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The Galvin property under the ultrapower
axiom
Tom Benhamou and Gabriel Goldberg
Abstract. We continue the study of the Galvin property from Benhamou, Garti, and Shelah (2023,
Proceedings of the American Mathematical Society 151, 1301–1309) and Benhamou (2023, Saturation
properties in canonical inner models, submitted). In particular, we deepen the connection between
certain diamond-like principles and non-Galvin ultrafilters. We also show that any Dodd sound non
p-point ultrafilter is non-Galvin. We use these ideas to formulate what appears to be the optimal large
cardinal hypothesis implying the existence of a non-Galvin ultrafilter, improving on a result from
Benhamou and Dobrinen (2023, Journal of Symbolic Logic, 1–34). Finally, we use a strengthening of
the Ultrapower Axiom to prove that in all the known canonical inner models, aκ-complete ultrafilter
has the Galvin property if and only if it is an iterated sum of p-points.

1 Introduction

In this paper, we study certain aspects of the Galvin property of ultrafilters.

Definition 1.1. Let U be a uniform ultrafilter over κ. We say that U has the Galvin
property if for any sequence ⟨A i⟩i<2κ , there is I ∈ [2κ]κ such that ⋂i∈I A i ∈ U .

More generally, if λ ≤ κ and U is a uniform ultrafilter over κ, we denote by
Gal(U , λ, 2κ) the statement that for any ⟨A i⟩i<2κ , there is I ∈ [2κ]λ such that⋂i∈I A i ∈
U . Galvin proved in 1973 every normal ultrafilter has the Galvin property. Gitik and
Benhamou [7] recently improved this result to show that any product of κ-complete
p-points over κ has the Galvin property.1 Benhamou [1] then proved what appears to
be a slight improvement of this result.

Theorem 1.2 Suppose that U is Rudin–Keisler equivalent to an n-fold sum of κ-
complete p-points (see Definition 2.4). Then U has the Galvin property.

The main theorem of this paper shows that under natural combinatorial hypotheses
which hold in all known canonical inner models, the converse of the above theorem
is true.
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2 T. Benhamou and G. Goldberg

Main Theorem 1.1 Assume the Ultrapower Axiom and that every irreducible ultrafilter
is Dodd sound. If U is a κ-complete ultrafilter on κ with the Galvin property, then U is
Rudin–Keisler equivalent to an iterated sum of κ-complete p-points on κ.

The hypotheses of this theorem will be discussed and explained further later in the
Introduction.

The study of the Galvin property is motivated by its presence in various areas of set
theory and infinite combinatorics [2–8, 16]. One particularly noteworthy incarnation
of the Galvin property is the maximal class in the Tukey order, which we shall now
explain in more detail.

Definition 1.3. For two posets (P, ≤P), (Q , ≤Q)2, we say that P ≤T Q if there is a
cofinal map f ∶ Q → P.3 We say that P, Q are Tukey equivalent and denote P ≡T Q, if
P ≤T Q and Q ≤T P.

The Tukey order finds its origins in the Moore–Smith convergence notions of
nets and is of particular interest when considering the poset (U , ⊇), where U is an
ultrafilter. The Tukey order restricted to ultrafilters over ω has been extensively studied
by Isbell [20], Milovich [27, 28], Dobrinen and Todorcevic [12, 13, 15], Raghavan,
Dobrinen, and Blass [10, 32], and many others. Lately, this investigation has been
stretched to ultrafilters over uncountable cardinals and in particular to measurable
cardinals by Benhamou and Dobrinen [2]. It turns out that the Tukey order on σ-
complete ultrafilters over measurable cardinal behaves differently from the one on ω
and requires a new theory to be developed. One of these differences revolves around
the maximal class. For a given λ, a uniform ultrafilter U on κ is called Tukey-top with
respect to λ if its Tukey class is above every λ-directed poset of size 2κ. It turns out
that an ultrafilter U is Tukey-top with respect to λ if and only if ¬Gal(U , λ, 2κ). In
particular, a uniform ultrafilter over κ is Tukey-top with respect to κ if and only if it
is non-Galvin.

Working in ZFC (with no additional set theoretic hypotheses), Isbell [20] con-
structed ultrafilters on ω which are non-Galvin, this construction was accomplished
independently by Juhász [23]. The first construction of non-Galvin ultrafilters over
measurable cardinals is due to Garti, Shelah, and Benhamou [6], using the existence
of Kurepa trees to prevent a certain ultrafilter from having the Galvin property. This
connection between Kurepa trees and the Galvin property is further explored in this
paper, where we define (Definition 3.3) a diamond-like principle ◇∗thin(W), and a
slight weakening (Definition 3.12) of it that ensures that an ultrafilter is non-Galvin
(Lemma 3.5).

In [2], Isbell’s construction together with other features from [1] enabled the
construction of a non-Galvin ultrafilter over a κ-compact cardinal. Here, we improve
this initial large cardinal, isolate the notion of a non-Galvin cardinal (Definition 5.1),
and prove the following.

2We shall abuse notation by suppressing the order in a poset.
3A map f ∶ Q → P is called cofinal if for every cofinal set B ⊆ Q, f ′′B is cofinal in P.

https://doi.org/10.4153/S0008414X2400052X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400052X


The Galvin property under the ultrapower axiom 3

Main Theorem 1.2 Suppose that κ is a non-Galvin cardinal, then κ carries a κ-
complete ultrafilter U such that ¬Gal(U ,κ,κ+). In particular, if in addition 2κ = κ+,
then U is a non-Galvin ultrafilter.

We also prove that κ-compactness implies non-Galvinness (Theorem 5.7), that
some degree of Dodd soundness implies it (Corollary 3.11), and that in the known
canonical inner models, a κ-compact cardinal is a limit of non-Galvin cardinals
(Proposition 6.9).

In [9], Gitik and Benhamou noted that although the existence of a non-Galvin
ultrafilter is equiconsistent with a measurable cardinal, the latter assumption (measur-
ability) does not outright imply that there is a non-Galvin ultrafilter. More precisely, in
Kunen’s model L[U], since every σ-complete ultrafilter is Rudin–Keisler equivalent to
a power of the normal ultrafilter U, Theorem 1.2 can be invoked to deduce the Galvin
property for every σ-complete ultrafilter in L[U]. Being the simplest example of a
canonical inner model which can accommodate a measurable cardinal, the result in
L[U] suggests that the Galvin property, like many other combinatorial properties of
ultrafilters, has a rigid form in the canonical inner models. Indeed, the result from
L[U] was later generalized [1] to the Mitchell–Steel models L[E] up to a measurable
limit of superstrong cardinal4 (see Theorem 1.2). These results in the inner models
suggest the following question [1, Question 5.1].

Question 1.4. Is there an inner model with a non-Galvin ultrafilter?

In this paper, we take a more ambitious approach and work under the Ultrapower
Axiom (UA)5 which is a combinatorial principle discovered by Goldberg [17]. The
advantage of UA is that with one simple axiom, which holds in all known canonical
inner models, many of the usual principles are captured; for example, the linearity of
the Mitchell order and instances of GCH. More relevant for our purposes, the presence
of UA imposes rigidity on the structure of ultrafilters.

Theorem 1.5 (UA) Let W be a σ-complete ultrafilter. Then W can be written as the
n-fold sum of irreducible ultrafilters.6

In [1], this kind of characterization, together with further fine structural properties
of the Mitchell–Steel extender models L[E] was already used to prove the following.

Theorem 1.6 If L[E] is an iterable Mitchell–Steel model containing no superstrong
cardinals, then every κ-complete ultrafilter in L[E] has the Galvin property.

The point here is that in L[E] every κ-complete ultrafilter takes the form of
Theorem 1.2 and therefore satisfies the Galvin property.

The existence of canonical inner models with superstrong cardinals is open,
though provable from widely believed conjectures: the fine structure for inner models

4A cardinal κ is superstrong if there is an elementary embedding j∶V → M with crit( j) = κ and
Vj(κ) ⊆ M.

5In this paper, we will use the structural consequences of UA rather than UA itself, so we choose not
to provide the precise statement of the axiom, which can be found in [17].

6Recall the irreducible ultrafilters are those ultrafilters which are minimal in the Rudin–Frolík order.
Equivalently, W is irreducible if there is no ultrapower embedding j∶V → M and an ultrafilter U ∈ M
such that jW = ( jU)

M ○ j.
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4 T. Benhamou and G. Goldberg

with superstrong cardinals has been developed assuming iterability hypotheses [35].
Therefore, the current knowledge about canonical inner models does not quite reach
the level where a κ-complete non-Galvin ultrafilter exists, although our results below
show that the conditional canonical inner models built based on iterability hypotheses
can contain non-Galvin ultrafilters.

Here, we shall prove the following stronger (in several senses) result.

Main Theorem 1.3 (UA) Assume that every irreducible ultrafilter is Dodd sound (see
Definition 2.1(6)). Then a uniform σ-complete ultrafilter over a regular cardinal has the
Galvin property if and only if it is a D-limit of n-fold sums of κ-complete p-points over κ.

We note that in the above theorem, the ultrafilter D might be just a σ-complete
ultrafilter over a cardinals λ < κ (see Theorem 2.10). By results of Schlutzenberg
[34], in the Mitchell–Steel extender models L[E], every irreducible ultrafilter is
Dodd sound, so the assumption in the theorem holds in L[E]. Hence, Theorem
1.3 implies that in the canonical inner models of the form of L[E], even above a
superstrong cardinal, the n-fold sum of p-points, in fact, characterizes the ultrafilters
with the Galvin property. This characterization implies, for example, that σ-complete
ultrafilters over successor cardinals always possess the Galvin property (Corollary 6.2).

As a corollary, we obtain the characterization of the Tukey-top ultrafilters.

Corollary 1.7 (UA) Assume that every irreducible ultrafilter is Dodd sound, then a
σ-complete ultrafilter over a regular cardinal is Tukey-top if and only if it is not a D-sum
of n-fold sums of κ-complete p-points over κ.

This corollary may come as a bit of a surprise if one is familiar with the Tukey
order on ω: Dobrinen and Raghavan proved independently that it is consistent that
there are non-Tukey-top ultrafilters on ω that are not n-fold sums of p-points [10],
more specifically, a generic ultrafilter for P(ω × ω)/fin ⋅ fin is such an ultrafilter; this
result was stretched by Dobrinen in [13, 14].

One might suspect that under these very restrictive assumptions, we again run
into the situation where every κ-complete ultrafilter has the Galvin property, but by
Theorem 1.2, a non-Galvin cardinal suffices to guarantee the existence of a non-Galvin
ultrafilter. Our next result suggests that in the canonical inner models, non-Galvin
cardinals are exactly the large cardinal assumption needed to ensure the existence of
non-Galvin ultrafilters.

Main Theorem 1.4 (UA) Assume that every irreducible ultrafilter is Dodd sound. If
there is a κ-complete non-Galvin ultrafilter on an uncountable cardinal κ, then there is
a non-Galvin cardinal.

One feature which seems to require more effort is to obtain a non-Galvin ultrafilter
which extends the club filter (i.e., q-point). The ultrafilters that were constructed in
[2] from a κ-compact cardinal extended the club filter and it is not clear at this point
whether a non-Galvin cardinal implies the existence of such ultrafilters. Nonetheless,
in the canonical inner models, the implication holds. In fact, the existence of a non-
Galvin ultrafilter is equivalent to the existence of a non-Galvin q-point.
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The Galvin property under the ultrapower axiom 5

Main Theorem 1.5 (UA) Assume every irreducible ultrafilter is Dodd sound. Suppose
κ is an uncountable cardinal that carries a κ-complete non-Galvin ultrafilter. Then the
Ketonen least non-Galvinκ-complete ultrafilter onκ extends the closed unbounded filter.

The organization of this paper is as follows:
• In Section 2, we collect some basic definitions and facts from the theory of

ultrafilters.
• In Section 3, we establish the connection between non-Galvin ultrafilters and

various diamond-like principles.
• In Section 4, we use partial soundness to conclude that some ultrafilter is non-

Galvin and define the corresponding diamond ♢−thin.
• In Section 5, we introduce the non-Galvin cardinals and prove Main Theorem 1.2.
• In Section 6, we work in the canonical inner models and prove Main Theorems 1.1,

1.3, 1.4, 1.5.
• In Section 7, we state some open questions and suggest further directions.

1.1 Notation

Our notation is mostly standard. Let κ be a cardinal, and let X be any set. Then
[X]κ = {Y ∈ P(X) ∣ ∣Y ∣ = κ} and [X]<κ = {Y ∈ P(X) ∣ ∣Y ∣ < κ}. When X is a set of
ordinals, we identify elements of [X]<κ with their increasing enumerations. We write
<κX for the set of all functions f ∶ γ → X, where γ < κ and α X for the set of all functions
f ∶ α → X. Let κ be regular. For two subsets of κ, we write X ⊆∗ Y to denote that X/Y is
bounded inκ. Similarly, for f , g∶κ→ κ, we denote f ≤∗ g if there is α < κ such that for
every α ≤ β < κ, f (β) ≤ g(β). We say that C ⊆ κ is a closed unbounded (or club) subset
of κ if it is a closed subset with respect to the order topology on κ and unbounded in
the ordinals below κ. The club filter over κ is the filter:

Clubκ ∶= {X ⊆ κ ∣ X includes a closed unbounded subset of κ}.

