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Abstract. Astronomers have constructed models of globular clusters for over 100 years. These
models mainly fall into two categories: (i) static models, such as King’s model and its variants,
and (ii) evolutionary models. Most attention has been given to static models, which are used
to estimate mass-to-light ratios and mass segregation, and to combine data from proper mo-
tions and radial velocities. Evolutionary models have been developed for a few objects using
the gaseous model, the Fokker-Planck model, Monte Carlo models and N -body models. These
models have had a significant role in the search for massive black holes in globular clusters, for
example.

In this presentation the problems associated with these various techniques will be summarised,
and then we shall describe new work with Giersz’s Monte Carlo code, which has been enhanced
recently to include the stellar evolution of single and binary stars. We describe in particular
recent attempts to model the nearby globular cluster M4, including predictions on the spatial
distribution of binary stars and their semi-major axis distribution, to illustrate the effects of
about 12 Gyr of dynamical evolution. We also discuss work on an approximate way of predicting
the “initial” conditions for such modelling.

Keywords. methods: numerical, globular clusters: general, globular clusters: individual (M4)

1. Introduction
1.1. Some astrophysical questions

There are many reasons for constructing a dynamical model of a globular cluster, but
they fall into two broad categories. First there are problems that can be tackled by
constructing static (equilibrium) models, such as

(a) Inferring the mass from the surface brightness profile, radial velocities, proper
motions and mass functions. In this way one can estimate the total mass of stars below
the observational limit, such as faint white dwarfs (e.g. Drukier et al. 1988)

(b) Inferring the global mass function from local mass functions (e.g. Richer et al.
2004): then one can address the question of whether this is the same for all clusters.

(c) Measuring cluster distances by comparison of radial velocities and proper motions:
the model is used to correct for rotation, or to link the different locations and stellar
components which are observed by the different techniques (e.g. van de Ven et al. 2006).

Then there is a second range of questions which require dynamic evolutionary models,
i.e. questions such as

(a) Inferring the primordial mass function from local, present-day mass functions: the
model is used to correct for preferential escape of low-mass stars (e.g. Baumgardt &
Makino 2003).

(b) Inferring primordial parameters of the binaries from their present-day statistical
properties: primordial abundance, period distribution, etc (e.g. Kroupa et al. 2001)
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(c) Determining the effect of dynamics on the estimation of mass through the virial
theorem, which is affected by mass segregation (Fleck et al. 2006)
Note that these last few references do not deal with specific objects (which is the focus
of the rest of this review) but with general trends.

This paper begins with a review of the methods and observational constraints which
have been used to construct models of individual globular clusters, often with a view
to answering the above types of question. Then we focus on one particular method, the
Monte Carlo method, and its application to the nearby globular cluster M4.

1.2. Methods and constraints
1.2.1. The methods

A number of techniques have been used to construct static models, to answer questions
of the first type:

(a) Plummer’s model (Plummer 1911)
(b) King’s model (King 1966; Peterson & King 1975)
(c) Anisotropic models (Michie & Bodenheimer 1963)
(d) Multi-mass models (Gunn & Griffin 1979; Pryor et al. 1986; Dubath et al. 1990)
(e) Non-parametric models (Gebhardt & Fischer 1995)
(f) Schwarzschild’s method (van de Ven et al. 2006)
(g) Jeans’ equations (Leonard et al. 1992)

Even this list may not be exhaustive.
Much less work has been done on dynamical evolutionary models of specific globular

clusters, but the methods include
(a) Gas/fluid models (Angeletti et al. 1980 [M3])
(b) Fokker-Planck models (Cohn and co-workers: Grabhorn et al. 1992 [N6624], Dull

et al. 1997 [M15]; Drukier 1993, 1995 [N6397]; Phinney 1993 [M15])
(c) Monte Carlo models (Giersz & Heggie 2003 [ω Cen])
(d) N -body models
The last of these should really not be on this list. Though it should be the method

of choice, it has not been used for the purposes which are the focus of this paper. An
example is the modelling of M15 by Baumgardt et al. (2003), who constructed a small
version which, when scaled up, corresponded approximately to the conditions expected
for M15. The difficulty is that unscaled N -body models are practically limited to N of
order 105 at present (e.g. Baumgardt & Makino 2003; Hurley 2007), whereas the median
for the globular clusters at the present time is about 5× 105. Though it might be hoped
that the gap would be bridged by the next generation of computers, it must be recognised
that all globular clusters at the present day have lost substantial numbers of stars, and
the primordial median must have been higher. Note that it has become possible only
relatively recently to carry out full simulations of open star clusters. The initial mass of
M67, for instance, is estimated at about 19 000 M�, i.e. about 10 times its present mass,
and this simulation, with a realistic complement of primordial binaries, took of order 1
month (Hurley et al. 2005).

