.A1→A2
together with the conversion MM2 ≡β

M ′[M2/x], this is equivalent to

(M ′[M2/x], (λa:A†1.a
′ ← JB

X.A1
(a); r ← d a′; [IBX.A2

(r)])(d2)) ∈ TRw′

A2
.

By the equations in D, this is the same as

(M ′[M2/x], (a′ ← JB
X.A1

(d2); r ← d a′; [IBX.A2
(r)])) ∈ TRw′

A2
.

By inductive hypothesis applied to (M2, d2) ∈ Rw′

A1
, (M2, J

B
X.A1

(d2)) ∈
TRw

A1[B/X], which means there is d′2 such that JB
X.A1

(d2) = [d′2] and (M2, d
′
2) ∈

Rw
A1[B/X]. Then, we can simplify the D expression further:

a′ ← JB
X.A1

(d2); r ← d a′; [IBX.A2
(r)]

= a′ ← [d′2]; r ← d a′; [IBX.A2
(r)]

= r ← d d′2; [IBX.A2
(r)]

Because (M, d) ∈ Rw
(A2→A1)[B/X] and (M2, d

′
2) ∈ Rw

A1[B/X], by definition

(M ′[M2/x], d d′2) ∈ TRw
A2[B/X],

which is to say there exists r′ such that d d′2 = [r′] and (M ′[M2/x], r′) ∈
Rw

A2[B/X]. We can then simplify the expression even more:

r ← d d′2; [IBX.A2
(r)]

= r ← [r′]; [IBX.A2
(r)]

= [IBX.A2
(r′)].

The goal becomes

(M ′[M2/x], IBX.A2
(r′)) ∈ Rw′

A2
,

which is exactly the inductive hypothesis applied to (M ′[M2/x], r′) ∈
Rw

A2[B/X].

2. By the definition of TRw
(A1→A2)[B/X], it is equivalent to show that there is d′

such that [d′] = JB
X.A1→A2

(d) and (M, d′) ∈ Rw
(A1→A2)[B/X], which is to say for

any (M2, d2) ∈ Rw
A1[B/X],

(MM2, d
′ d2) ∈ TRw

A2[B/X].

Expanding the definition of JB
X.A1→A2

, the equation [d′] = JB
X.A1→A2

(d) means

[d′] = [λa:(A1[B/X])†.r ← d(IBX.A1
(a)); JB

X.A2
(r)]

and we will show this obvious choice of d′ works:

d′ = λa:(A1[B/X])†.r ← d(IBX.A1
(a)); JB

X.A2
(r).

With the conversion MM2 ≡β M ′[M2/x], the goal becomes

(M ′[M2/x], (λa:(A1[B/X])†.r ← d(IBX.A1
(a)); JB

X.A2
(r))(d2)) ∈ TRw

A2[B/X].

Then, by the equations in D, this is the same as

(M ′[M2/x], (r ← d(IBX.A1
(d2)); J

B
X.A2

(r))) ∈ TRw
A2[B/X].
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By inductive hypothesis applied to (M2, d2) ∈ Rw
A1[B/X],

(M2, I
B
X.A1

(d2)) ∈ Rw′

A1
.

Then, because (M, d) ∈ Rw′

A1→A2
,

(M ′[M2/x], d(IBX.A1
(d2))) ∈ TRw′

A2
,

which means there exists r′ such that d(IBX.A1
(d2)) = [r′] and (M ′[M2/x], r′) ∈

Rw′

A2
. Therefore,

r ← d(IBX.A1
(d2)); J

B
X.A2

(r)

= r ← [r′]; JB
X.A2

(r)

= JB
X.A2

(r′),

and thus it suffices to show

(M ′[M2/x], JB
X.A2

(r′)) ∈ TRw
A2[B/X],

which is the inductive hypothesis applied to (M ′[M2/x], r′) ∈ Rw′

A2
.

• Case ∀Y .A′:

In either part ,M ≡β ΛY .M ′ for some M ′.

1. Expanding the definition, we know it is sufficient to show

(M ′[C/Y ], IBX.A′ (d)) ∈ Rw′ ,Y �→(C,RC )
A′

for any (C,RC ) ∈ F . Fix a pair (C,RC). By the definition of Rw
A′[B/X],

(M ′[C/Y ], d) ∈ Rw,Y �→(C,RC )
A′[B/X]

and by induction

(M ′[C/Y ], IBX.A′(d)) ∈ R
w,Y �→(C,RC ),X �→

(
B[Bj/Xj ],R̂w,Y �→(C,RC )

B

)
A′ .