If f ∶A → B is a function, then f “(X) = { f (x) ∣ x ∈ X} and f −1[Y] = {a ∈ A ∣ f (a) ∈
Y}.

2 Preliminaries

We only consider σ-complete ultrafilters over regular cardinals in this paper. We will,
however, consider ultrafilters on κ that fail to be uniform or κ-complete. For a σ-
complete ultrafilter U, we denote by MU the transitive collapse of the ultrapower of the
universe of sets by U and by jU ∶V → MU the usual ultrapower embedding. Given an
elementary embedding j∶V → M and an object A ∈ M, we let ρ = min{α ∣ A ∈ Vj(α)}
and define D( j, A) ∶= {X ⊆ Vρ ∣ A ∈ j(X)}. When A is an ordinal, we will always
replace Vρ in the above definition by ρ. If M is any model of ZFC and f is a function
or relation defined in the language of set theory, the relativization of f to this model is
denoted by ( f )M ; for example, if κ ∈ M, we might consider (κ+)M , V M

κ , etc.
The primary large cardinals we will be interested in are measurable cardinals.

We say that a cardinal κ is measurable if it carries a non-principal κ-complete
ultrafilter. In the Introduction, we also mentioned the compact cardinals, which can
be characterized using the filter extension property: we say κ has the λ-filter extension
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6 T. Benhamou and G. Goldberg

property if every κ-complete filter on λ can be extended to a κ-complete ultrafilter.
A κ-compact cardinal is a cardinal κ which has that κ-filter extension property. For
more background on large cardinals, we refer the reader to [25].

Definition 2.1 (Special properties of ultrafilters) Let U be an ultrafilter over a regular
cardinal κ. We say that:
(1) A function f on κ is said to be constant (mod U) if there is a set A ∈ U such

that f ↾ A is constant. A function f is unbounded (mod U) if ∀α < κ, f −1[α] ∉ U .
A function f is almost one-to-one (mod U) if there is a set A ∈ U such that f ↾ A
is almost one-to-one in the sense that for any x, {α ∈ A ∶ f (α) = x} is bounded
below κ.

(2) U is a p-point if every function f ∶κ→ κ which is unbounded (mod U) is almost
one-to-one (mod U).7

(3) U is μ-indecomposable if for any function f ∶κ→ μ, there is μ′ < μ such that
f −1[μ′] ∈ U .

(4) U is weakly normal if whenever f ∶A → κ is such that A ∈ U and f is regressive,
there is A′ ⊆ A, A′ ∈ U such that f ′′[A′] is bounded.8

(5) U is α-sound if the function jα ∶ P(κ) → MU defined by jα(X) = jU(X) ∩ α
belongs to MU .

(6) U is Dodd sound if it is [id]U -sound.
(7) U is κ-irreducible if every ultrafilter W on an ordinal λ < κ that is Rudin–Frolík

below U is principal (see Definition 2.15).

Remark 2.2.
(1) The concept of Dodd soundness arose in inner model theory, where it serves as a

strong form of the initial segment condition [33]. Though on first glance, it may
appear quite different, the Dodd soundness of a mouse is essentially equivalent
to the Dodd soundness of its last extender as defined above. The formulation of
Dodd soundness given here is due to Goldberg [17].

(2) Note that if U is α-sound, then { jU(A) ∩ α ∣ A ⊆ κ} ∈ MU . This is in fact equiv-
alent. Indeed, if { jU(A) ∩ α ∣ A ⊆ κ} ∈ MU , then it is the inverse of the transitive
collapse of { j(S) ∩ [id]U ∣ S ∈ P(κ)}.

(3) Note that if U is an ultrafilter over a regular cardinal κ, and λ < κ is such that
λ ∈ U , then automatically, U is a p-point as for any function f ∶ κ→ κ, f ↾ λ is
bounded and hence there are no unbounded functions mod U.

(4) If U is irreducible and uniform on λ, then U is λ-irreducible.

Proposition 2.3 Let f ∶κ→ κ be any function, and let U be an ultrafilter over κ.
(1) f is unbounded mod U if and only if supα<κ jU(α) ≤ [ f ]U .
(2) f is almost one-to-one mod U if and only if there is a (monotone) function g∶κ→ κ

such that jU(g)([ f ]U) = [g ○ f ]U ≥ [id]U .

7Note that for κ-complete ultrafilters over κ this is equivalent to the definition of p-points using the
existence of pseudo-intersections [24]. In general, without assuming κ-completeness, these definitions
are not equivalent.

8The notion of decomposability and weak normality makes sense also for filters when requiring the
sets to be positive instead of measure 1.
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The Galvin property under the ultrapower axiom 7

Proof (1) is trivial. For (2), suppose that f is almost one-to-one on A ∈ U , and let for
each α < κ g(α) = sup f −1[α + 1] ∩ A. Then for each ξ ∈ A g( f (ξ)) = sup f −1[ f (ξ) +
1] ∩ A ≥ ξ, hence [g ○ f ]U ≥ [id]U . For the other direction, let g be a monotone
function such that [g ○ f ]U ≥ [id]U . Then there is a set A ∈ U such that for each
α ∈ A, g ○ f (α) ≥ α. Hence, if β ∈ f −1[α], then g(α) ≥ g( f (β)) ≥ β, hence f −1[α] ⊆
g(α) + 1. ∎

Definition 2.4. Suppose U is an ultrafilter over X and for each α ∈ X, Uα is an
ultrafilter over Xα . Define the limit

U- lim ⟨Uα⟩α∈X = {Y ⊆ X ∣ {α ∈ X ∣ Y ∩ Xα ∈ Uα} ∈ U}

and the sum

∑
U
⟨Uα⟩α∈X = {Y ⊆ ∪α∈X{α} × Xα ∣ {α ∈ X ∣ (Y)α ∈ Uα} ∈ U},

where (Y)α = {β ∈ Xα ∣ (α, β) ∈ Y} is the αth fiber of Y.
The key property of sums is that they yield ultrafilters that represent iterated

ultrapowers.

Lemma 2.5 [17, Corollary 5.2.7] If U is an ultrafilter on X and ⟨Wα⟩α∈X is a sequence of
ultrafilters, then letting W∗ = [α ↦ Wα]U , M∑U ⟨Wα⟩α∈X

= (MW∗)MU and j∑U ⟨Wα⟩α∈x
=

( jW∗)MU ○ jU . Moreover, U- lim ⟨Wα⟩α∈X = j−1
U [W∗].

The sum construction is often used to obtain an ultrafilter representing an iterated
ultrapower in this way, and in this context, the choice of the sequence ⟨Wα⟩α∈X
representing W∗ is usually irrelevant and distracting. For this reason, we introduce
a notation that allows us to remain agnostic about this choice.

Definition 2.6. If U is an ultrafilter over X and MU satisfies that W∗ is an ultrafilter,
then U⌢W∗ denotes ∑U ⟨Wα⟩α∈X , where Wα is a sequence of ultrafilters such that
W∗ = [α ↦ Wα]U .

Technically, the definition of U⌢W∗ depends on the choice of the underlying sets
of Wα . This ambiguity causes no issues, however, since if W ′

α is another sequence such
that W∗ = [α ↦ W ′

α]U , then letting Z = ∑U ⟨Wα⟩α∈X and Z′ = ∑U ⟨W ′
α⟩α∈X , there is

a set S ∈ Z ∩ Z′ such that Z ∩ P(S) = Z′ ∩ P(S).

Definition 2.7. We define recursively when U is an n-fold sum of p-points. W is a
one-fold sum of p-points if W is a p-point. We say that W is an (n + 1)-fold sum of
p-points if there are n-fold sums of p-points Uα and a p-point ultrafilter U such that
U is Rudin–Keisler equivalent to ∑U ⟨Uα⟩α<κ.

We shall now prove a slight improvement of the form of ultrafilters which have the
Galvin property in Theorem 1.2, this will be turn out to be an exact characterization
of the ultrafilters with the Galvin property under UA plus every irreducible is Dodd
sound in Main Theorem 1.3. We need the definition of the modified diagonal intersec-
tion.

Definition 2.8. Suppose that W is a κ-complete ultrafilter over κ, and let πW ∶ κ→ κ
be the function which represents κ mod W. For a sequence ⟨A i⟩i<κ of subsets of κ,
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8 T. Benhamou and G. Goldberg

we define the modified diagonal intersection by

ΔW
i<κA i = {α < κ ∣ ∀i < πW(α), α ∈ A i}.

Fact 2.9. If W is a κ-complete ultrafilter over κ and ⟨A i⟩i<κ ⊆ W, then:
(1) ΔW

i<κA i ∈ W.
(2) For every i0 < κ, (ΔW

i<κA i)/(π−1[i0 + 1]) ⊆ A i0 .
Theorem 2.10 Suppose that λ < κ, let D be any ultrafilter over λ, and let ⟨Wξ⟩ξ<λ be a
sequence of n-fold sums of κ-complete p-point ultrafilters over κ. Then ∑D ⟨Wξ⟩ξ<λ has
the Galvin property.
Proof Denote by Z ∶= ∑D ⟨Wξ⟩ξ<λ , and let us assume for simplicity of notation that
n = 2. Hence, Z = ∑D ⟨∑Uξ

⟨Uξ,η⟩η<κ⟩ξ<λ , where each Uξ and Uξ,η is a κ-complete
p-point over κ. For A ∈ Z, define

A(2)i , j = {k < κ ∣ ⟨i , j, k⟩ ∈ A},

A(1)i = { j < κ ∣ A(2)i , j ∈ U i , j},

A(0) = {i < λ ∣ A(1)i ∈ U i}.

Note that

A ∈ ∑
D
⟨∑

U i

⟨U i , j⟩ j<κ⟩i<λ ⇔ {i < λ ∣ (A)i ∈ ∑
U i

⟨U i , j⟩ j<κ} ∈ D

⇔ {i < λ ∣ { j < κ ∣ A(2)i , j ∈ U i , j} ∈ U i} ∈ D ⇔ A(0) ∈ D.

For any W ∈ {U i ∣ i < λ} ∪ {U i , j ∣ i < λ, j < κ}, choose πW ∶ κ→ κ such that
[πW]W = κ and πW is almost one-to-one. Such a function exists since W is a κ-
complete p-point. Define ρW ∶ κ→ κ by

ρW(α) = sup π−1
W[α + 1] + 1.

Next, we define

ρ(1)(α) = sup
i<α

ρU i (α), and ρ(2)(α) = sup
i , j<α

ρU i , j(α).

Note that ρ(1) , ρ(2) ∶ κ→ κ since κ is regular. Now we are ready to prove the theorem.
Let ⟨A i⟩i<2κ be a sequence of sets in Z. Since λ < κ, we can assume without loss of
generality that there is a set A(0)∗ ∈ D such that for every i < 2κ, A(0)∗ = (A i)(0). Let N
be an elementary substructure of H(θ) for some large enough θ such that:
(1) ∣N∣ = κ.
(2) <κN ⊆ N.
(3) κ ⊆ N and κ+ ∩N ∈ κ+.
(4) ⟨A i⟩i<2κ ∈ N.
Let α∗ = κ+ ∩N.
Claim 2.11 For every ⟨α1 , α2⟩ ∈ [κ]2 and δ < α∗, there is δ < β < α∗ such that:
(1) ∀i ∈ (A∗)(0), (Aβ)

(1)
i ∩ α1 = (Aα∗)

(1)
i ∩ α1.

(2) ∀i ∈ (A∗)(0)∀ j < α1 , (Aβ)
(2)
i , j ∩ α2 = (Aα∗)

(2)
i , j ∩ α2.
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The Galvin property under the ultrapower axiom 9

Proof Consider the statement

ϕ(α1 , α2 , δ) ≡ ∃β > δ (1) ∧ (2)

H(θ) ⊧ ϕ(α1 , α2 , δ) as witnessed by α∗ and since α1 , α2 , δ ∈ N, the elementarity of N
implies that there is such β ∈ N and, in particular, β < α∗. ∎

Define a sequence ⟨μ i ∣ i < κ⟩ inductively, suppose that ⟨μ j ∣ j < i⟩was defined. Let
δ = sup j<i μ j + 1 ∈ N and apply the claim to δ and

α1 = ρ(1)(i), and α2 = ρ(2)(i)

to produce μ i > δ (and thus μ i ≠ μ j for all j < i). We claim that

⋂
i<κ

Aμ i ∈ ∑
D
(⟨∑

U i

⟨U i , j⟩ j<κ⟩i<λ .

To see this, we define for every ξ ∈ (A∗)(0),

(A∗)(1)ξ = (Aα∗)
(1)
ξ ∩ ΔUξ

i<κ(Aμ i )
(1)
ξ /ρUξ(ξ)

and for every ξ ∈ (A∗)(0), η ∈ (A∗)(1)ξ , define

(A∗)(2)ξ,η = (Aα∗)
(2)
ξ,η ∩ ΔUξ,η

i<κ (Aμ i )
(2)
ξ,η/ρUξ,η(η).

Let

A∗ = ⋃
ξ∈A(0)

∗

⋃
η∈(A∗)(1)

ξ

{ξ} × {η} × (A∗)(2)ξ,η .