1.2.2. The observational constraints
Whichever method is chosen to model a globular cluster, there are a number of obser-

vational constraints to be satisfied. In historical order of first use we have
(a) Surface brightness and/or star counts, starting with Von Zeipel (1908);
(b) Radial velocities, whether central averaged values (Illingworth 1976) or radial ve-

locities of individual stars (Gunn & Griffin 1979)
(c) Pulsar accelerations (Phinney 1993; Grabhorn 1993)
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(d) Deep luminosity/mass functions, starting essentially with the advent of studies by
several authors using HST (1995)

(e) Accurate proper motions (van den Bosch et al. 2006). (We refer here to models
built to satisfy constraints imposed by observations of internal proper motions, and not
to the use of proper motions to establish membership.)

1.2.3. The Monte Carlo Model
This paper focuses on an application of the Monte Carlo code developed essentially by

Giersz (1998, 2001, 2006). In this approach we assume spherical symmetry and dynamic
equilibrium, and characterise each star by its energy E and angular momentum J . The
code repeatedly alters E and J to mimic the effects of gravitational encounters, using
the theory of relaxation. The same theory underpins Fokker-Planck codes, and the ba-
sic Monte Carlo code provides essentially a Monte Carlo solution of the Fokker-Planck
equation.

The Monte Carlo code is rather suitable for the addition of a number of other process,
chiefly:

(a) The galactic tidal field, which is treated as a cutoff
(b) Binaries, whose interactions are treated using cross sections (from Spitzer (1987)

for interactions with single stars, and expressions based on Mikkola (1983, 1984a,b) for
interactions between binaries)

(c) Stellar evolution of single stars (Hurley et al. 2000) and binary stars (Hurley et al.
2002).
Each of these requires some comment, though further details are given by Giersz & Heggie
in this volume, and in Sec. 4 below.

(a) There are significant differences between a tidal field and a tidal cutoff, as these
lead to somewhat different scalings of the dissolution time with N (Baumgardt 2001).
We have attempted to mimic this with a mass-dependent lowering of the escape energy.

(b) The Monte Carlo code described here has no triples, and so hierarchical triples
(which are a common product of binary-binary encounters) have to be bypassed. Fur-
thermore, the use of cross sections hinders the inclusion of star-star collisions during 3-
and 4-body encounters. Finally, the cross sections are not well known for unequal masses.

(c) Stellar evolution is implemented via the McScatter interface (Heggie et al. 2006).
Besides the stellar evolution packages of Hurley et al. (referenced above) it also interfaces
to the stellar evolution package SeBa in starlab (Portegies Zwart & Verbunt 1996). At
present, however, the latter is limited to solar metallicity, which is unsuitable for the
study of old globular clusters.

In view of the above approximations and uncertainties, the testing and calibration
of the Monte Carlo code against the results of N -body models (in the regime of small
enough N) is an essential safeguard. Such studies are described by Giersz & Heggie in
this volume.

2. The globular cluster M4
This, one of the very nearest known globular clusters, was selected at the meeting

MODEST-5 (Hamilton, Canada, 2004) as a target for concerted observational and theo-
retical effort, but so far little theoretical work has been carried out. Table 1 summarises
some data for this fascinating object.

The proximity of M4 makes deep observational study possible. (See, for example, the
poster by Sommariva et al. in this volume). For theoretical purposes too it is well placed
for study because its binary population appears to be modest, and its initial mass may
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Table 1. Properties of M4

Distance from sun a 1.72 kpc
Distance from GC 5.9 kpc
Mass a 63 000M�
Core radius 0.53 pc
Half-light radius 2.3 pc
Tidal radius 21 pc
Half-mass relaxation time (Rh ) 660 Myr
Binary fraction a 1–15%
[Fe/H] −1.2
Age b12 Gyr
AV

a 1.33

References: All data are from the current version of the catalogue of Harris (1996), except
a Richer et al. (2004) (though this is not always the original reference for the quoted number)
and bHansen et al. (2004).

not have been very high, as we shall see. One complication for the Monte Carlo code,
however, is that the orbit appears to be very elliptical (Dinescu et al. 1999), whereas we
must assume a steady tidal field.

