
Synthesis of Approximate Coders
for On-chip Interconnects Using Reversible Logic

Robert Wille1,2 Oliver Keszocze2,3 Stefan Hillmich3 Marcel Walter2,3 Alberto Garcia-Ortiz4
1 Institute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria

2Cyber Physical Systems, DFKI GmbH, 28359 Bremen, Germany
3Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

4ITEM, University of Bremen, 28359 Bremen, Germany
robert.wille@jku.at {keszocze,hillmich,mwalter}@informatik.uni-bremen.de agarcia@item.uni-bremen.de

Abstract—On-chip coding provides a remarkable potential to
improve the energy efficiency of on-chip interconnects. However,
the logic design of the encoder/decoder faces a main challenge:
the area and power overhead should be minimal while, at
the same time, decodability has to be guaranteed. To address
these problems, we propose the concept of approximate coding,
where the coding function is partially specified and the synthesis
algorithm has a higher flexibility to simplify the circuit. Since
conventional synthesis methods are unsuitable here, we propose
an alternative synthesis approach based on reversible logic. Ex-
perimental evaluations confirm the benefits of both, the proposed
concept of approximate codings as well as the proposed design
method.

I. INTRODUCTION
Low-power coding has a remarkable potential to decrease

the energy consumption of the interconnects [1], [2], [3] and
can be successfully used in NoCs [4]. However, the design
of such encoder/decoder circuits faces a main challenge: the
area and power overhead should be minimal while, at the
same time, decodability has to be guaranteed. Typically, the
coder/decoder overhead restrict the usability of low-power
coding to long buses [1], [2] or NoC paths with a significant
number of hops [4].

The traditional implementation of low-power coders uses
the standard specification and synthesis tools employed for
digital synchronous design. Remarkably, the use of reversible
synthesis produces better results [5]. However, they require
information on the desired mapping of all possible input
patterns – an exponential number with respect to the bit-width
of the interconnect. This leads to scalability issues.

In this work, we propose the concept of approximate cod-
ings in order to handle this problem. In contrast to a complete
coding, approximate codings do not incorporate all possible
information, but focus on the important transmission patterns.
This avoids the consideration of an exponential number of
patterns. However, this leads to a new design challenge:
Although only a subset of patterns is relevant for the actual
synthesis, a one-to-one mapping has to be guaranteed for all
remaining patterns. Neither traditional synthesis approaches
of partially specified functions, nor standard approximate
synthesis approaches as [6] can work in this scenario since
they cannot guaranty decodability.

To address this problem, we propose an alternative synthesis
approach for the generation of an (approximate) coding which
relies on the concept of reversible logic. Reversible logic
inherently realizes bijections only, i.e. one-to-one mappings
where each input pattern is mapped to a unique output pattern.
This allows focusing on the subset of patterns for which infor-
mation is available, while all remaining patterns are inherently
covered by the reversible computing paradigm. Experimental
evaluations confirm the benefits of both, the proposed concept
of approximate codings as well as the proposed design method.

II. CONSIDERED PROBLEM
Power consumption (and propagation delay) of on-chip

interconnects are pattern dependent phenomena whose basics
are covered e.g. in [3]. Low-power codings have the goal to
reduce this power consumption by changing the actual values
communicated through the interconnect. To this end, several

models and frameworks have been proposed (see [1], [2],
[3]). In this work, we consider a framework where the power
consumption is proportional to the number of ones at its input
(i.e. proportional to the Hamming weight). This motivated a
probability based mapping (pbm) [1]. An example illustrates
the general idea.

Example 1. Tab. I(a) shows a complete set of data inputs (first
column) with their probability of occurrence (second column).
Based on that, a coding should map the most frequently
occurring data input (i.e. 0010) to a bit-string with the lowest
Hamming weight (i.e. 0000). Then, the second-most frequently
occurring data inputs should be mapped to a bit-string with the
second-lowest Hamming weight and so on. That is, a coding
is desired which leads to patterns with Hamming weights as
shown in the third column. A precise coding satisfying this is
given in the fourth column.