Claim 2.12 For every ⟨α, β, γ⟩ ∈ A∗, and for every i < κ, α ∈ (Aμ i )(0), β ∈ (Aμ i )
(1)
α

and γ ∈ (Aμ i )
(2)
α ,β .

Proof of claim. Let ⟨α, β, γ⟩ ∈ A∗. By definition of A∗, α ∈ (A∗)(0), β ∈ (A∗)(1)α and
γ ∈ (A∗)(2)α ,β . In particular,

(∗) α < πUα(β) and β < πUα ,β(γ).

For i < κ, we note first that α ∈ (Aμ i )(0) since we assume (Aμ i )(0) = (A∗)(0). Now to
see that β ∈ (Aμ i )

(1)
α , split into cases. If i < πUα(β), then β ∈ (Aμ i )

(1)
α by the definition

of the modified diagonal intersection. If i ≥ πUα(β), then β < ρUα(i). Also, by (∗),
α < πUα(β) ≤ i and therefore ρUα(i) ≤ supα<i ρUα(i) = ρ(1)(i). By the choice of μ i ,
(1) of Claim 2.11

β ∈ (Aα∗)(1)α ∩ ρ(1)(i) = (Aμ i )
(1)
α ∩ ρ(1)(i).

Finally for γ, if i < πUα ,β(γ), then γ ∈ (Aμ i )
(2)
α ,β . If i ≥ πUα ,β(γ), then as in the previous

paragraph, β < πUα ,β(γ) ≤ i and thus

γ < ρUα ,β(i) ≤ ρ(2)(i).
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We conclude that γ ∈ (Aα∗)
(2)
α ,β ∩ ρ(2)(i). By the choice of μ i and (2) of Claim 2.11,

γ ∈ (Aμ i )
(2)
α ,β ∩ ρ(2)(i). ∎

By the claim, that for every ⟨α, β, γ⟩ ∈ A∗ and every i < κ, ⟨α, β, γ⟩ ∈ Aμ i , namely
A∗ ⊆ ⋂i<κ Aμ i . Finally, we note that A∗ ∈ Z. Indeed, (A∗)(0) ∈ D by the choice of
(A∗)(0). Also, for every i < κ, and α ∈ (A∗)(0), α ∈ (Aμ i )(0) and so (Aμ i )

(1)
α ∈ Uα . We

conclude (A∗)(1)α ∈ Uα . Also, for β ∈ (A∗)(1)α , β ∈ (Aμ i )
(1)
α and therefore (Aμ i )

(2)
α ,β ∈

Uα ,β . It follows that (A∗)(2)α ,β ∈ Uα ,β . Hence, A∗ ∈ Z, and in particular, ⋂i<κ Aμ i ∈ Z.

Recall that the sequence of ⟨Uα⟩α∈X is called discrete if there is a sequence of
pairwise disjoint sets ⟨Aα⟩α∈X such that Aα ∈ Uα . We say that ⟨Uα⟩α∈X is discrete mod
U, if there is Y ∈ U , Y ⊆ X such ⟨Uα⟩α∈Y is discrete.

Fact 2.13. ∑U ⟨Uα⟩α<κ ≡RK U- lim ⟨Uα⟩α<κ iff ⟨Uα⟩α<κ is discrete mod U.

Proposition 2.14 If U is a p-point ultrafilter, then any sequence ⟨Uα⟩α<κ of distinct
κ-complete ultrafilters is discrete mod U.

Proof See [24, Corollary 5.15]. ∎

Definition 2.15. (Orderings of ultrafilters) Let U , W be ultrafilters over ordinals κ, λ
(resp.) define:
(1) The Rudin–Keisler order by U ≤RK W if there is a function π∶ λ → κ such that

U = {B ⊆ κ ∣ π−1[B] ∈ W}.
(2) The Rudin–Frolík order by U ≤RF W if there is a set I ∈ U and a discrete sequence

⟨Wi⟩i∈I of ultrafilters over κ such that W = U- lim ⟨Wi⟩i∈I .
(3) The Ketonen order by U <k W if j′′W U is contained in a countably complete

ultrafilter U∗ of MW such that [id]W ∈ U∗.

For more background on ultrafilters, their orderings, and the Ultrapower Axiom,
we refer the reader to [24] and [17].

We also record here the definition and basic properties of the canonical functions.

Definition 2.16. For every η < κ+, we fix a cofinal sequence ⟨η i⟩i<cf(η). Define
recursively the canonical functions fα ∶κ→ κ for α < κ+ as follows: f0 = 0 is the
constant function with value 0. Given fα , define fα+1(x) = fα(x) + 1. For limit η < κ+,
we split into cases:
(1) If cf(η) < κ, define fη(x) = supi<cf(η) fη i (x).
(2) If cf(η) = κ, define fη(x) = supi<x fη i (x).

It is not hard to see that the canonical functions are increasing modulo the bounded
ideal, but the main reason we are interested in those functions is the following.

Proposition 2.17 Let k∶N → M be an elementary embedding (not necessarily definable
in N) with critical point κ. Then for every α < (κ+)N , k( fα)(κ) = α.

Proof By induction on α. Clearly, for α = 0, k( f0)(κ) = 0 and if k( fα)(κ) = α, then
by elementarity k( fα+1)(κ) = α + 1. For limit η, if cf(η) < κ, then the functions used
in the definition of fη are ⟨ fη i ⟩i<cf(η) are pointwise mapped by k; that is, k(⟨ fη i ∣ i <
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cf(η)⟩) = ⟨k( fη i ) ∣ i < cf(η)⟩. It follows by elementarity and the definition of fη that
k( fη)(κ) = supi<cf(η) k( fη i )(κ). Hence, by the induction hypothesis, k( fη)(κ) =
supi<cf(η) η i = η. If cf(η) = κ, then the sequence ⟨ fη i ∣ i < κ⟩ is stretched by k to
k(⟨ fη i ∣ i < κ⟩) = ⟨ f ′η i

∣ i < k(κ)⟩ but for every i < κ, as k(i) = i, we have f ′η i
= k( fη i ).

Again by the definition of fη , elementarity, and the induction hypothesis, we conclude
that

k( fη)(κ) = sup
i<κ

f ′η i
(κ) = sup

i<κ
k( fη i )(κ) = sup

i<κ
η i = η. ∎

3 Diamond-like principle and the Galvin property

In [6], a relation between Kurepa trees and the Galvin property has been established
to construct a κ-complete non-Galvin ultrafilter. In this section, we exploit the deep
connection between Kurepa trees and diamond principles which was first observed
by Jensen [22], to find new combinatorial properties of ultrafilters which ensures the
Galvin property.

Definition 3.1. Let S be a stationary set.♢∗(S) is the assertion that there is a sequence
⟨Aα⟩α∈S such that Aα ⊆ P(α) and:
(1) ∣Aα ∣ ≤ α.
(2) For every X ⊆ κ, there is a club C such that for each α ∈ C ∩ S, C ∩ α, X ∩ α ∈ Aα .

Proposition 3.2 If ♢∗(S) holds, then any ultrafilter U over a regular cardinal κ

satisfying Clubκ ∪ {S} ⊆ U and cf MU ([id]U) ≤ crit( jU) must be non-Galvin.

Proof Suppose otherwise, and let CX for every X ⊆ κ be the club guaranteed by item
(2) of ♢∗(S). Then CX ∈ U . Also, for each α ∈ S, let ⟨Iα

i ⟩i<cf(α) be a partition of Aα
such that ∣Iα

i ∣ < α. Now for each X ⊆ κ, consider the function fX ∶ CX ∩ S → κ defined
by fX(α) = i < cf(α) for the unique i such that X ∩ α ∈ Iα

i . Since c f MU ([id]U) ≤
crit( jU), there is a function π ∶ κ→ On such that i < cf(α) ≤ π(α) and [π]U =
crit( jU). It follows that there is AX ⊆ CX ∩ S, AX ∈ U and γX < κ such that for every
α ∈ AX , fX(α) = γX . There are 2κ-many subsets with the same γX = γ∗. Now apply
Galvin’s property to those 2κ-many sets in order find κ-many distinct subsets of
κ, ⟨Xξ⟩ξ<κ for which A∗ ∶= ⋂ξ<κ AXξ ∈ U . Now for each α ∈ A∗ ∩ S, ∣Iα

γ∗ ∣ < α. Since
κ is regular, we may apply Födor’s lemma to find a stationary set S′ ⊆ A∗ ∩ S and
θ < κ such that ∣Iα

γ∗ ∣ = θ for each α ∈ S′. Consider ⟨X i⟩i<θ+ and for each i ≠ j < θ+, let
β i , j < κ be high enough so that X i ∩ β i , j ≠ X j ∩ β i , j . Take any α ∈ S′/ supi≠ j<θ+ β i , j .
To reach a contradiction, note that on one hand, since α ∈ S′, ∣Iα

γ∗ ∣ = θ. On the other
hand, for every i ≠ j < θ+, X i ∩ α ∈ Iα

γ∗ and the sets X i ∩ α are all distinct. ∎

Let us introduce a similar guessing principle ♢∗thin(U) to the one above, which can
be formulated in terms of the ultrapower and does not involve the club filter. Then we
will prove that ♢∗thin(U) implies that U is non-Galvin.

Definition 3.3. An ultrafilter W on a regular cardinal κ satisfies ♢∗thin(W) if there is
a sequence of sets ⟨Aα⟩α<κ such that:
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(1) For all A ⊆ κ, for W-almost all α, A∩ α ∈ Aα .
(2) α ↦ ∣Aα ∣ is not almost one-to-one mod W.
The sequence ⟨Aα⟩α<κ is called a ♢∗thin(U)-sequence.

In the ultrapower, this is expressed as follows.

Lemma 3.4 ♢∗thin(U) is equivalent to the existence of a set A ∈ MU such that:
(1) { jU(S) ∩ [id]U ∣ S ⊆ κ} ⊆ A.
(2) There is no function f ∶κ→ κ such that jU( f )(∣A∣M) ≥ [id]U .

Proof The witnessing ♢∗thin(U)-sequence is just the sequence ⟨Aα⟩α<κ representing
A in MU . Clearly, condition (1) is equivalent to the fact that for every S ⊆ κ, {α <
κ ∣ S ∩ α ∈ Aα} ∈ U . By Proposition 2.3, condition (2) is equivalent to the function
α ↦ ∣Aα ∣ not being almost one-to-one mod U. ∎

Lemma 3.5 If ♢∗thin(W), then W is non-Galvin.

Proof Assume toward contradiction that W has the Galvin property. Enumerate
Aα = {Aα , i ∣ i < ∣Aα ∣}. For every set X, there is BX ∈ W such that for every for every
α ∈ BX , X ∩ α ∈ Aα . By our assumption, there are κ-many distinct sets {X i ∣ i < κ}
such that B ∶= ⋂i<κ BX i ∈ W . Note that the key property of B is that for every i < κ
and for all α ∈ B, X i ∩ α ∈ Aα . Since the function α ↦ ∣Aα ∣ is not almost one-to-
one mod W, there is θ < κ and an unbounded subset B′ ⊆ B such that for every
α ∈ B′, ∣Aα ∣ = θ. Consider {X i ∣ i < θ+}. For every i ≠ j < θ+, find α i , j < κ such that
X i ∩ α i , j ≠ X j ∩ α i , j and take α∗ = supi , j<θ+ α i , j . By regularity of κ, α∗ < κ. Since B′
is unbounded there exists some β∗ ∈ B′ with β∗ > α∗. It follows that for every i < θ+,
X i ∩ β∗ ∈ Aβ∗ , and also for every i ≠ j, since α i , j < β∗, X i ∩ β∗ ≠ X j ∩ β∗. It follows
that i ↦ X i ∩ β∗ is a one-to-one function from θ+ into Aβ∗ . This contradicts the fact
that β∗ ∈ B′ and thus ∣Aβ∗ ∣ = θ. ∎

Corollary 3.6 Suppose that κ is regular and U is an ultrafilter extending the club filter
on κ. Assume that there is a sequence of sets ⟨Aα⟩α<κ such that:
(1) For every α < κ, ∣Aα ∣ < α.
(2) For every X ⊆ κ, {α < κ ∣ X ∩ α ∈ Aα} ∈ U.
Then ♢∗thin(U) holds and, in particular, U is non-Galvin.

Proof It remains to show that α ↦ ∣Aα ∣ is not one-to-one on a set in U. If A ∈ U , then
A is stationary since Clubκ ⊆ U . By Födor applied to the function α ↦ ∣Aα ∣ restricted
to A, there is an unbounded subset S′ ⊆ A and θ < κ such that for every α ∈ S′, ∣Aα ∣ =
θ. In particular, α ↦ ∣Aα ∣ is not almost one-to-one on A. ∎

The most important class of ultrafilters which satisfy ♢∗thin are the non p-point
Dodd sound ultrafilters as will be proven in Lemma 3.8. To prove that lemma, we
will need the following characterization due to Goldberg of Dodd sound ultrafilters
[17, Theorem 4.3.26]:

Theorem 3.7 A uniform ultrafilter U on an ordinal δ is Dodd sound if and only if
there is a sequence ⟨Aα⟩α<δ such that for any sequence ⟨Sα ⊆ α⟩α<δ , the following are
equivalent:
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(a) There is a set S ⊆ κ such that for U-almost every α, S ∩ α = Sα .
(b) For U-almost every α, Sα ∈ Aα .