By Lemma 5 (weakening),

R̂w,Y �→(C,RC )
B = R̂w

B

and by exchange (implicit in the treatment of type environments as maps),

we have the goal

(M ′[C/Y ], IBX.A′ (d)) ∈ Rw′ ,Y �→(C,RC )
A′ .

2. By the definition of TRw
∀Y .A′[B/X], it is equivalent to show that there is d′

such that [d′] = JB
X.∀Y .A′(d) and (M, d′) ∈ Rw

∀Y .A′[B/X]. That is, there is d′

such that [d′] = JB
X.∀Y .A′(d) and for every (C,RC ) ∈ F ,

(M ′[C/Y ], d′) ∈ Rw,Y �→(C,RC )
A′[B/X] .

We claim that we can swap the universal quantifier of (C,RC ) and the

existential quantifier of d′. The reason is that [·] is injective and so d′ is

uniquely determined by JB
X.∀Y .A′(d). After the swapping, the goal is then for
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every (C,RC) ∈ F , there is d′ such that [d′] = JB
X.∀Y .A′(d) and

(M ′[C/Y ], d′) ∈ Rw,Y �→(C,RC )
A′[B/X] ,

which is exactly the definition of

(M ′[C/Y ], JB
X.∀Y .A′(d)) ∈ TRw,Y �→(C,RC )

A′[B/X] .

Note that JB
X.∀Y .A′ = JB

X.A′ and thus this is also equivalent to

(M ′[C/Y ], JB
X.A′ (d)) ∈ TRw,Y �→(C,RC )

A′[B/X] .

Fix the (C,RC ) ∈ F . From the assumption (M, d) ∈ Rw′

∀Y .A′ and the

definition of the extended type environment w′, we have

(M ′[C/Y ], d) ∈ Rw′ ,Y �→(C,RC )
A′ = R

w,X �→
(
B[Bj/Xj ],R̂w

B

)
,Y �→(C,RC )

A′ .

By Lemma 5 (weakening),

R̂w,Y �→(C,RC )
B = R̂w

B

and therefore, together with exchange,

(M ′[C/Y ], d) ∈ R
w,Y �→(C,RC ),X �→

(
B[Bj/Xj ],R̂w,Y �→(C,RC )

B

)
A′ .

Applying the inductive hypothesis, we have the desired statement

(M ′[C/Y ], JB
X.A′ (d)) ∈ TRw,Y �→(C,RC )

A′[B/X] .

�

Armed with Lemma 6, we are now in a position to show the “Fundamental

Property”: that each (open) source term is logically related to its translation.

The relation is defined on closed terms, so the statement of the lemma involves

substituting arbitrary types and relations for free type variables, and arbitrary—but

related—closed source and target terms for free term variables.

Lemma 7 (Fundamental property)

Suppose Δ; Γ � M : A, where Δ = ·, X1, . . . , Xm and Γ = ·, x1:A1, . . . , xn:An. Let

w be such that Δ � w and w(Xj) = (Bj,Rj) for each 1 � j � m. Then, for any

list of source terms Vi : Ai[Bj/Xj] and target terms ti : A
†
i , 1 � i � n, such that

(Vi, ti) ∈ Rw
Ai

for each i, we have

(M[Bj/Xj][Vi/xi], (Δ; Γ �M : A)∗[ti/xi]) ∈ TRw
A.

Proof

Induction on the derivation of Δ; Γ � M : A. We first define some abbreviations,

writing ŵ for the type substitution [Bj/Xj], V̂ for the source term substitution

[Vi/xi], and t̂ for the target term substitution [ti/xi].

• Case x: Directly from the assumption.

• Case z: Directly from the definition.

• Case suc(M):

By inductive hypothesis,

(V̂ (ŵ(M)), t̂((Δ; Γ �M : nat)∗)) ∈ TRw
nat.
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By definition of the relation, there exists n such that t̂((Δ; Γ �M : nat)∗) = [n]

and

(V̂ (ŵ(M)), n) ∈ Rw
nat.

So V̂ (ŵ(M)) ≡β n and thus V̂ (ŵ(suc(M))) ≡β suc(n). Hence,

(V̂ (ŵ(suc(M))), n + 1) ∈ Rw
nat by definition

=⇒ (V̂ (ŵ(suc(M))), [n + 1]) ∈ TRw
nat definition

=⇒ (V̂ (ŵ(suc(M))), d← [n]; [d + 1]) ∈ TRw
nat monad

=⇒ (V̂ (ŵ(suc(M))), d← t̂((Δ; Γ �M : nat)∗); [d + 1]) ∈ TRw
nat

=⇒ (V̂ (ŵ(suc(M))), t̂(d← (Δ; Γ �M : nat)∗; [d + 1])) ∈ TRw
nat

=⇒ (V̂ (ŵ(suc(M))), t̂((Δ; Γ � suc(M) : nat)∗)) ∈ TRw
nat translation

• Case ifz(M;N0; x.N1):

By induction,

(V̂ (ŵ(M)), t̂((Δ; Γ �M : nat)∗)) ∈ TRw
nat.