However, a key problem of the design of codings for
pbm-mappings is to provide information about the proba-
bilities of occurrence for all possible input patterns to be
communicated through the interconnect and to account for
them during the definition of the coder. Since the number of
possible patterns exponentially increases with respect to the
bit-width of the interconnect, this quickly leads to scalability
problems. Besides that, even for smaller bit-widths, the precise
information on the probability of all patterns is frequently not
available and/or hard to grasp. Alternatively, we can consider
a reduced set of patterns as shown in the next example:

Example 2. Consider again the set of data inputs and their
probabilities as shown in Tab. I(a). Let’s additionally assume
that only information on the best and worst cases of pattern
distribution is given (i.e. the distribution of patterns shown in
the second column of Table I(b)). There exists one pattern,
0010, for which a relatively large probability is assumed and
one pattern, 0111, which is assumed to never be communicated
through the interconnect. Accordingly, Hamming weights are
assigned for these patterns as shown in the third column of
Tab. I(b). Similarly, Hamming weights are defined for 0000
and 1111. For all remaining patterns, the probabilities (and,
hence, the Hamming weights) are undefined.

Codings which have been derived from a subset of patterns
constitute an approximation of the ideal mapping, i.e. an
approximate coding. Approximate codings obviously do not
incorporate all possible information about the communication
on the interconnect and, hence, may lead to a slightly less
efficient power performance. Nevertheless, they allow the
application of a coding strategy at all, since they avoid the con-
sideration of an exponential number of patterns. Furthermore,
the higher degrees of freedom to synthesize an approximate
coding imply a higher potential to minimize the coder.

Despite these promising trade-offs, approximate codings
have not been considered in the bibliography. The reason is
that conventional synthesis methods cannot easily guarantee
a one-to-one mapping when only a subset of patterns is
specified. The following example illustrates the problem.



TABLE I: Complete and approximate pbm-codings
(a) Complete

Inputs Prob. H Code
0000 10% 1 0010
0001 4% 2 0011
0010 25% 0 0000
0011 4% 2 0101
0100 4% 2 0110
0101 3% 3 1101
0110 10% 1 0100
0111 0% 4 1111
1000 3% 2 1010
1001 4% 3 1011
1010 10% 1 1000
1011 4% 2 1001
1100 3% 3 1110
1101 10% 1 0001
1110 4% 2 1100
1111 2% 3 0111

(b) Approximate
Inputs Prob. H Code
0000 10% 1 0010
0001 ?% – –
0010 25% 0 0000
0011 ?% – –
0100 ?% – –
0101 ?% – –
0110 ?% – –
0111 0% 4 1111
1000 ?% – –
1001 ?% – –
1010 ?% – –
1011 ?% – –
1100 ?% – –
1101 ?% – –
1110 ?% – –
1111 2% 3 0111

Example 3. Consider again the (partial) information about
the distribution of patterns and the resulting Hamming weights
as shown in Tab. I(b). Using that, conventional design methods
would derive an incompletely specified function description
as e.g. shown in the fourth column of Tab. I(b) (providing
outputs for the patterns with a defined Hamming weight only).
Synthesizing a circuit from that specification will likely lead
to a circuit where two different inputs map to the same output
– making the coding invalid.

III. PROPOSED SOLUTION
To describe the proposed solution, we first review the basics

on reversible logic and discuss how this paradigm helps in the
design of approximate codings. Afterwards, we present details
on the resulting methodology.

A. General Idea: Exploiting Reversible Logic
Reversible logic realizes reversible functions, i.e. logic func-

tions f : Bm → Bm′ over inputs X = {x0, . . . , xm−1}, where
(1) the number of inputs is equal to the number of outputs
(i.e. m = m′) and (2) each input pattern maps to a unique
output pattern. In other words, a reversible function represents
a bijection and, hence, a one-to-one mapping – exactly what
is needed in order to describe the codings considered in this
work. Consequently, the application of design approaches for
reversible logic is a reasonable choice for the design task
sketched in the previous section.

In the past, a broad variety of different synthesis ap-
proaches for reversible logic has been proposed and is
available (see e.g. overviews in [7], [8]). The result-
ing circuits differ from conventional circuit descriptions.
More precisely, a reversible circuit is a cascade G of
reversible gates gi, i.e. G = g0g1 . . . gd−1 with d being
the number of gates. Fanouts and feedback are not di-
rectly allowed. The most frequently occurring reversible
gate is the so-called Toffoli gate T (C, t) which is com-
posed of a set of control lines C = {xi0 , xi1 , . . . , xik−1

}
with C ⊂ X and a single target line xj ∈ X
with xj 6∈ C. This gate maps (x0, x1, . . . , xj , . . . , xm−1) to
(x0, x1, . . . , (xi0xi1 . . . xik−1

)⊕ xj , . . . , xm−1), i.e. the target
line is inverted if all control lines are set to 1; otherwise the
value of the target line is passed through unchanged.