Lemma 3.8 Let κ be regular, and let U a non p-point Dodd sound ultrafilter, then
♢∗thin(U).

Proof Assume that U is a non p-point Dodd sound ultrafilter. Let ⟨Aα⟩α<κ be
the sequence obtained by Theorem 3.7. Note that for every S ⊆ κ, the sequence
⟨S ∩ α⟩α<κ satisfies condition (a) of Theorem 3.7. By the theorem, we conclude
that for U-almost every α, S ∩ α ∈ Aα . It follows that jU(S) ∩ [id]U ∈ [α ↦ Aα] and
{ jU(S) ∩ [id]U ∣ S ⊆ κ} ⊆ [α ↦ Aα]U . Similarly, from the implication (b) to (a) we
deduce that [α ↦ Aα]U ⊆ { jU(S) ∩ [id]U ∣ S ⊆ κ}. By Dodd soundness, the function
j[id]U ∶ P(κ) → { jU(S) ∩ [id]U ∣ S ⊆ κ} defined by j[id]U (S) = j(S) ∩ [id]U belongs to
MU . Thus MU ⊧ ∣[α ↦ Aα]U ∣ = 2κ. Finally, α ↦ ∣Aα ∣ cannot be an almost one-to-one
function mod U: otherwise, the class of any unbounded function κ ≤ [π]U would
also be an almost one-to-one mod U. To see this, suppose that [τ]U = κ, then [α ↦
2τ(α)]U = 2κ and by our assumption, this is represented by an almost one-to-one
function mod U9. Let X ∈ U be the set witnessing that α ↦ 2τ(α) is almost one-to-
one mod U. Also we let Y ∈ U be such that for every α ∈ Y , τ(α) ≤ π(α). We claim
that π ↾ X ∩ Y is almost one-to-one as for any γ < κ,

{α < κ ∣ π(α) < γ} ∩ X ∩ Y ⊆ {α < κ ∣ τ(α) < γ} ∩ X ∩ Y ⊆

⊆ {α < κ ∣ 2τ(α) ≤ 2γ} ∩ X ∩ Y .

The right most set is bounded by the choice of X. We conclude that U is a p-point
contradiction. ∎

Note that an ultrafilter U satisfying ♢∗thin(U) need not be Dodd sound since by
Lemma 3.4, we only cover the set { jU(S) ∩ [id]U ∣ S ⊆ κ}. However, at least for κ-
complete Dodd sound ultrafilters, the second requirement of ♢∗thin(U) regarding the
function α ↦ ∣Aα ∣ is equivalent to U not being a p-point.

Proposition 3.9 Let κ be measurable and U be a κ-complete Dodd sound ultrafilter
over κ, and let [α ↦ Aα]U = { jU(S) ∩ [id]U ∣ S ⊆ κ}. Then U is a non p-point ultrafil-
ter if and only if the function α ↦ ∣Aα ∣ is not almost one-to-one mod U.

Proof One direction follows from the previous lemma. Let us prove the other, note
that α ↦ ∣Aα ∣ cannot be bounded on a set in U, just otherwise, suppose that θ < κ is
such that B∗ ∶= {α < κ ∣ ∣Aα ∣ ≤ θ} ∈ U . Take any θ+-many sets {X i ∣ i < θ+} such that
there is γ < κ such that for all i ≠ j < θ+, X i ∩ γ ≠ X j ∩ γ. For each i < θ+, Denote
by B i ∶= {α < κ ∣ X i ∩ α ∈ Aα} ∈ U . By κ-completeness and fineness, there is γ∗ ∈
B∗ ∩ (⋂i<θ+ B i)/γ. It follows that ∣Aγ∗ ∣ = θ but also for each i < θ+, X i ∩ γ∗ ∈ Aγ∗ are
all distinct sets. Contradiction. We conclude that α ↦ ∣Aα ∣ is an unbounded function
mod U which is also not almost one-to-one according to (1). Hence, U is not a
p-point. ∎

We cannot drop the κ-completeness assumption here.

9Being an almost one-to-one function mod U is clearly a property of an equivalence class mod U.

https://doi.org/10.4153/S0008414X2400052X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400052X


14 T. Benhamou and G. Goldberg

Example 3.10. Suppose that W is a fine normal ultrafilter over Pκ(λ) forκ < λ, where
λ is a regular cardinal. By [17, Theorems 4.4.37 and 4.4.25], there is a Dodd sound non
uniform ultrafilter U on λ (and therefore p-point) which is Rudin–Keisler equivalent
to W. Note that there is no function which is unbounded (and therefore no function
which is almost one-to-one) mod U. In particular, α ↦ ∣Aα ∣ is not almost one-to-one
mod U. Also, note that U satisfies ♢∗thin(U) and therefore is an example of a non-
Galvin ultrafilter over λ which is uniform and not λ-complete.

Corollary 3.11 If U is a non p-point, Dodd sound ultrafilter over a regular cardinal κ,
then U is non-Galvin.

In attempt to pinpoint the exact guessing principle that catches non-Galvinness, we
note that the usage of ♢∗thin(W) in the argument of Lemma 3.5 can be replaced with
the following weakening.

Definition 3.12. Let κ ≤ λ ≤ 2κ. An ultrafilter W on a regular cardinal κ satisfies
♢∗par(W , λ) if there is a sequence of sets ⟨Xα⟩α<λ , A ∈ MW such that:
(1) { jU(Xα) ∩ [id]U ∣ α < λ} ⊆ A.
(2) For any function f ∶ κ→ κ, jU( f )(∣A∣MW ) < [id]W .

Clearly, ♢∗thin(W) implies ♢∗par(W , 2κ) which in turn imply ♢∗par(W , λ) for any
λ ∈ [κ, 2κ].

Proposition 3.13 ♢∗par(W , λ) implies that ¬Gal(W ,κ, λ).

Proof The argument of Lemma 3.5 gives this stronger result. ∎

The principle ♢∗par(W , λ) is equivalent to the existence of a set K ⊆ P(κ) of size λ
and a sequence ⟨Aα⟩α<κ such that:
(1) For every X ∈ K, {α < κ ∣ X ∩ α ∈ Aα} ∈ W .
(2) The function α ↦ ∣Aα ∣ is not almost one-to-one mod W.
The referee pointed out to us the strong similarity of ♢∗par to the notion of pseudo-
Kurepa families due to Todorcevic [36]. Indeed, many of the initial segments of the
sets in K must be equal in order for the sets Aα of asymptotically bounded cardinality
to exist.

Next, we would like to provide two closure properties of the class of ultrafilters
satisfying ♢∗thin .

Lemma 3.14 Suppose U is an ultrafilter on κ and Z is the U-limit of a discrete sequence
of ultrafilters Wξ on κ such that ♢∗thin(Wξ). Then ♢∗thin(Z).

Proof Fix a partition of κ into sets Sξ ∈ Wξ . For each ξ < κ, let ⟨Aξ
α⟩α<κ witness that

♢∗thin(Wξ). Then let Aα = Aξ
α , where ξ < κ is unique such that α ∈ Sξ . Fixing A ⊆ κ,

we would like to show that B ∶= {α < κ ∣ A∩ α ∈ Aα} ∈ U- lim ⟨Wξ⟩ξ<κ. For any ξ < κ,
then Bξ ∶= {α ∈ Sξ ∣ A∩ α ∈ Aξ

α} ∈ Wξ . Since for each α ∈ Sξ , Aα = Aξ
α , we conclude

that Bξ ⊆ B and therefore B ∈ Wξ . It follows that B ∈ U- lim ⟨Wξ⟩ξ<κ. It remains to
show that c(α) = ∣Aα ∣ is not almost one-to-one on any set B ∈ W . Suppose otherwise,
and let B ∈ W witness that c is almost one-to-one. Pick any ξ < κ such that B ∈ Wξ to
reach a contradiction note that B ∩ Sξ ∈ Wξ , and the function c is almost one-to-one
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on this set. However, for every α ∈ B ∩ Sξ , Aξ
α = Aα = c(α) and so α ↦ ∣Aξ

α ∣ is almost
one-to-one on B ∩ Sξ , contradicting ♢∗thin(Wξ). ∎

Lemma 3.15 Suppose U is an n-fold sum of p-points on κ and ⟨Wξ⟩ξ<κ is a sequence of
(not necessarily discrete) κ-complete ultrafilters on κ such that ♢∗thin(Wξ). Then letting
Z = U- lim ⟨Wξ⟩ξ<κ, we have ♢∗thin(Z).

Proof We first consider the case that U is a p-point. Then replace U with UW =
D( jU , W), where W is the point in MU represented by ξ ↦ Wξ . Note that UW is
Rudin–Keisler below an ultrafilter onκwhich implies that UW concentrates on a set of
(κ-complete) ultrafilters of size κ. By enumerating those ultrafilters W ′

ξ for ξ < κ, we
can shift UW to an ultrafilter U ′ on κ such that [id]UW is identified with [ξ ↦ W ′

ξ]U ′ .
Also, note that U ′ − limW ′

ξ = U − limWξ since the factor map k∶MU ′ → MU sends
k([ξ ↦ W ′

ξ]U ′) = W and thus

X ∈ U ′ − lim ⟨W ′
ξ⟩ξ<κ ⇔ jU ′(X) ∈ [ξ ↦ W ′

ξ]U ′ ⇔

⇔ jU(X) = k( jU ′(X)) ∈ W ⇔ X ∈ U − lim ⟨Wξ⟩ξ<κ .

Since U ′ ≤RK U , and U is a p-point, U ′ is also a p-point (see [24, Corollary 2.8]).
The sequence ⟨W ′

ξ⟩ξ<κ represents the identity in U ′, it is one-to-one mod U ′, since
all the W ′

ξ ’s are κ-complete, by Proposition 2.14 the sequence is discrete on a set
in U ′.10 This allows us to apply the previous lemma, obtaining thin diamond for
U ′- lim ⟨W ′

ξ⟩ξ<κ = U- lim ⟨Wξ⟩ξ<κ.
Now suppose the lemma is true for n-fold sums of p-points, and we will prove

it when U is an (n + 1)-fold sum. We can fix a p-point D such that U is the
D-limit of a sequence of n-fold sum p-points Uξ on κ. As in the previous paragraph,
since D is a p-point, we may assume that the Uξ ’s are discrete. Let U∗ = [ξ ↦ Uξ]D ,
then by elementarity, MD ⊧ U∗ is an n-fold sum of p-points. Applying the induction
hypothesis in MD to U∗ and the ultrafilters jD(⟨Wξ⟩ξ<κ) = ⟨Z∗ξ ⟩ξ< jD(κ)

, we conclude
that Z∗ = U∗- lim ⟨Z∗ξ ⟩ξ< jD(κ)

satisfies ♢∗thin(Z∗). Let [α ↦ Zα]D = Z∗ and assume
without loss of generality that for every α < κ, ♢∗thin(Zα) holds. We claim that

(∗) Z = D- lim ⟨Zα⟩α<κ = U- lim ⟨Wξ⟩ξ<κ

from which it follows that ♢∗thin(Z), by the argument of the previous paragraph. To
see (∗), since we assumed that the Uα ’s are discrete, by the theory of sums and limits
of ultrapower

j∑D ⟨Uα⟩α<κ
= jD- lim ⟨Uα⟩α<κ

= jU∗ ○ jD and [id]D- lim ⟨Uα⟩α<κ
= [id]U∗ ,

hence

X ∈ D- lim ⟨Zα⟩α<κ ⇔ jD(X) ∈ Z∗ = U∗- lim ⟨Z∗ξ ⟩ξ< jD(κ)
⇔

10Note that even if the Wξ ’s we started with were not distinct, the W′
ξ ’s will be distinct on a set in

U ′. For example, if Wξ =W0 for every ξ, then UW is the principle ultrafilter concentrating on {W0} and
thus U ′ is principle and W0 =W′

ξ . It is still true that on a measure one set in U ′, i.e., {0}, the sequence
⟨W′

ξ⟩ξ<κ is distinct. In this case, the lemma is trivial as Z =W0.
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⇔ jU∗( jD(X)) ∈ jU∗( jD(⟨Wξ⟩ξ<κ))([id]U∗) ⇔

⇔ jD- lim ⟨Uα⟩α<κ
(X) ∈ jD- lim ⟨Uα⟩α<κ

(⟨Wξ⟩ξ<κ)([id]D- lim ⟨Uα⟩α<κ
) ⇔

⇔ X ∈ (D- lim ⟨Uα⟩α<κ)- lim ⟨Wξ⟩ξ<κ ⇔ X ∈ U- lim ⟨Wξ⟩ξ<κ . ∎

4 Partial Dodd soundness and skies

A finer analysis of the diamond-like principles of the previous section reveals that
partial soundness suffices for an ultrafilter to be non-Galvin. To better understand
this improvement, let us prove the following theorem in terms of general elementary
embeddings.
Theorem 4.1 Suppose that j∶V → M is an elementary embedding with crit( j) = κ such
that λ = sup{ j( f )(κ) ∣ f ∶κ→ κ} and { j(A) ∩ λ ∣ A ⊆ κ} ∈ M. Then there is ξ such
that D ∶= D( j, ξ) and ¬Gal(D,κ, 2κ).
Remark 4.2. Note that from the assumptions of the theorem it follows that λ < j(κ),
indeed, if λ = j(κ), then since we are assuming { j(A) ∩ λ ∣ A ⊆ κ} ∈ M, we have
j′′P(κ) ∈ M and therefore { j( f )(κ) ∣ f ∶ κ→ κ} ∈ M. It follows that M ⊧ c f ( j(κ)) =
2κ. But by elementarity, M ⊧ j(κ) is regular. Contradiction.
Proof Denote A = { j(A) ∩ λ ∣ A ⊆ κ} ∈ M. Enumerate Vκ in V, f ∶κ→ Vκ such that
for every x ∈ Vκ, f −1[x] is unbounded in κ. Since A ∈ (Vj(κ))M , there is j(κ) > ξ ≥
λ such that j( f )(ξ) = A. By similar arguments, we can ensure that there are some
functions g , h ∶ κ→ κ such that for the same ξ we will also have κ = j(g)(ξ) and λ =
j(h)(ξ). Let D = D( j, ξ), jD ∶V → MD be the ultrapower, and let kD ∶MD → M be the
factor map kD([ϕ]D) = j(ϕ)(ξ). Note that

λ = kD([h]D), κ = kD([g]D), A = kD([ f ]D)

and therefore κ, λ,A ∈ Im(kD). It follows that crit(kD) > κ and [g]D = κ. Since

kD([h]D) = λ ≤ ξ = kD([id]D),

the elementarity of kD implies that [h]D ≤ [id]D . Recall that for any function ϕ∶κ→
κ, j(ϕ)(κ) < λ thus by elementarity of kD ,

(∗) for any function ϕ∶κ→ κ, jD(ϕ)(κ) < [h]D .