Hence, there exists n such that t̂((Δ; Γ � M : nat)∗) = [n] and (V̂ (ŵ(M)), n) ∈
Rw

nat, so V̂ (ŵ(M)) ≡β n. Then,

t̂((Δ; Γ � ifz(M;N0; x.N1) : A)∗)

= t̂(d← [n]; ifz(d; (Δ; Γ � N0 : A)∗; x.(Δ; Γ, x:nat � N1 : A)∗))

= ifz(n; t̂((Δ; Γ � N0 : A)∗); x.t̂((Δ; Γ, x:nat � N1 : A)∗))

=

{
t̂((Δ; Γ � N0 : A)∗) if n = 0

t̂((Δ; Γ, x:nat � N1 : A)∗)[n′/x] if n = n′ + 1

— In the case that n = 0, V̂ (ŵ(ifz(M;N0; x.N1))) ≡β V̂ (ŵ(N0)) and since, by

induction,

(V̂ (ŵ(N0)), t̂((Δ; Γ � N0 : A)∗)) ∈ TRw
A,

we are done by Lemma 4 (admissibility).

— If n = n′ + 1, then V̂ (ŵ(ifz(M;N0; x.N1))) ≡β V̂ (ŵ(N1))[n′/x]. Since

(n′, n′) ∈ Rw
nat, induction gives

(V̂ (ŵ(N1))[n′/x], t̂((Δ; Γ, x:nat � N1 : A)∗)[n′/x]) ∈ TRw
A

we are again done by Lemma 4.

• Case λx:A.M:

Since t̂((Δ; Γ � λx:A.M : A→ B)∗) = [λx:A†.t̂((Δ; Γ, x:A �M : B)∗)], it suffices

to show

(V̂ (ŵ(λx:A.M)), λx:A†.t̂((Δ; Γ, x:A �M : B)∗)) ∈ Rw
A→B

Suppose (M2, d2) ∈ Rw
A, then we need to show

(V̂ (ŵ(M))[M2/x], t̂((Δ; Γ, x:A �M : B)∗)[d2/x]) ∈ TRw
B

which follows by induction.

• Case MN:
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By the inductive hypotheses and the monadic relation, there are target values

d and e such that

t̂((Δ; Γ �M : A→ B)∗) = [d] and (V̂ (ŵ(M)), d) ∈ Rw
A→B

and

t̂((Δ; Γ � N : A)∗) = [e] and (V̂ (ŵ(N)), e) ∈ Rw
A.

Thus, we know V̂ (ŵ(M)) ≡β λx:A.M ′ for some M ′ such that

(M ′[V̂ (ŵ(N))/x], d e) ∈ TRw
B.

Since V̂ (ŵ(MN)) ≡β M ′[V̂ (ŵ(N))/x], Lemma 4 gives

(V̂ (ŵ(MN)), d e) ∈ TRw
B.

And since

t̂((Δ; Γ �MN : B)∗) = d′ ← t̂((Δ; Γ �M : A→B)∗); e′ ←; t̂((Δ; Γ � N : A)∗)d′ e′

= d′ ← [d]; e′ ← [e]; d′ e′

= d e

we are done.

• Case ΛX.M:

We want to show

(V̂ (ŵ(ΛX.M)), t̂((Δ; Γ � ΛX.M : ∀X.A)∗)) ∈ TRw
∀X.A,

which is to say there is d such that

t̂((Δ; Γ � ΛX.M : ∀X.A)∗) = [d] and (V̂ (ŵ(ΛX.M)), d) ∈ Rw
∀X.A.

Expanding the definition and using the conversion relation ≡β (since the

relation is admissible), this means there is d such that

t̂((Δ, X; Γ �M : A)∗) = [d]

and for any (B,R) ∈ F ,

(V̂ (ŵ(M)[B/X]), d) ∈ Rw,X �→(B,R)
A .

Pick the (B,R) ∈ F . By induction hypothesis applied to the extended type

environment w′ = w,X �→ (B,R), we have

(V̂ (ŵ(M)[B/X]), (Δ, X; Γ �M : A)∗) ∈ TRw,X �→(B,R)
A ,

which means there is d′ such that

t̂((Δ, X; Γ �M : A)∗) = [d′] and (V̂ (ŵ(M)[B/X]), d′) ∈ Rw,X �→(B,R)
A .