Example 4. Fig. 1 shows a reversible circuit. Control lines
are indicated by black circles, while a target line is indicated
by ⊕.

Using reversible logic rather than conventional design meth-
ods makes the problem sketched in Section II and illustrated
in Example 3 much easier. In fact, passing an incompletely
specified function (as the one from Table I(b)) to a corre-
sponding synthesis method yields a circuit in which the don’t
care outputs are also arbitrarily assigned. But because of the
inherent reversibility of the circuit structure, each input pattern
will always be mapped to a unique output pattern, i.e. an one-
to-one mapping is implicitly guaranteed.

TABLE II: Transformation-based method
line input output 1st 2nd 3rd 4th 5th 6th

(i) abcd abcd abcd abcd abcd abcd abcd abcd
0 0000 0010 0000 0000 0000 0000 0000 0000
1 0001 0011 0001 0001 0001 0001 0001 0001
2 0010 0000 0010 0010 0010 0010 0010 0010
3 0011 0101 0111 0011 0011 0011 0011 0011
4 0100 0110 0100 0100 0100 0100 0100 0100
5 0101 1101 1111 1011 1111 1101 0101 0101
6 0110 0100 0110 0110 0110 0110 0110 0110
7 0111 1111 1101 1101 1101 1111 0111 0111
8 1000 1010 1000 1000 1000 1000 1000 1000
9 1001 1011 1001 1001 1001 1001 1001 1001

10 1010 1000 1010 1010 1010 1010 1010 1010
11 1011 1001 1011 1111 1011 1011 1011 1011
12 1100 1110 1100 1100 1100 1100 1100 1100
13 1101 0001 0011 0111 0111 0111 1111 1101
14 1110 1100 1110 1110 1110 1110 1110 1110
15 1111 0111 0101 0101 0101 0101 1101 1111

a

b

c

d

6th 5th 4th 3rd 2nd 1st

Fig. 1: Circuit obtained by transformation-based synthesis
However, synthesis approaches for pure reversible logic are

not suited for the generation of circuits realizing (approximate)
codings, i.e. there is neither a support for the Hamming
weight objective nor for incompletely specified functions. As
a consequence, we propose a new synthesis method which
relies on reversible logic, but supports the design needs for
the generation of (approximate) codings. To this end, we are
re-using the general idea of the so-called transformation-based
synthesis scheme which has been introduced in [9]. The next
section reviews the main ideas of this scheme. Afterwards, we
describe how this scheme can be extended for the purposes
considered here.

B. Transformation-based Synthesis of Reversible Circuits
The transformation-based synthesis scheme is provided with

a (completely specified) function to be synthesized in terms
of a truth table. Then, the basic idea is to traverse each line
of the truth table and to add (reversible) gates to the circuit
until the output values match the input values (i.e. until the
identity of both is achieved). Gates are chosen so that they
do not alter already considered lines. Furthermore, gates are
added starting at the output side of the circuit (this is, because
output values are transformed until the identity is achieved).

In the following, the single steps are described by means
of the (completely) specified function from Table I(a)1. Ta-
ble II illustrates the single steps. The first column denotes
the respective line numbers of the truth table, while the
second and third column repeat the function specification. The
inputs and outputs are denoted by a, b, c, d, respectively. The
remaining columns provide the transformed output values for
the respective steps.

The algorithm starts at truth table line 0. Here, the input/out-
put mapping differs only for c. This can easily be equalized
by appending the gate T (∅, c) to the circuit which modifies
the output patterns as shown in the column for the 1st step
in Table II (changing bits are highlighted bold). Since the
inputs/outputs of truth table lines 1 and 2 are now already
equal, the approach continues with truth table line 3. Here,
input b needs to be switched which can be accomplished using
the gate T ({c, d}, b). The control lines c and d ensure that
none of the already traversed truth table lines is affected by
this. This modifies the output patterns as shown in the column
for the 2nd step. Similarly, all remaining truth table lines are
traversed; eventually leading to the circuit shown in Fig. 1.