Table 2 describes the initial conditions which we adopted for this exercise. The primary
observational data which we attempted to fit were

(a) The surface brightness profile (Trager et al. 1995)
(b) The radial velocity dispersion profile (Peterson et al. 1995)
(c) The V-luminosity function (Richer et al. 2004, from which we considered the

results for the innermost and outermost of their four annuli)
though several other observational comparisons will be described below. We do not have
a systematic way of arriving at a best choice of initial parameters, though a possible
approach is described towards the end of this paper. We began with a scaled-up version
of the models we developed for the old open cluster M67 (see Giersz & Heggie in this
volume), but found that a binary population of fb = 50% tended to produce a model
with too low a concentration. Reducing the binary concentration to 5 or 10% produced
a satisfactory surface brightness profile, but was somewhat too massive, because of an
excess of low-mass stars, corresponding to a poor fit with the luminosity function. Ac-
cording to Baumgardt & Makino (2003) it might be possible to correct this by devising
a model which lost mass at a higher rate, but instead we elected to change the slope of
the low-mass IMF from the canonical value of α = 1.3 (Kroupa 2007) to α = 0.9. (There
is some justification for a lower value for low-metallicity populations.) By some experi-
mentation we arrived at a model which gave a fair fit to all three kinds of observational
data; see Table 3, and Figs. 1–4. Much of the disagreement in the total luminosity is due
to our assumed distance to the cluster, which is significantly smaller than the value of
2.2kpc given by Harris (1996), though our surface brightness profile is also a little faint
on average. The disagreement in the inner luminosity function at faint magnitudes may
be attributable to the fact that the theoretical result assumes 100% completeness, while
the observational data are uncorrected for completeness. A typical plot of a completeness
correction is given by Hansen et al. (2002, Fig. 3).

It is worth noting that no arbitrary normalisation has been applied in these compar-
isons between our model and the observations. The surface brightness profile, for example,
is computed directly from the V-magnitudes of the stars in the Monte Carlo simulation.

Fig. 5 shows the colour-magnitude diagram of the model. This is of interest, not so
much for comparison with observations, but for the presence of a number of interesting
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Table 2. Initial parameters for M4

Fixed parameters
Structure Plummer model
Stellar IMF Kroupa double power law
Binary mass distribution Kroupa et al. (1991)
Binary mass ratio Uniform
Binary semi-major axis Uniform in log, 2(R1 + R2 ) to 50 AU
Binary eccentricity Thermal, with eigenevolution (Kroupa 1995)
Metallicity Z 0.002
Age 12 Gyr

Free parameters
Mass M
Tidal radius rt

Half-mass radius rh

Binary fraction fb

Slope of the lower mass function α (Kroupa = 1.3)

Table 3. Monte Carlo and King models for M4

MC model MC model King model
Quantity (t = 0) (t = 12Gyr) (Richer et al. 2004)

Mass (M�) 3.40 × 105 4.61 × 104

Luminosity (L�) 6.1 × 106 2.55 × 104 6.25 × 104

Binary fraction fb 0.07 0.057 0
Low-mass MF slope α 0.9 0.03 0.1
Mass of white dwarfs (M�) 0 1.81 × 104 3.25 × 104∗

Mass of neutron stars (M�) 0 3.24 × 103

Tidal radius rt (pc) 35.0 18.0
Half-mass radius rh (pc) 0.58 2.89

∗: this is the quoted mass of “degenerates”

features. The division of the lower main sequence is simply an artifact of the way binary
masses were selected (a total mass above 0.2M� and a component mass above 0.1M�.)
Of particular interest are the high numbers of merger remnants on the lower white dwarf
sequence. There are very few blue stragglers. Partly this is a result of the low binary
frequency, but it is also important to note that some formation channels are unrepresented
in our models (in particular, collisions during triple or four-body interactions, though if
a binary emerges from an interaction with appropriate parameters, it will be treated as
merged.) These numbers also depend on the assumed initial distribution of semi-major
axis, which is not yet well constrained by observations in globular clusters.

Photometric binaries are visible in Fig. 5, and these are compared with observations
in the inner field of Richer et al. (2004) in Fig. 6. In this figure, the model histogram has
been normalised to the same total number of stars as the observational one. We made no
attempt to simulate photometric errors, but the bins around abscissa = −0.75 suggest
that the binary fractions in the model and the observations are comparable. Fig. 7 shows
that binaries have evolved dynamically as well as through their internal evolution. In
particular the softest pairs been almost destroyed.

By 12 Gyr the binaries exhibit segregation towards the centre of the cluster, but
perhaps in more subtle ways than might be expected (Figs. 8,9). When all binaries are
considered, there is little segregation relative to the other objects in the system. (Most
binaries in our model are of low mass.) But if one restricts attention to bright binaries,
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Figure 1. Surface brightness profile of our
Monte Carlo model, compared with the
data of Trager et al. (1995).
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Figure 2. Velocity dispersion profile of
our Monte Carlo model, compared with the
data of Peterson et al. (1995).
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Figure 3. Luminosity function of our
Monte Carlo model at the median radius
of the innermost annulus in Richer et al.
(2004), compared with their data.
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Figure 4. Luminosity function of our
Monte Carlo model at the median radius
of the outermost annulus in Richer et al.
(2004), compared with their data.

which we here take to mean those with MV < 7 (i.e. brighter than about two magnitudes
below turnoff), the segregation is very noticeable (Fig. 9), with a half-mass radius smaller
by almost a factor of 2 than for bright single stars. Still, bright binaries are not nearly
as mass-segregated as neutron stars (Fig. 8), which, incidentally, receive no natal kicks
in our model.