By our initial assumption, λ > j(α ↦ 2α)(κ) = 2κ and since M ⊧ ∣A∣ = 2κ,

MD ⊧ ∣[ f ]D ∣ = 2[g]D < [h]D .

Denote by Bα = f (α), note that and fix a set X∗ ∈ D such that if α ∈ X∗ then ∣Bα ∣ =
2g(α) < h(α). Pick any 2κ distinct subsets of κ, ⟨Aα⟩α<2κ , then j(Aα) ∩ λ ∈ A and by
elementarity jD(Aα) ∩ λ′ ∈ B. It follows that

Xα ∶= {ξ < κ ∣ Aα ∩ h(ξ) ∈ Bξ} ∈ D.

We claim that ⟨Xα⟩α<2κ witness that ¬Gal(U ,κ, 2κ). Otherwise, there is I ∈ [2κ]κ
such that XI ∶= ∩i∈I X i ∈ D. Let us argue that there must be θ < κ such that

sup{h(ξ) ∶ ξ ∈ XI ∩ X∗, 2g(ξ) < θ} = κ.
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To see this, assume otherwise, then for each θ < κ, we can define

ρ(θ) = sup{h(ξ) ∣ ξ ∈ XI ∩ X∗ , 2g(ξ) ≤ 2θ}

then ρ∶κ→ κ is well-defined. Since 2 jD(g)([id]D) = 2[g]D = 2κ, we conclude that
jD(ρ)(κ) ≥ jD(h)([id]D) = [h]D , contradicting (∗). We proceed as before, find β ∈
XI ∩ X∗ such that the restriction of θ-many of the sets in I to h(β) are distinct. This
produces a contradiction. ∎

Let us define the concept of a sky of an elementary embedding at δ, which was first
considered in the case that δ = ω by Puritz [30, 31] and generalized to measurable
cardinals later by Kanamori [24]. This concept will enable us to simplify our future
definitions.

Definition 4.3. Let j ∶ V → M be an elementary embedding where M is transitive,
and let κ be any cardinal. We define a transitive relation on [sup( j′′κ), j(κ)): α ⪯ β if
there is a function f ∶ κ→ κ such that j( f )(β) ≥ α. We derive the equivalence relation
α ≡ β if α ⪯ β and β ⪯ α. A sky of j at κ is a ≡-equivalence class. We denote by sky(α)
the sky of α at κ for the unique κ such that α ∈ [sup( j′′κ), j(κ)).

Note that the only interesting situation is when κ is not a continuity point of j.
Since M is transitive, ≺ is a well-defined well-ordering of the skies. Moreover, since
α ≤ β implies α ⪯ β, then each sky is a half-open interval.

Suppose now that U is a σ-complete ultrafilter over κ. It is clear that for any α <
jU(κ), α ⪯ [id]U as α = [ f ]U for some f ∶ κ→ κ and therefore α = jU( f )([id]U).
So sky([id]U) is the maximal sky. This simple observation, together with Proposition
2.3, leads to an elegant characterization of p-points in terms of skies.

Corollary 4.4 Let U be a σ-complete ultrafilter over κ, then U is a p-point if and only
if jU has a unique sky at κ.

We can now reformulate Theorem 4.1 in terms of skies.

Corollary 4.5 Suppose that U is a κ-complete, λ-sound ultrafilter over κ such that λ is
the least element of the second sky at κ. Then U is non-Galvin.

Proof By the definition of ξ in the proof of Theorem 4.1, we can choose ξ = [id]U
and the theorem ensures that U = D( jU , [id]U) is non-Galvin. ∎

Note that a embedding j with critical point κ has at least two skies at κ if and only
if sup{ j( f )(κ) ∣ f ∶κ→ κ} < j(κ).

Corollary 4.6 Suppose that there is a superstrong embedding j∶V → M with crit( j) =
κ and at least two skies. Then κ carries a non-Galvin ultrafilter.

The reason that♢∗thin (Definition 3.1) is not equivalent to Dodd soundness is that we
are only trying to cover { jU(S) ∩ [id]U ∣ S ⊆ κ} with a set A in MU , while in Dodd
soundness we need the actual set { jU(S) ∩ [id]U ∣ S ⊆ κ} to be in MU . Let us call
this property covering soundness. The innovation here is to work with covering λ-
soundness which is just the ability to cover { jU(S) ∩ λ ∣ S ⊆ κ}.

However, without any further assumptions, we can always take PMU (λ) as our
covering set, so covering λ-soundness is always true. What makes ♢∗thin nontrivial is
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the second requirement that there is no function f ∶ κ→ κ such that jU( f )(∣A∣MU ) ≥
[id]U . This rules out our previous example of PMU (λ) or any other trivial example.
Equipped with our new terminology of skies, we note that (2) of Definition 3.1 is in
fact equivalent to ∣A∣M not laying the top sky (namely sky(∣A∣MU ) ≺ sky([id]U)).

Assuming (full) λ-soundness, the results of this section ensure that the “covering”
set could be chosen to be precisely { jU(S) ∩ λ ∣ S ⊆ κ}. Moreover, with this choice, the
MU -cardinality of the covering set is 2κ. Then, under the assumption on λ in Theorem
4.1, there is no function f ∶ κ→ κ such that jU( f )(2κ) ≥ λ.

Bearing the idea of skies in mind, we see the following common theme: if A
is the covering set and λ is the degree of covering soundness, then sky(∣A∣MU ) ≺
sky(λ). Let us formulate a diamond-like principle which generalize both Theorem
4.1 and ♢∗thin(U). It corresponds to covering λ-soundness, allowing λ to lay in an
arbitrary sky (except the least one). This diamond-like principle is essential to prove
the characterization of σ-complete non-Galvin ultrafilters.
Definition 4.7. Let U be an ultrafilter over a regular cardinal κ. ♢−thin(U) is the
statement that there is A ∈ MU and λ < jU(κ) such that:
(1) { jU(S) ∩ λ ∣ S ⊆ κ} ⊆ A.
(2) There is no function f ∶κ→ κ such that jU( f )(∣A∣M) ≥ λ11.
Clearly, ♢∗thin(U) implies ♢−thin(U) by taking λ = [id]U .
Corollary 4.8 If U is an ultrafilter over a regular cardinal κ which is λ-sound where λ
is such that for every function f ∶ κ→ κ, jU( f )(κ) < λ, then ♢−thin(U).
Proof By λ-soundness of U, A ∶= { jU(S) ∩ λ ∣ S ⊆ κ} ∈ MU and MU ⊧ ∣A∣ = 2κ.
There cannot be a function g ∶ κ→ κ such that jU(g)(2κ) ≥ λ, since otherwise, the
function g′(α) = g(2α) would be a function from κ to κ such that jU(g′)(κ) ≥ λ,
contradicting the assumptions of the corollary. ∎

Theorem 4.9 ♢−thin(U) implies that U is non-Galvin.
Proof Fix any ⟨Xα⟩α<2κ sequence of distinct subsets of κ. [α ↦ Aα]U = A and
[ f ]U = λ = jU( f )([id]U). By our assumption,

Bα = {ξ < κ ∣ Xα ∩ f (ξ) ∈ Aα} ∈ U .

We claim that ⟨Bα⟩α<2κ witness that ¬Gal(U ,κ, 2κ). Otherwise, there is I ∈ [2κ]κ
such that BI ∶= ∩i∈I B i ∈ U . Consider the map ξ ↦ ∣Aξ ∣, note that ∣Aξ ∣ ≤ π(ξ) where
jU(π)([id]U) = ∣A∣, and therefore there must be θ < κ such that

sup{ f (ξ) ∶ ξ ∈ BI , π(ξ) < θ} = κ.

Just assume otherwise, then for each θ < κ, we can define

g(θ) = sup{ f (ξ) ∣ ξ ∈ BI , π(ξ) ≤ θ}

then g∶κ→ κ is well-defined. Since jU(π)([id]D) = ∣A∣ we conclude that
jU(g)(∣A∣) ≥ jU( f )([id]D) = λ, contradicting condition (2). Now the continuation
is as before, we find β ∈ BI such that f (β) is high enough so that the restriction of
θ+-many of the sets in I to f (β) are distinct. This produces a contradiction. ∎

11That is, sky(∣A∣M) ≺ sky(λ).
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The advantage of using the class of ultrafilters satisfying ♢−thin(U) over the class
satisfying ♢∗thin , is that is it upward closed with respect to the Rudin–Keisler ordering.

Lemma 4.10 Suppose that ♢−thin(U) holds and U ≤RK W, then ♢−thin(W) holds.

Proof Let k ∶ MU → MW be an elementary embedding such that jW = k ○ jU and
A, λ witnessing ♢−thin(U). For every S ⊆ κ, we have

jW(S) ∩ k(λ) = k( jU(S) ∩ λ) ∈ k(A).

Hence { jW(S) ∩ k(λ) ∣ S ⊆ κ} ⊆ k(A) ∈ MW . By elementarity, ∣k(A)∣MW = k(∣A∣MU ).
Suppose toward contradiction that there is a function g ∶ κ→ κ such that
jW(g)(k(∣A∣MU )) ≥ k(λ), then k( jU(g)(∣A∣)) ≥ k(λ) and by elementarity if k,
jU(g)(∣A∣) ≥ λ, contradiction. ∎

Lemma 4.11 Suppose that Z is an ultrafilter on κ which is the U-limit of a discrete
sequence of ultrafilters Wξ on κ and such that ♢−thin(Wξ). Then ♢−thin(Z).

Proof Fix a partition of κ into sets Sξ ∈ Wξ . For each ξ < κ, let ⟨Aξ
α⟩α<κ and fξ

witness that ♢−thin(Wξ). Then let Aα = Aξ
α , where ξ < κ is unique such that α ∈ Sξ and

f (α) = fξ(α). Let A ⊆ κ, we would like to show that B ∶= {α < κ ∣ A∩ f (α) ∈ Aα} ∈
U- lim ⟨Wξ⟩ξ<κ. Take any ξ < κ, then Bξ ∶= {α ∈ Sξ ∣ A∩ fξ(α) ∈ Aξ

α} ∈ Wξ . Since for
each α ∈ Sξ and f (α) = fξ(α), Aα = Aξ

α , we conclude that Bξ ⊆ B and therefore B ∈
Wξ . It follows that B ∈ U- lim ⟨Wξ⟩ξ<κ. It remains to show that c(α) = ∣Aα ∣ is in a
lower sky than f. Suppose otherwise and let g ∶ κ→ κ such that for some B ∈ W ,
α ∈ B → g(c(α)) ≥ f (α). Pick any ξ < κ such that B ∈ Wξ to reach a contradiction
note that B ∩ Sξ ∈ Wξ , and for every α ∈ B ∩ Sξ , g(∣Aξ ∣α) = g(c(α)) ≥ f (α) = fξ(α).
However, the sky α ↦ ∣Aξ

α ∣ is below the sky of fξ , contradicting the choice of fξ . ∎

For a non-discrete sequence, we have the following.

Lemma 4.12 Suppose that Z is an ultrafilter over κ which is Rudin–Keisler equivalent
to∑U ⟨Wξ⟩ξ<λ , where U is any ultrafilter over λ ≤ κ and W ′

ξ s are ultrafilters over κ such
that ♢−thin(Wξ) holds. Then ♢−thin(Z) holds.