1Note that this neither considers the actual Hamming weights nor supports
a partial consideration of patterns.



TABLE III: Synth. for appr. codings

input Hamming output 1st 2nd 3rd

abcd weight abcd abcd abcd abcd
0000 1 0010 0000 0000 0000
0010 0 0000 0010 0010 0010
0111 4 1111 1101 0101 0111
1111 3 0111 0101 1101 1111

a

b

c

d

3rd 2nd 1st

Fig. 2: Res. circuit

C. Transformation-based Synthesis for Approximate Codings
In order to generate an approximate coding, transformation

based synthesis is utilized as follows: Instead of traversing
the entire truth table (which is not available anyway), only the
available subset of patterns is traversed. For each input pattern,
the corresponding Hamming weight is instantly converted to
an appropriate output pattern which (1) satisfies the Hamming
weight and (2) has the smallest Hamming distance to the
currently considered input pattern. If all patterns are traversed,
a reversible circuit results that realizes the desired mappings
for all given patterns. Moreover, due to the reversibility, the
circuit also implicitly provides a (non-exponential) description
of the one-to-one mapping for all remaining patterns. That is,
a symbolic description of the desired approximate coding is
derived.

In the following, the single steps are described by means
of the partial information about the distribution of patterns
and the resulting Hamming weights (as shown in Table I(b),
respectively) which have already been discussed before in
Example 3. Table III illustrates the single steps (using a similar
notation as before in Table II, where, instead of the precise
output patterns, the desired Hamming weights are listed in the
second column).

The algorithm, again, starts with the first line of Table III.
Here the input pattern 0000 shall be mapped to an output
pattern with Hamming weight 1, e.g. 0010. This can be
realized by the gate T (∅, c) (1st step). The next input pat-
tern is already mapped to a correspondingly desired output
pattern (additionally incorporating the first gate). For input
pattern 0111 an output with Hamming weight 4, i.e. 1111,
is desired. Incorporating the effect from the previously added
gate (leading to the pattern 1101), this requires two variables
to be changed – accomplished by the gates T ({b, d}, a) and
T ({d}, c) (2nd step and 3rd step). This also leads to the desired
mapping for the final pattern and, hence, a circuit as shown
in Fig. 2 is determined. This circuit represents a symbolic
representation of the desired (approximate) coding.

D. Handling Corner Cases
Following the synthesis scheme presented in the previous

section allows for the automatic generation of approximate
codings and, hence, solves the problems discussed in Sec-
tion II. Unfortunately, the scheme is not applicable for ar-
bitrary use cases. In fact, the (revised) transformation-based
synthesis requires a cyclic input/output mapping to be realized,
i.e. the set of output patterns O to be obtained from the given
Hamming weights has to be equal to the set of given input
patterns I . An example illustrates the problem:

Example 5. Consider the synthesis problem shown in the
first two columns of Tab. IV. These Hamming weights do not
allow for a cyclic input/output mapping: the three instances
of Hamming weight 2 can be realized with patterns 011,
101, 110 and the one instance of Hamming weight 3 can
be realized with the pattern 111 (all patterns included in
set I). However, the instance with Hamming weight 0 can
only be realized with pattern 000, which is not included in I .
Accordingly, the set of output patterns O to be obtained
from the given Hamming weights cannot be equal to I . This

TABLE IV: Synthesis with a non-cyclic mapping

input Hamming output 1st 2nd 3rd 4th

abc weight abc abc abc abc abc
011 2 011 011 011 011 011
100 3 111 100 100 100 100
101 2 101 110 101 101 101
110 2 110 101 111 110 110
111 0 000 000 000 000 ???

TABLE V: Cyclic mapping

input Hamming output
abc weight abc
011 2 011
100 3 111
101 2 101
110 2 110
111 0 000
000 – 100

a

b

c

Fig. 3: Resulting circuit

causes problems as illustrated in the remaining columns of
Tab. IV: The first four patterns can be handled similarly
to the previous example from Tab. III (again, changing bits
are highlighted bold). However, after the 3rd step, the last
output pattern 000 has to be mapped to the input pattern 111.
Obviously, this is only possible with three gates T (∅, a),
T (∅, b), T (∅, c) which, however, would all modify previously
traversed patterns. Hence, the transformation-based synthesis
does not terminate with a useful result.