These data do not reveal one very interesting feature of our model, which is that
it exhibited core collapse at about 8 Gyr. Subsequently its core radius is presumably
sustained by binary burning. Even non-primordial binaries may be playing a role here. To
the best of our knowledge it has not previously been suggested that M4, which is classified
as a “King” cluster by Trager et al. (1993), is a post-collapse cluster. This raises the
long-dormant question of how it is possible for some clusters to exhibit collapsed cores if
they also come with significant populations of primordial binaries.
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pluses: collision or merger remnants.
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3. The search for initial conditions
Each Monte Carlo model for this cluster takes a few days. Therefore the problem of

finding appropriate initial conditions is a significant one. One needs a good starting guess,
and then a rapid method for iterative improvement. Our techniques for dealing with these
issues are still primitive, but have evolved in the course of this research. At the iterative
stage we have employed scaled-up small models (with as few as 104 objects sometimes),
which are designed to relax at the same rate as a full-scale model. This requires a scaling
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of the length-scale, which does violence to binary interactions, but nevertheless it has
been very useful. In this section we focus on the issue of finding starting values.

Consider first the problem of forwards evolution. Useful formulae for M(t) are given
by Lamers et al. (2005), which we have generalised to other IMF’s and metallicities.
To this we have added formulae for rh(t), based on very simple notions of adiabatic
expansion (in response to mass-loss from stellar evolution) and tidal truncation. For the
evolution of the core we have fitted simple expressions to the results on the time of core
collapse given by Baumgardt & Makino (2003), extended by new N -body simulations to
a wider range of initial concentrations. Very simple expressions for rc(t), consistent with
the initial and final values, can then be employed as a first approximation. Finally we
drew from Baumgardt & Makino a relation between M and α (the slope of the lower mass
function.) Putting these relations together, we have constructed a tool which we refer
to as Quick Cluster Evolution, following S. Portegies Zwart. To apply this to generate
initial conditions for our simulations, we can run QCE iteratively in reverse.

Further development of this tool should include the addition of binary heating, which
certainly influences the evolution of the half-mass radius unless the primordial binary
fraction is low enough, and more concentrated initial conditions than the King models
to which we have restricted QCE so far.

4. Discussion
It is shown by Giersz & Heggie (this volume) that Monte Carlo models can provide

similar results to N -body models, in the range where comparison is possible, with similar
physics (binaries, stellar evolution, etc.), except for a number of restrictions:

(a) Use of a tidal cutoff, instead of the tidal field. Though Sec. 1.2.3 summarises our
current approach to this problem, other treatments are possible, and worth trying.

(b) Use of a static tide. The effects of tidal shocks have been studied by a number of
authors (e.g. Kundic & Ostriker 1995), and it would be possible to add the effects as
another process altering the energies and angular momenta of the stars in the simulation.
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(c) Rotation: it has been shown (Kim et al. 2004) that, to the extent that rotating
and non-rotating models can be compared, rotation somewhat accelerates the rate of
core collapse. Rotation is hard to implement in this Monte Carlo model, however.

(d) Use of cross sections for triple/quad interactions: this limitation could be overcome
by direct integration of the interactions, as is done by Fregeau & Rasio (2007) in their
version of the Monte Carlo scheme. It will be important to do so, as it would remove the
dependence on cross sections which are not well known for unequal masses, and would
also permit us to include the collisions between stars which commonly occur in long-lived
few-body interactions (Hut & Inagaki 1985).

(e) Neglect of triples: these are also commonly produced in binary-binary encounters
(Mikkola 1984a), and it is desirable to include these as a third species (beyond single and
binary stars). Their observable effects may be small, but of course there is one intriguing
example in the very cluster we have focused on here (Thorsett et al. 1993).

Despite these limitations, not all of which are easily curable, Monte Carlo models are
feasible in reasonable time for globular clusters, which are too large for direct N -body
models. They yield predictions for mass segregation, luminosity functions, distributions
of binary parameters, anisotropy, and many other kinds of data, which can hardly be
obtained in any other way. (The only comparable method of which we are aware is
the hybrid code of Giersz & Spurzem 2003.) Even when N -body simulations eventually
become possible, Monte Carlo models will remain as a quicker way of exploring the main
issues, just as King models have continued to dominate the field of star cluster modelling
even when more advanced methods (e.g. Fokker-Planck models) have become available.

In addition to some of the possible improvements mentioned above, it is our inten-
tion to extend the approach to a number of other objects, including a “collapsed-core”
cluster such as NGC6624. We welcome all suggestions for observational or theoretical
comparisons, either on M4 or on other objects.
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