Proof Let W∗ = [ξ ↦ Wξ]U . By our assumption,

MU ⊧ W∗ is an ultrafilter over jU(κ) and ♢−thin(W∗).

Let jW∗ ∶ MU → MW∗ be the ultrapower of MU by W∗. It follows that there is
A ∈ MW∗ and λ < jW∗( jU(κ)) such that { jW∗(S) ∩ λ ∣ S ∈ P( jU(κ))MU} ⊆ A and
there is no function f ∶ jU(κ) → jU(κ) ∈ MU such that jW∗( f )(∣A∣MW∗ ) ≥ λ. Note
that MW∗ = M∑U ⟨Wξ⟩ξ<λ

and j∑U ⟨Wξ⟩ξ<λ
= jW∗ ○ jU . We claim that A and λ witness

that ♢−thin(∑U ⟨Wξ⟩ξ<λ). Indeed, for any X ⊆ κ, jU(X) ∈ P( jU(κ))MU and therefore
jW∗( jU(X)) ∩ λ ∈ A. Similarly, for any function f ∶ κ→ κ, jU( f ) ∶ jU(κ) → jU(κ) ∈
MU and therefore jW∗( jU( f ))(∣A∣MW∗ ) < λ. ∎

5 Non-Galvin cardinals

As pointed out in the Introduction, a measurable cardinal does not imply the existence
of a non-Galvin ultrafilter [9]. In [1], the question regarding which large cardinal
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properties imply the existence of non-Galvin ultrafilters was raised and in [2] a κ-
compact cardinal was proven to carry such an ultrafilter. We open this section with a
new large cardinal property.

Definition 5.1. κ is called non-Galvin cardinal if there are elementary embeddings
j∶V → M, i∶V → N , k∶N → M such that:
(1) k ○ i = j.
(2) crit( j) = κ, crit(k) = i(κ).
(3) κN ⊆ N and κM ⊆ M .
(4) There is A ∈ M such that i′′κ+ ⊆ A and M ⊧ ∣A∣ < i(κ).

Note that by condition (4), κ ⊆ A and that A can be chosen so that min(A/κ) =
i(κ).

The next proposition implies that we may assume that the embedding j in the
definition of non-Galvin cardinals is an ultrapower embedding and the embedding
i is an extender ultrapower derived from it.

Proposition 5.2 Suppose that j∶V → M, i∶V → N, k∶N → M and A ∈ M are as in
Definition 5.1. Then there is a κ-complete ultrafilter U over Vκ and ρ < jU(κ) which,
together with the ultrapower by the (κ, ρ)-extender E derived from jU and [id]U ,
witnesses that κ is non-Galvin. Namely, the following hold:
(1) kE ○ jE = jU .
(2) crit( jU) = κ, crit(kE) = ρ = jE(κ).
(3) κME ⊆ ME and κMU ⊆ MU .
(4) j′′Eκ+ ⊆ [id]U and MU ⊧ ∣[id]U ∣ < jE(κ).

Proof We may assume sup(A) = sup i′′κ+ and A∩ i(κ) = κ. Let U be the ultrafilter
derived from j using A. Let Ā = [id]U , and let kU ∶ MU → M be the unique elementary
embedding with kU ○ jU = j and kU(Ā) = A. Note that κ and i(κ) are in the range of
kU since these ordinals are definable in M using A as a parameter: κ is the least ordinal
not in A, and i(κ) = ∣ sup(A)∣M . Therefore kU(κ) = κ. Let ρ be such that kU(ρ) =
i(κ).

Let E be the extender of length ρ derived from jU . Let kE ∶ ME → MU denote the
unique factor embedding with kE ○ jE = jU and kE ↾ ρ = id.

ME MU

V

N M

jE

kE

i

k
j

jU

kU

We will verify (1), (2), (3), and (4). Of course, (1) is true essentially by the definition
of kE .
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For (2), note that crit( jU) = κ since kU ○ jU = j and kU(κ) = κ. The fact that
crit(kE) ≥ ρ follows from the definition of kE . To see crit(kE) = ρ and kE(ρ) = jU(κ),
we will show that12

HullMU ( j′′U V ∪ ρ) ∩ jU(κ) = ρ.

This will establish that crit(kE) = ρ and kE(ρ) = jU(κ) since kE is the inverse of the
transitive collapse of HullMU ( j′′U V ∪ ρ). To prove this equality, it suffices to show the
inclusion HullMU ( j′′U V ∪ ρ) ∩ jU(κ) ⊆ ρ.

Since k ○ i = j and since crit(k) = i(κ), we have HullM( j′′V ∪ i(κ)) ⊆ k′′N , and
therefore HullM( j′′V ∪ i(κ)) ∩ j(κ) ⊆ k′′N ∩ j(κ) = i(κ). Since

k′′U[HullMU ( j′′U V ∪ ρ)] ⊆ HullM( j′′V ∪ i(κ)),

we have

HullMU ( j′′U V ∪ ρ) ⊆ k−1
U [HullM( j′′V ∪ i(κ))].

In particular,

HullMU ( j′′U V ∪ ρ) ∩ jU(κ) ⊆ k−1
U [HullM( j′′V ∪ i(κ)) ∩ j(κ)]

= k−1
U (i(κ)) = ρ.

Since kE(ρ) = jU(κ) > ρ and kE ○ jE = jU , it follows ρ = jE(κ). Note also that ρ <
jU(κ), and so the fact that kE(ρ) = jU(κ) implies kE(ρ) ≠ ρ and hence crit(kE) = ρ.

For (3), the inner model MU is closed under κ-sequences since it is the ultrapower
of V by a κ-complete ultrafilter. The inner model ME is closed under κ-sequences by
Lemma 5.3, since cf(ρ) > κ and κρ ⊆ ME . To see that cf(ρ) > κ, note that cf(i(κ)) >
κ since N satisfies that i(κ) is regular and N is closed under κ-sequences. Therefore
M satisfies that cf(i(κ)) > κ. By the elementarity of kU , and since kU(ρ) = i(κ), MU
satisfies cf(ρ) > κ. Here, we use that kU(κ) = κ.

Finally, we verify (4). By elementarity of kU , since ∣A∣ < i(κ), we have ∣Ā∣ < ρ. So
we just have to show that j′′Eκ+ ⊆ Ā. Suppose α ∈ j′′Eκ+. We claim that kU(α) ∈ ran(i).
Let ⪯ be a well order of κ of order type j−1

E (α). Then jE(⪯) has order type α. Note that

kU( jE(⪯)) = kU( jU(⪯) ∩ ρ) = j(⪯) ∩ i(κ) = i(⪯).

Thus kU(α), which is the order type of kU( jE(⪯)) is equal to the order type of i(⪯),
which is in the range of i. It follows that (kU ○ jE)′′κ+ ⊆ i′′κ+ ⊆ A. Since kU(Ā) = A,
we conclude that j′′Eκ+ ⊆ k−1

U [A] ⊆ Ā. ∎
The proof of the following lemma, which was cited in the previous proposition,

appears in [18, Lemma 2.9].
Lemma 5.3 Suppose E is an extender of length ρ with crit( jE) = κ. If κρ ⊆ ME , then
κME ⊆ ME . In particular, if E is the extender of length ρ derived from an elementary
embedding j ∶ V → M where κM ⊆ M, cf(ρ) > κ, and M ⊧ ρκ = ρ, then κME ⊆ ME .

Let us turn to the proof of Main Theorem 1.2.

12For a model M, HullM(A) denotes the usual closure of the class A ⊆ M under the Skolem functions
of M, which in the case of an ultrapower simplifies to HullMU (A) = { jU( f )(ξ) ∣ f ∶ κ→ V , ξ ∈ A}.
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Theorem 5.4 Suppose that κ is a non-Galvin cardinal. Then there exists a κ-complete
ultrafilter U over κ such that ¬Gal(U ,κ,κ+). In particular, if 2κ = κ+ then U is non-
Galvin.

Proof We use the notation of 5.1. As before, we can fix an ordinal ν < j(κ) such
that for some sequence A⃗ = ⟨Aα⟩α<κ such that A = j(A⃗)ν and for some sequence κ⃗ =
⟨κα⟩α<κ, i(κ) = j(κ⃗)ν . Let U = D( j, ν) be the ultrafilter on κ derived from j using ν.
Since crit( j) = κ, U is a κ-complete ultrafilter over κ. We will show ¬Gal(U ,κ,κ+).

Let ⟨ fξ⟩ξ<κ+ denote the sequence of canonical functions on κ (see Definition 2.16).
For ξ < κ+, define

Bξ = {α < κ ∶ fξ(κα) ∈ Aα}.

Note that Bξ ∈ U since

j(Bξ) = {α < j(κ) ∶ j( fξ)( j(κ⃗)α) ∈ j(A⃗)α}

and

j( fξ)( j(κ⃗)ν) = j( fξ)(i(κ)) = k(i( fξ))(i(κ)) = i(ξ) ∈ A = j(A⃗)ν .

The point here is that in N, g⃗ = i( f⃗ ) is the sequence of canonical functions on i(κ),
and since crit(k) = i(κ), by Proposition 2.17, for any η < i(κ+), k(gη)(i(κ)) = η. The
fact that k(i( fξ))(i(κ)) = i(ξ) follows from this observation when η = i(ξ) (and thus
i( fξ) = g i(ξ)).

Suppose σ ⊆ κ+ and ⋂ξ∈σ Bξ ∈ U . We must show that ∣σ ∣ < κ. Since ∣A∣M < i(κ),
it suffices to show that i(σ) ⊆ A: then ot(i(σ)) < ot(A) < i(κ), and hence N ⊧
ot(i(σ)) < i(κ), which by elementarity implies ot(σ) < κ.

The proof that i(σ) ⊆ A is similar to the calculation in the previous paragraph:
Since ⋂ξ∈σ Bξ ∈ U , for all η ∈ j(σ), j( f⃗ )η(i(κ)) ∈ A. Fix ξ ∈ i(σ), and we will prove
that ξ ∈ A. We have k(ξ) ∈ j(σ), so j( f⃗ )k(ξ)(i(κ)) ∈ A. But j( f⃗ )k(ξ) = k(gξ), hence
k(gξ)(i(κ)) = ξ. It follows that ξ ∈ A. ∎

Remark 5.5. Note that in condition (4) the Definition 5.1 of non-Galvin cardinal
it is important to work with κ+ instead of 2κ for there are no canonical functions in
general up to 2κ.

Remark 5.6. As proven in [2], if κ is κ-compact then there are 22κ-many κ-complete
non-Galvin ultrafilters that extend the closed unbounded filter on κ. On the other
hand, assuming the Ultrapower Axiom and that every irreducible ultrafilter is Dodd
sound, the least non-Galvin cardinal carries a unique non-Galvin ultrafilter that
extends the closed unbounded filter on κ. Under these assumptions, if κ carries
distinct non-Galvin ultrafilters extending the closed unbounded filter, then the Keto-
nen least distinct such ultrafilters are precisely the least two extensions of the closed
unbounded filter concentrating on singular cardinals (see the proof of Theorem 6.6).
These ultrafilters are irreducible (and in fact are Mitchell points) by [17, Corollary
8.2.13 and Proposition 8.3.39]. Therefore D0 ⊲ D1, so κ carries a non-Galvin ultrafilter
in Ult(V , D1), and so κ is not the least non-Galvin cardinal.

As a first upper bound for the non-Galvin cardinals we have the following.
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Theorem 5.7 If κ is κ-compact, then κ is a non-Galvin cardinal.

Proof Let U be a normal ultrafilter on κ. Since ∣PMU (Pκ(κ+))∣ = 2κ, there is a
transitive model M with

PMU (Pκ(κ+)) ⊆ M , ∣M∣ = 2κ .

By Hayut’s result [19, Corollary 6], there is a transitive model N, an elementary
embedding j0∶M → N , with crit( j0) = κ along with some s ∈ N , s ⊆ j0(κ)+ such that
j′′0κ+ ⊆ s with ∣s∣N < j0(κ). Define W the κ-complete ultrafilter on Pκ(κ+) derived
from j0 and s. Note that W is fine since j′′0κ+ ⊆ s and it measures all the subsets of
Pκ(κ+) in MU . Let jW∶MU → MW be the ultrapower of MU by W defined in V, and
j∶V → MW be the embedding j = jW ○ jU . Let λ = jW(κ) < j(κ), and let E be the
extender of length λ derived from j.

Claim 5.8 E is also the extender of length λ derived from jW . ∎

Proof For any X ⊆ κ, we have that

j(X) ∩ λ = jW( jU(X)) ∩ jW(κ) = jW( jU(X) ∩ κ) = jW(X).

Thus for all α < λ, α ∈ j(X) iff α ∈ jW(X). ∎

Finally, let i∶V → NE be the ultrapower of V by E and A = [id]W ∈ MW. We claim
that i , j, A witness that κ is a non-Galvin cardinal. Indeed, i(κ) ≥ λ. To see that
i(κ) ≤ λ, we compute the ultrapower i′ of MU by E, and since MU is closed under κ-
sequences, it follows that i(κ) = i′(κ). By the previous claim, jW also factors through
i′ and thus jW(κ) = k′(i′(κ)) ≥ i′(κ) = i(κ), as wanted.