The problem is that deriving a set O from the Hamming
weights that is equal to the given set I is not always possible.
In order to address this problem, the given set of Hamming
weights or, more precisely, input/output mappings has to be
made cyclic before the transformation-based synthesis previ-
ously presented, is applied. To this end, all given input patterns
are traversed in a pre-synthesis step. For each input pattern i ∈
I , it is checked whether another input pattern i′ ∈ I \ {i}
exists which (1) satisfies the corresponding Hamming weight
and (2) has not already been utilized as output pattern. If
this is the case, the one with the smallest Hamming distance
to i is chosen as output pattern and added to O. Otherwise,
another input i′′ /∈ I with the correct Hamming weight is
added to I . All additional patterns are assumed to have an
arbitrary Hamming weight (i.e. any remaining input may be
chosen as a mapping) and are processed analogously to the
originally provided input patterns2.

Example 6. Applying the pre-synthesis step to the problem
discussed in Example 5 leads to the following result: The first
input pattern 011 shall be mapped to an output with Hamming
weight 2. Here, several options are available in I , namely 011,
101, 110. Obviously, 011 has the smallest Hamming distance
to the considered input pattern and, hence, is chosen (see first
line of Table V). Similarly, corresponding output patterns are
determined for the following input patterns 100, 101, and 110
(see following lines in Table V). In contrast, for the input
pattern 111, no unused pattern with Hamming weight 0 can
be found in I . Hence, another input pattern 000 is added to I .
This allows for a cyclic mapping from 111 to 000. Since, at
the same time, the mapping from the newly added 000 to an
output may be arbitrary, the only pattern from I which has not
been used yet, namely 100, can be chosen (eventually leading
to the cyclic mapping shown in Table V).

The resulting input/output mappings are eventually cyclic
and, hence, can be realized to an approximated coding using
the transformation based synthesis approach presented in the
previous section (note that, for this purpose, the patterns are
ordered e.g. from 000 to 111 again). For Example 6, this leads
to the circuit shown in Fig. 3.

2Note that, in the worst case, the number of input/output patterns is doubled.



-40

-20

0

20

40

60

80

100

4 4.5 5 5.5 6 6.5 7 7.5 8

A
re

a
 r

e
d
u

c
ti
o

n
 v

s
. 

fu
ll 

e
n

c
o

d
e

r 
[%

]

Bit Width

80
60
40
20

Fig. 4: Area reduction of an approximate encoders versus a fully
specified one as a function of the bus-width. Results when considering
20, 40, 60, and 80 percent of the patterns for the approximate encoder.

IV. EXPERIMENTAL EVALUATION
We have evaluated the proposed approach using a broad set

of input signals: a Gaussian PDF as typically found in DSP
applications, a monotonically decreasing PDF with a linear
shape and a monotonically decreasing PDF with a Gaussian
shape (e.g., as it would appear calculating the absolute value
of a typical DSP signal). We also considered inverted versions
of this PDFs, and added “random” PDFs. This set covers the
most practical relevant cases and allows a direct comparison
with previous approaches [5]. When possible, the PDF was
parameterized modifying the variance. For each definition
of the input signal, a coder was created. The circuits were
mapped in a commercial 65nm technology using Synopsys
design_vision to precisely evaluate the area, delay, dy-
namic power consumption, and static power consumption.

Firstly, we analyzed the overhead of the encoder using a
full description. We observed an exponential increase in the
complexity of the encoder as the bit-width of the bus increases.
These results agree with those reported in [5] for reversible
synthesis and those of [2]. The overhead of exact coders for
large bit-withs is unacceptable.

Next, we analyzed the overhead of approximate encoders,
i.e. the reduction in the area of the coder versus the full
implementation for different PDFs, parameter selection strate-
gies, etc. was considered. We used the methods of [5] as
a baseline (versus traditional approaches our gains are even
larger). Fig. 4 provides the key results. Area reduction is
almost independent of the bit-width and the shape of the
PDF, the main dependency comes from the relative number
of considered patters. If 40% of the patters are considered,
around 40% in area can be saved; for 20% of the patters,
around 80% of the area can be saved. For very small bit-
widths and high number of patterns (80%) some circuits do
not provide any improvement. Overall, if less than 60% of the
patters are considered, an improvement in area overhead is
observed. Similar results were obtained for delay and power.