The choice d = d′ meets our goal.

• Case MB:

By induction, we know

(V̂ (ŵ(M)), t̂((Δ; Γ �M : ∀X.A)∗)) ∈ TRw
∀X.A.
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So there is a d such that

t̂((Δ; Γ �M : ∀X.A)∗) = [d] and (V̂ (ŵ(M)), d) ∈ Rw
∀X.A.

Unfolding the logical relation for quantified types and instantiating with

(ŵ(B), R̂w
B) ∈ F yields that V̂ (ŵ(M)) ≡β ΛX.M ′ for some M ′ with

(M ′[ŵ(B)/X], d) ∈ Rw,X �→(ŵ(B),R̂w
B )

A .

By the second part of Lemma 6, the key type substitution property, this implies

(M ′[ŵ(B)/X], JB
X.A(d)) ∈ TRw

A[B/X].

Since V̂ (ŵ(MB)) = V̂ (ŵ(M)) ŵ(B) ≡β (ΛX.M ′) ŵ(B) ≡β M ′[(ŵ(B)/X],

Lemma 4 gives

(V̂ (ŵ(MB)), JB
X.A(d)) ∈ TRw

A[B/X].

By definition of the translation,

t̂((Δ; Γ �MB : A[B/X])∗) = d′ ← t̂((Δ; Γ �M : ∀X.A)∗); JB
X.A(d′)

= d′ ← [d]; JB
X.A(d′)

= JB
X.A(d)

So

(V̂ (ŵ(MB)), t̂((Δ; Γ �MB : A[B/X])∗)) ∈ TRw
A[B/X]

as required. �

An immediate consequence of Lemma 7 is that the behavior of a program (closed

term of ground type) and its translation agree:

Corollary 1

If ·; · �M : nat, then there exists an n such that M ≡β n and (·; ·M : nat)∗ = [n].

5 Discussion

Using logical relations, it is possible to prove the correctness of the compilation of

polymorphic types to dynamic types in such a way that overhead is imposed only

insofar as polymorphism is actually used. This compilation method lies at the heart

of the implementation of generic extensions to Java, and of polymorphic languages

such as Scala, on the Java Virtual Machine, with the type Object playing the role of

our �. As far as we are aware, this is the first correctness proof of this compilation

strategy for System F, and is novel insofar as it only relies on an embedding into

�, rather than a stronger condition such as isomorphism. In this respect, the proof

may be useful in other situations where the correctness of a compilation method is

required.

Semantically, the underlying idea of interpreting types as retracts of a universal

domain is an old one, going back to work of Scott (1976) and McCracken (1979).

It has been adapted and used for various purposes in programming, including by

Benton (2005) and Ramsey (2011) for interfacing typed languages with untyped
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ones, and by many authors studying run-time enforcement of contracts (Findler &

Felleisen, 2002) in dynamic languages, and the correct assignment of blame should

violations occur (Ahmed et al., 2011).

The broad shape of the proof presented here is that of adequacy: Showing

agreement between an operational and a denotational (translational) semantics via

a logical relation (Plotkin, 1977; Amadio, 1993). Similar logical relations have also

been used for the closely related task of establishing the correctness of compilers

(Minamide et al., 1996; Benton & Hur, 2010; Hur & Dreyer, 2011).

One possible extension to this work is to consider the extension of System F with

general recursion at the expression level, or, more generally, with recursive types.

It appears that handling general recursion is straightforward, following directly

the strategy outlined in Chapter 48 of the third author’s text (Harper, 2012), which

requires that admissible relations be closed under limits of suitable chains, and which

employs fixed point induction in establishing the main theorem. The extension to

product and sum types is entirely straightforward. Recursive types require more

sophisticated techniques pioneered by Pitts (1996), and adapted to the operational

setting by Crary & Harper (2007). Step-indexed methods, such as those introduced

by Appel & McAllester (2001), Ahmed (2006) may also be useful in this respect.

Another possible extension is to consider System F with higher order polymor-

phism, namely System Fω , which enables programmers to abstract over even type

constructors, such as lists or trees which themselves are polymorphic in their element

type. Such higher order polymorphism has been materialized in dynamic typing, for

example, in Scala, by Moors (2008), and it is conceivable, for studying the correctness,

to migrate the method to System Fω as we did to System F. Together with the work

by Rossberg et al. (2010) which compiles ML modules to System Fω , an alternative

account for the dynamics of ML modules, in terms of dynamic typing, can possibly

be made.
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