By the usual argument about the derived extender, the factor map k∶NE → MW

has critical point i(κ) (see, for example, [21, Lemma 20.29(ii)]). Also, MW ⊧ ∣A∣ <
jW(κ) = i(κ) and since W is fine, j′′Wκ+ ⊆ A.

Claim 5.9 For every α < κ+, i(α) = jW(α).

Proof Note that i(U) ∈ NE is a normal measure on i(κ), let X ∈ i(U) be any
set, k(X) ∈ j(U) = jW( jU(U)). Note that jW( jU(U)) is generated by j′′W jU(U) by
Theorem 6 and Corollary 8 of [11, Section 3]. Therefore, there is a set Y ∈ jU(U) such
that jW(Y) ⊆ k(X). Since U is normal, there is a set A ∈ U such that jU(A) ⊆∗ Y
and j(A) ⊆∗ k(X), which in turn implies that i(A) ⊆∗ X. Now we note that i(A) ∈ R,
where R is the NE -ultrafilter (external) derived from k and jW(κ). We conclude that
i(U) ⊆ R and thus that i(U) = R (as two NE -ultrafilters). So k factors through j i(U)
and k′∶M i(U) → MW has critical point > jW(κ) (since k′( jW(κ)) = k′([id]i(U)) =
k(id)( jW(κ)) = jW(κ)). To conclude the claim, let α < κ+ and f ∶κ→ κ be the
canonical function such that jU( f )(κ) = α, then

jW(α) = jW( jU( f )(κ)) = j( f )( jW(κ)) = k(i( f ))( jW(κ)).

By elementarity, i( f )∶ i(κ) → i(κ) is the canonical function for i(α). Since j i(U) is
the ultrapower by a normal ultrafilter over jW(κ), we conclude that

k(i( f ))( jW( f )) = k′( j i(U)(i( f )))( jW(κ)) = k′(i(α)) = i(α)

as desired. ∎

https://doi.org/10.4153/S0008414X2400052X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400052X


24 T. Benhamou and G. Goldberg

κ is superstrong with an inaccessible target (which simply means that there is an
elementary j ∶ V → M such that crit( j) = κ, Vj(κ) ⊆ M, and j(κ) is inaccessible in V),
then by the argument of 4.1, κ is a non-Galvin cardinal. Moreover, any subcompact
cardinal is a limit of cardinals that are superstrong with an inaccessible target.

Hayut proved [19] that κ+-Π1
1-subcompactness implies κ-compactness and he

conjectures that these notions are equiconsistent.13 So morally speaking, κ-compact
cardinals should be strictly greater than non-Galvin ultrafilters in the large cardinal
hierarchy. In the next section, we will see that at least under UA this is the case. Finally,
we establish the connection between Dodd soundness and non-Galvin cardinals.

Lemma 5.10 Suppose that U is a κ-complete non p-point λ-sound ultrafilter, and let
E be the (κ, λ)-extender derived from jU and λ = sup{ jU( f )(κ) ∣ f ∶κ→ κ}. Then
j′′E 2κ ∈ MU and moreover jU , jE , kE and j′′E 2κ witness that κ is a non-Galvin cardinal.

Proof Derive the extender E from λ, i.e., E = ⟨Ea ∣ a ∈ [λ]<ω⟩, where Ea is an
ultrafilter over [κ]∣a∣ defined by

Ea = {X ⊆ [κ]∣a∣ ∣ a ∈ j(X)}.

By λ-soundness of U, E ∈ MU and we let i = jE ∶M → ME . Note that j′′E P(κ) can be
calculated in MU and therefore j′′E P(κ) ∈ MU . Also, note that jE(κ) ≥ λ and since E ∈
MU , we must have that for every a ∈ [λ]<ω , jEa(κ) < λ hence jE(κ) ≤ λ. We conclude
that the critical point of the factor map kE ∶ME → MU is λ = jE(κ). Finally, observe
that j′′E 2κ ∈ MU . To see this, simply note that jE ↾ On = ( jE)MU ↾ On14 and therefore
j′′E 2κ = ( jE)MU ′′2κ ∈ MU . ∎

6 In the canonical inner models

In this section, we work within the framework of UA and “every irreducible is Dodd
sound.” By results of Goldberg [17] and Schlutzenberg [34], these assumptions hold in
the extender models L[E]. Our first goal of this section is to prove Main Theorem 1.3
regarding the characterization of σ-complete non-Galvin ultrafilters. To do that, we
will need some preparatory results.

Theorem 6.1 (UA) Suppose κ is either successor or strongly inaccessible and U is a κ-
irreducible non-κ-complete ultrafilter on κ. Then ♢−thin(U).

Proof By [17, Theorems 8.2.22 and 8.2.23], MU is closed under <κ-sequences and
every A ∈ [MU]κ is covered by some B ∈ MU such that ∣B∣MU = κ. By the assumptions
of the theorem, U is not κ-complete and therefore crit( jU) < κ. Let Eκ

ω = {ν < κ ∣
cf(ν) = ω}, define the function g ∶ Eκ

ω → κ by g(ν) = ρ for the minimal measurable
cardinal ρ such that jU(ρ) > ν. By [17, Lemma 4.2.36], g(ν) is well defined and g(ν) ≤
ν. Since cf(ν) = ω, g(ν) < ν. By Födor, there is an unbounded S ⊆ Eκ

ω and κ∗ < κ such
that for every ν ∈ S, g(ν) = κ∗. In particular, jU(κ∗) ≥ κ. If jU(κ∗) > κ, let γ = κ∗,

13Since by the results of [29], if there is a weakly iterable premouse with a κ-compact cardinal then
in that inner model κ is also κ+-Π1

1-subcompact cardinal.
14This is since MU is closed under κ-sequences and thus the class of functions from [κ]<ω to the

ordinals is the same from the point of view of V and MU . Now both jE ↾ On and ( jE)
MU ↾ On are

completely determined by those functions.
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otherwise κ is a limit of MU -strongly inaccessible cardinals. Let κ∗ < γ < κ be the
least strongly inaccessible cardinal. In any case, jU(γ) > κ and since MU is closed
under < κ-sequences, γ is a strongly inaccessible cardinal in V. Therefore, j′′U Pκ(κ) is
covered by a set B ∈ MU of cardinality less than jU(γ). Let A = {⋃ S ∶ S ∈ [B]κ ∩ MU}.
Then ∣A∣MU < jU(γ), and for any S ⊆ κ, jU(S) ∩ κ∗ ∈ A where κ∗ = sup j′′Uκ ≥ jU(γ).
Note that κ∗ > jU( f )(α) for any f ∶ κ→ κ and α < κ∗ and, in particular, there is
no function f ∶ κ→ κ such that jU( f )(∣A∣MU ) ≥ κ∗. We conclude that A witnesses
♢−thin(U). ∎

Corollary 6.2 (UA) If U is a σ-complete ultrafilter over κ+ then ♢−thin(U) and, in
particular, U is non-Galvin.
Proof By [17, Lemma 8.2.24], U = ∑D ⟨Wξ⟩ξ<λD

, where D is an ultrafilter over λD <
κ+, ⟨Wξ⟩ξ<λD

is discrete and MD ⊧ W = [ξ ↦ Wξ]D is jD(κ+)-irreducible which
cannot be jD(κ+)-complete. By the previous theorem, MD ⊧ ♢−thin(W). Therefore,
for D-almost all ξ, ♢−thin(Wξ) which by Lemma 4.11, implies that ♢−thin(∑D ⟨Wξ⟩ξ<λD

)
holds. ∎

Theorem 6.3 (UA) Assume that every irreducible is Dodd sound. If W is a κ-complete
ultrafilter over κ, then the following are equivalent:
(1) W has the Galvin property.
(2) ¬♢−thin(W).
(3) W is an n-fold sum of κ-complete p-points over κ
Proof Let W be κ-complete ultrafilter. If W is an n-fold sum of κ-complete p-
points then by Theorem 2.10, W has the Galvin property which by Theorem 4.9
implies ¬♢−thin(W). Let W be a κ-complete ultrafilter over κ which is not an n-fold
sum of κ-complete p-points. Let U ≤RF W be irreducible, which exists since W is
nontrivial. If U is not a p-point then by the assumptions of the theorem, U is a non
p-point ultrafilter Dodd sound over κ and therefore by Lemma 3.8, ♢∗thin(U) holds
and thus also ♢−thin(U). Since U ≤RK W , Lemma 4.10 applies, so we can conclude
that ♢−thin(W). Hence, we may restrict ourselves to the case where there is a p-point
RF-below W (and this p-point must be κ-complete). By [17, Theorem 5.3.14], there is
a ≤RF -maximal U ≤RF W that is an n-fold sum of κ-complete p-points over κ. Let
⟨Wξ⟩ξ<κ be a discrete sequence with W = U- lim ⟨Wξ⟩ξ<κ. By the choice of U, the
embedding jU ∶ V → MU can be factored as a finite iterated ultrapower

V = M0
j0,1/→ M1

j1,2/→ ⋅ ⋅ ⋅
jn−1,n/→ Mn = MU ,

where in Mk , jk ,k+1 is the ultrapower embedding associated with a κk-complete p-
point Uk over κk and κk = j0,k(κ). Also, denote by Zk the ultrafilter associated with
j0,k ; i.e.,

Zk = U⌢0 U⌢1 ⋅ ⋅ ⋅ ⌢U⌢k−2Uk−1 .

For this notation, see Definition 2.6. Since Wξ is nonprincipal, there is an irreducible
ultrafilter Dξ ≤RF Wξ . Suppose that Dξ is ρξ-complete uniform ultrafilter over δξ
for some ρξ ≤ δξ ≤ κ. Note that ∑U Dξ ≤RF W . Let m be the least such that κm−1 <
δ∗ ∶= [ξ ↦ δξ]U ≤ κm , where κ−1 is defined to be 0. Let D∗ = [ξ ↦ Dξ]U is an MU -
ultrafilter over δ∗. Note that D∗ ∈ Mm since Mn ⊆ Mm and since crit( jm ,n) = κm it is
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an Mm-ultrafilter. Moreover, Mκm
n ∩ Mm = Mκm

n ∩ Mn and therefore ( jD∗)Mm ↾ Mn =
( jD∗)Mn . By elementarity of jMm

D∗ , jMn
D∗ ○ jm ,n = jMm

D∗ ( jm ,n) ○ jMm
D∗ and we have that

jMn
D∗ ○ jU = jMm

D∗ ( jm ,n) ○ jMm
D∗ ○ j0,m .(6.1)

Claim 6.4 If Mm ⊧ D∗ is not κm-complete, then ♢−thin(W) holds. ∎

Proof of claim. Since Dξ is irreducible, by our assumption, it is a non κ-complete
Dodd sound ultrafilter. Note that in this case m > 0, since if m = 0, the D∗ must be
κ-complete. Let us split unto cases:

Case 1: If δ∗ = κm , then D∗ is a uniform ultrafilter on κm and it must be κm-
irreducible. By Theorem 6.1, Mm ⊧ ♢−thin(D∗) holds. By Lemma 3.15, we
conclude that ♢−thin(Z⌢m D∗) holds in V (see Definition 2.6 for this notation),
and hence by Lemma 4.10 ♢−thin(W) follows as well.

Case 2: Assume that δ∗ < κm .
Case 2(b): Assume crit( jMm

D∗ ) > κm−1. Note that the two-step iteration ultra-
power jMm

D∗ ○ jUm−1 is given by a κm−1-complete p-point on κm−1 in
Mm (see [1, Lemma 1.11]), which contradicts the maximality of U.

Case 2(c): Assume crit( jMm
D∗ ) ≤ κm−1 < δ∗ < κm . Since D∗ is an irreducible

uniform ultrafilter over λD∗ ≥ κ+m−1, D∗ is κ+m−1-irreducible and
therefore by [17, Theorem 8.2.22], MD∗ is closed under κm−1-
sequences which in turn implies that P(κm−1) ⊆ MD∗ . By Lemma
[17, Lemma 4.2.36], jMm

D∗ (κm−1) > κm−1. Let λ = jMm
D∗ (κm−1).

We claim that Um−1
⌢D∗ is λ-sound and that for every function

f ∶ κm−1 → κm−1, jUm−1
⌢D∗( f )(κm−1) < λ which by Corollary 4.8

implies that♢−thin(Um−1
⌢D∗). Indeed, for any function f ∶ κm−1 →

κm−1, since jMm
D∗ (κm−1) > κm−1, jMm

D∗ ( jUm−1( f ))(κm−1) = jMm
D∗

( jUm−1( f ) ↾ κm−1)(κm−1) = jMm
D∗ ( f )(κm−1), and jMm

D∗ ( f ) ∶ jMm
D∗

(κm−1) → jMm
D∗ (κm−1). Hence jMm

D∗ ( f )(κm−1) < jMm
D∗ (κm−1).

To see that Um−1
⌢D∗ is λ-sound, derive the (κm−1 , λ)-extender

E from jMm
D∗ inside Mm . Note that E is also the (κm−1 , λ)-extender

derived from jD∗ ○ jm−1,m since for α < jMm
D∗ (κm−1), we have that

α ∈ jMm
D∗ ( jm−1,m(X)) ∩ jMm

D∗ (κm−1) iff α ∈ jMm
D∗ ( jm−1,m(X) ∩

κm−1) iff α ∈ jMm
D∗ (X).