Finally, we analyzed the loss of efficiency of the coder
as it becomes “approximate”. This analysis is delicate since
there is a strong effect of the PDF. We focused first on
the worst scenario: We considered a monotonic decreasing
PDF with a parameterizable variance. This PDF appears, for
example, in the sign-magnitude representation of DSP signals
and is one of the few cases where no coding in the interface-
layer is adequate. We measured the additional improvement
in transition activity achieved by the approximate coders; for
illustration purposes we also represent the maximum improve-
ment achievable by an ideal coder. The results for bit-widths
8 and 12 are reported in Fig. 5, where we normalized the
variance of the signal with the total number of patters in the
bus to facilitate the comparison of the two graphs. Remarkably,
even when only 40% of the patters where considered, the
performance of the code is very close to the ideal one;
moreover, the larger the bus is, the more efficient it gets. The
smallest number of patters which provides a sensible selection
is around 20-30%; less patters degrade the coder too much. As

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1

Im
p
ro

v
e
m

e
n
t 
in

 t
ra

n
s
it
io

n
 a

c
ti
v
it
y
 [
%

]

Normalized variance

LINEAR (Bitwidth=8)

20
30
40
50
60

Ideal

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1

Im
p
ro

v
e
m

e
n
t 
in

 t
ra

n
s
it
io

n
 a

c
ti
v
it
y
 [
%

]

Normalized variance

LINEAR (Bitwidth=12)

20
30
40
50
60

Ideal

Fig. 5: Reduction in transition activity for approximate encoders
using between 20% and 60% of the patterns. Reduction analysed
versus the statistical characteristics of the input PDF

.expected, the improvement decreases as the variance increases
(the signal has less spatial redundancy), but the trend is similar
to that of the ideal coder. In summary, a number of patters
around 40% is a good trade off between area reduction (40%)
and non-ideality of the code. It is worth to mention that for
other PDFs, the improvements in transition activity are even
larger. For example, if the PDF increases monotonically, the
improvements are more than two times larger.

V. CONCLUSIONS
Data representation plays a major role in the synthesis

tools. This work shows that a representation using reversible
concepts is a more natural, efficient, and powerful approach
to synthesize coders than traditional ones; furthermore, it
allows the synthesis of partially specified coders or approx-
imate coders. Compared with industry-standard and state-of-
the art reversible approaches, our solution provides significant
advantages in terms of scalability and efficiency. Specifying
only 40% of the codes almost halves the area of the coder
without significantly degrading the optimality of the coder.

REFERENCES
[1] S. Ramprasad, N.R. Shanbhag, and I.N. Hajj. A Coding Framework for

Low-Power Address and Data Busses. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 7(2):212–220, June 1999.

[2] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi. Architectures
and synthesis algorithms for power-efficient bus interfaces. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
19:969–980, September 2000.

[3] A. Garcia-Ortiz, D. Gregorek, and C. Osewold. Optimization of in-
terconnect architectures through coding: A review. In Electronics,
Communications and Photonics Conference (SIECPC), 2011 S. Int., pages
1–6, April 2011.

[4] J.C.S. Palma, L.S. Indrusiak, F.G. Moraes, A. Garcia Ortiz, M. Glesner,
and R.A.L. Reis. Inserting data encoding techniques into noc-based
systems. In IEEE Computer Society Annual Symp. on VSLI, pages 299–
304, March 2007.

[5] R. Wille, R. Drechsler, C. Osewold, and A. Garcı́a Ortiz. Automatic
design of low-power encoders using reversible circuit synthesis. In
Design, Automation and Test in Europe, pages 1036–1041, 2012.

[6] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. Salsa: Systematic logic synthesis of approximate circuits. In
Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE,
pages 796–801, June 2012.

[7] Rolf Drechsler and Robert Wille. From truth tables to programming
languages: Progress in the design of reversible circuits. In Int’l Symp. on
Multi-Valued Logic, pages 78–85, 2011.

[8] Mehdi Saeedi and Igor L Markov. Synthesis and optimization of
reversible circuitsa survey. ACM Computing Surveys, 45(2):21, 2013.

[9] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Automation Conf.,
pages 318–323, 2003.