Now, D∗ is a uniform ultrafilter over δ∗ > κm−1, hence we
have that jMm

D∗ (κ) < [id]D∗ and since D∗ is Dodd sound we
have that E ∈ (MD∗)Mm . In particular, { jE(X) ∣ X ⊆ κm−1} ∈
(MD∗)Mm , where jE ∶ Mm−1 → ME . Let kE ∶ ME → (MD∗)Mm be
the factor map. It follows that crit(kE) = jMm

D∗ (κm−1). Finally, note
that jUm−1

⌢D∗(X) ∩ jMm
D∗ (κm−1) = jE(X), hence

{ jUm−1
⌢D∗(X) ∩ jMm

D∗ (κm−1) ∣ X ⊆ κm−1} ∈ (MD∗)Mm

as desired. We conclude that Mm−1 ⊧ ♢−thin(Um−1
⌢D∗). By

Lemma 4.12 ♢−thin(Zm−1
⌢Um−1

⌢D∗), and this ultrafilter is Rudin–
Keisler below W. ∎
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By the claim, we may assume that for Mm ⊧ D∗ is κm-complete over κm . It follows
again that in Mm , D∗ cannot be a p-point, as this would contradict the maximality
of U, recalling that ∑U Dξ ≤RF W and that this ultrafilter ∑U Dξ can be represented
as an (n + 1)-fold sum of κ-complete p-points by (6.1). Since D∗ is irreducible in Mm ,
Mm ⊧ D∗ is Dodd-sound and non p-point. By Lemma 3.8 Mm ⊧ ♢∗thin(D∗) holds.
In particular, ♢−thin(D∗) holds. In any case, Lemma 3.15 applies to conclude that
♢−thin(Zm

⌢D∗) holds, and since this ultrafilter is RK-below W, Lemma 4.10 ensures
that ♢−thin(W) holds. ∎

Theorem 6.5 (UA) Assume that every irreducible ultrafilter is Dodd sound. For every
σ-complete ultrafilter W over κ, the following are equivalent:
(1) W has the Galvin property.
(2) ¬♢−thin(W).
(3) W is the D-sum of n-fold sums of κ-complete p-points over κ and D is a σ-complete

ultrafilter on λ < κ.
Proof The proof that (3) ⇒ (1) ⇒ (2) is in the previous theorem. It remains to
prove that ¬♢−thin(W) implies that W is a D-sum of n-fold sums of κ-complete p-
points over κ. Equivalently, let us prove the contrapositive, suppose that W is a σ-
complete ultrafilter over κ which is not an n-fold sum of p-points. Now, let us move
to the general case, suppose that W is just σ-complete. By [17, Lemma 8.2.24], there is
a countably complete ultrafilter D ≤RF W on λ < κ such that if W = D- lim ⟨Wξ⟩ξ<λ ,
then MD ⊧ Z = [ξ ↦ Wξ]D is jD(κ)-irreducible. If Z is not jD(κ)-complete, then by
Theorem 6.1. MD ⊧ ♢−thin(Z) and therefore W = D- lim ⟨Wξ⟩ξ<λ will also satisfy ♢−thin
by Lemma 4.11. If Z is jD(κ)-complete, then Z is a jD(κ)-complete ultrafilter which
is not a D′-sum of n-fold sums of p-points and we fall into the first case where we
assumed that W was κ-complete (inside MD and replacing κ by jD(κ)). We conclude
that ♢−thin(Z) holds and again, it follows from that ♢−thin(W) holds. ∎

Next, we turn to the proof of Main Theorem 1.5.

Theorem 6.6 (UA) Assume that every irreducible ultrafilter is Dodd sound. Suppose
κ is an uncountable cardinal that carries a κ-complete non-Galvin ultrafilter. Then the
Ketonen least non-Galvinκ-complete ultrafilter onκ extends the closed unbounded filter.
Proof We claim that in this context, the Ketonen least non-Galvin ultrafilter U
is equal to the Ketonen least ultrafilter W on a regular cardinal δ extending the
closed unbounded filter and concentrating on singular cardinals. First, note that W
is irreducible by [17, Corollary 8.2.12].

Claim 6.7 W is δ-complete ∎

Proof of Claim 6.7. Suppose toward a contradiction that W is not δ-complete, and
let μ = crit( jW) < δ. Since W is Dodd sound, jW is a 2<δ-supercompact embedding
(see [17, Lemma 4.3.4]), and so jW witnesses that μ is 2<δ-supercompact. In particular,
μ is 2μ-supercompact, and therefore every μ-complete filter on μ extends to a
μ-complete ultrafilter. This yields a μ-complete ultrafilter W ′ on μ extending the
closed unbounded filter on μ adjoined with the set of singular cardinals less than
μ. Since μ < δ, it follows that W ′ <k W (see [17, Lemma 3.3.15]) contradicting the
minimality of W. ∎
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End of proof of Theorem 6.6. Note that W is not a p-point since W extends the closed
unbounded filter but is not normal; therefore by Corollary 3.11, W is non-Galvin, and
hence U is below W in the Ketonen order.

Conversely, since U is the Ketonen least non-Galvin ultrafilter, by Theorem 1.2, U is
irreducible and not a p-point. Without loss of generality, we can assume that U is Dodd
sound. Moreover, U is a γ-complete ultrafilter on γ for some measurable cardinal γ.

Let λ = sup{ jU( f )(γ) ∣ f ∶ γ → γ}. Since U is not a p-point, λ ≤ [id]U . Since U is
Dodd sound, { jU(A) ∩ λ ∶ A ⊆ γ} ∈ MU , which implies

{ jU( f ) ∩ (λ × λ) ∣ f ∶ γ → γ} ∈ MU

and hence { jU( f )(γ) ∣ f ∶ γ → γ} ∈ MU , which implies that MU satisfies cf(λ) ≤ 2γ .
Let D be the ultrafilter on γ derived from jU using λ. Then D is below U in the

Ketonen order. Since cf MU (λ) ≤ 2γ , D concentrates on singular cardinals. Moreover,
for any f ∈ γγ , λ is closed under jU( f ) – that is, jU( f )[λ] ⊆ λ – so D concentrates
on the set of closure points of f. It follows that D extends the closed unbounded filter.
Therefore, W is below D in the Ketonen order, so by the transitivity of the Ketonen
order, W is below U in the Ketonen order. It follows that U = W as claimed. This
implies that U extends the club filter, which proves the theorem.

Let us turn our attention to the non-Galvin cardinals. Main Theorem 1.4, which
we now prove, shows that the existence of a non-Galvin cardinal is exactly the large
cardinal assumption needed to conclude the existence of non-Galvin ultrafilters in an
inner model.
Theorem 6.8 (UA) Assume that every irreducible ultrafilter is Dodd sound. If there is
a κ-complete non-Galvin ultrafilter on an uncountable cardinal κ, then there is a non-
Galvin cardinal.
Proof Let W be a non-Galvin ultrafilter on κ. By Theorem 1.5, W is Rudin–Keisler
equivalent to an n-fold sum of irreducible ultrafilters. By Theorem 1.2, it is impossible
that all these ultrafilters are p-points (even on measure one sets) so κ must carry an
irreducible ultrafilter U which is not a p-point. By our assumption, every irreducible
is Dodd sound. Since U is a κ-complete, non p-point, Dodd sound ultrafilter, Lemma
5.10 applies, and we conclude that κ is a non-Galvin cardinal. ∎

Proposition 6.9 (UA) If κ is κ-compact and no cardinal ν < κ is κ-supercompact, then
κ a limit of non-Galvin cardinals.
Proof Since κ is κ-compact, a theorem of Kunen [26, Lemma 3] implies that for
every ξ < (2κ)+, there is a countably complete ultrafilter U on κ such that jU(ξ) >
ξ. Let Uξ denote the Ketonen least such ultrafilter. By [17, Lemma 7.4.34] and [17,
Proposition 8.3.39], Uξ is a Mitchell point: for any ultrafilter W <k U , W lies below U
in the Mitchell order.

Since κ is strongly inaccessible, there is an ω-club C ⊆ (2κ)+ such that for all ξ ∈
C, for all countably complete ultrafilters D of rank less than ξ in the Ketonen order,
jD(ξ) = ξ. For ξ ∈ C, Uξ is a uniform irreducible ultrafilter on κ, and so it follows
from [17, Theorem 8.2.23] that Uξ witnesses crit( jUξ) is <κ-supercompact. Since κ is
measurable, it follows that crit( jUξ) is κ-supercompact, and so by the assumptions of
the proposition, crit( jUξ) = κ. In other words, Uξ is κ-complete.
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Now, let W witness that κ is a non-Galvin cardinal. Fix ξ ∈ C larger than the
Ketonen rank of W. Then W is below Uξ in the Mitchell order, and so κ is non-Galvin
in MUξ . It follows that κ is a limit of non-Galvin cardinals. ∎

In particular, the least cardinal κ that is κ-compact is larger than the least non-
Galvin cardinal assuming UA.15

7 Open problems

Question 7.1. Is it consistent that there is a κ-complete uniform ultrafilter U over κ
satisfying the Galvin property that is not an n-fold sum of κ-complete p-points over κ?

Recently, Gitik gave a positive answer to this question, thus our characterization of
ultrafilters with the Galvin property cannot be proved in ZFC. The following question
seems more plausible for a positive answer in ZFC.

Question 7.2. Is every uniform κ-complete ultrafilter U over κ+ non-Galvin, i.e.,
¬Gal(U ,κ+,κ++) holds?

Under UA, the answer is positive by Corollary 6.2.

Question 7.3. Does a non-Galvin cardinal entail the existence of a non-Galvin ultra-
filter which extends the club filter?

By Main Theorem 1.2, a non-Galvin cardinal entails the existence of a non-Galvin
ultrafilter. Assuming UA and that every irreducible is Dodd sound, Main Theorem 1.5
shows that a non-Galvin cardinal also entails the existence of κ-complete non-Galvin
ultrafilter which extends the club filter.

Question 7.4. Does every fine normal ultrafilter over Pκ(κ+) satisfy Gal(U ,κ, 2κ
+

)?

The answer would be interesting even under UA. This is the first step toward
answering the more general problem.

Question 7.5. Characterize the Tukey-top ultrafilters on κ with respect to λ < κ
assuming UA plus every irreducible is Dodd sound.

Question 7.6. Is there a similar characterization under UA for σ-complete ultrafilters
with the Galvin property over singular cardinals?

We believe that such a characterization exists and that similar methods to those
appearing in this paper should be useful.

In the absence of GCH, we have the following questions which are open.

Question 7.7. If we replace i′′κ+ by i′′2κ in the definition of non-Galvin cardinal, do
we get a κ-complete ultrafilter such that ¬Gal(U ,κ, 2κ)?

15It should be provable from UA that any cardinal κ that is κ-compact is a limit of non-Galvin
cardinals. Here, there are two cases. If κ is a limit of cardinals γ that are κ-compact, then each of these
cardinals γ is γ-compact, soκ is a limit of non-Galvin cardinals. Ifκ is not a limit ofκ-compact cardinals,
one would like to show, as above, that there is a non-Galvin ultrafilter W on κ that is below some κ-
complete ultrafilter on κ in the Mitchell order. The issue is that it is unclear how to show that the Mitchell
order on κ-complete ultrafilters has rank (2κ)+ if some ν < κ is κ-supercompact.

https://doi.org/10.4153/S0008414X2400052X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400052X


30 T. Benhamou and G. Goldberg

More generally:

Question 7.8. Is it consistent that there is a κ-complete ultrafilter U such that
¬Gal(U ,κ,κ+) but Gal(U ,κ, 2κ)?

The result of this paper resolves these two questions under UA plus every irre-
ducible is Dodd sound.

The following two questions address the assumptions in the main theorems of this
paper.

Question 7.9. Is it consistent that there is a cardinal κ which is κ+-supercompact and
that every irreducible ultrafilter is Dodd sound?

Question 7.10. Does UA imply that every irreducible ultrafilter is Rudin–Keisler
equivalent to a Dodd sound ultrafilter?

Let us conclude this paper with a diamond-like principle which is a reasonable
candidate to be equivalent to non-Galvin ultrafilters. Such a principle would be
valuable as there is no known formulation of the Galvin property in terms of the
ultrapower. This would be also interesting from the point of view of the Tukey order
since this order involves functions which typically have domains of size 2κ, and thus
not available in the ultrapower.

Definition 7.11. We say that ♢−par(U) holds if and only if there is A ∈ MU , λ and
⟨X i⟩i<2κ ⊆ P(κ) such that:
(1) { jU(X i) ∩ λ ∣ i < 2κ} ⊆ A.
(2) There is no function f ∶ κ→ κ such that jU( f )(∣A∣MU ) ≥ λ.

The argument of Theorem 4.9 can be adjusted to conclude that ♢−par(U) implies
that U is non-Galvin.

Question 7.12. Is ♢−par(U) equivalent to U being non-Galvin?

The next question seeks an analogous result on ω to the one of this paper.

Question 7.13. Is it consistent that every ultrafilter on ω which is not Tukey-top is an
n-fold sum of p-points?
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