
Generating and Checking Control Logic
in the HDL-based Design of Reversible Circuits

Robert Wille1,2 Oliver Keszocze2,3 Lars Othmer2 Michael Kirkedal Thomsen4 Rolf Drechsler2,3
1Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria

2Cyber Physical Systems, DFKI GmbH, Bremen, Germany
3Institute of Computer Science, University of Bremen, Bremen, Germany

4DIKU, Department of Computer Science, University of Copenhagen, Denmark
robert.wille@jku.at {keszocze,lothmer,drechsle}@informatik.uni-bremen.de kirkedal@acm.org

Abstract—Although different from the conventional computing
paradigm, reversible computation received significant interest due
to its applications in various (emerging) technologies. Here, com-
putations can be executed not only from the inputs to the outputs,
but also in the reverse direction. This leads to significantly
different design challenges to be addressed. In this work, we
consider problems that occur when describing a reversible control
flow using Hardware Description Languages (HDLs). Here, the
commonly used conditional statements must, in addition to the
established if -condition for forward computation, be provided
with an additional fi-condition for backward computation. Un-
fortunately, deriving correct and consistent fi-conditions is often
not obvious. Moreover, HDL descriptions exist which may not
be realized with a reversible control flow at all. In this work,
we propose automatic solutions which generate the required
fi-conditions and check whether a reversible control flow indeed
can be realized. The solution utilizes predicate transformer seman-
tics based on Hoare logic. This has exemplary been implemented
for the reversible HDL SyReC and evaluated with a variety of
circuit description examples. The proposed solution constitutes
the first automatic method for these important designs steps in
the domain of reversible circuit design.

I. INTRODUCTION

In the vast majority of today’s circuits and systems, a
conventional computing paradigm is employed in which com-
putations are performed in a single direction only. In contrast
to that, circuits and systems following a reversible computing
paradigm cannot only be employed in one direction (i.e. from
the inputs to the outputs), but also in the reverse direction
(i.e. from the outputs to the inputs).

This paradigm received increasing attention (in particular
for so-called emerging technologies) and provides the basis
for several applications including but not limited to
• quantum computation [13], since corresponding quantum

circuits inherently realize reversible functionality and,
hence, can be derived from reversible circuits (cf. [2]),

• certain aspects of low-power design (as experimentally
observed e.g. in [3]), since reversible computations are
information-lossless and, hence, do not result in power
dissipation because of lost bits (a property which is not
crucial for today’s technologies but may become relevant
if feature sizes are continuing to shrink),

• the design of adiabatic circuits (cf. [6]), since reversible
circuits are particularly suited for the underlying physical
constraints, and

• encoding and decoding devices (cf. [18]), since they do
realize one-to-one mappings which inherently follow the
reversible computing paradigm.

However, the design of corresponding reversible circuits
and systems significantly differs from the conventional design
flow. This shows all the way down to the applied building

blocks and gate libraries. Already a simple standard opera-
tion like the logical AND illustrates the differences to the
reversible computing paradigm: Although it is possible to
uniquely compute the inputs of an AND gate whose output
is 1 (then both inputs must have been 1 as well), it is not
possible to determine the input values if the AND outputs
0. In contrast, reversible circuits and systems can only realize
bijective operations, i.e. functions that map each possible input
vector to a unique output vector.

As a consequence, new methods for design and synthesis
of reversible circuits have been introduced. Thus far, the
majority of them focused on the realization of reversible
circuits derived from functional descriptions provided in terms
of truth tables [12], [21], two-level descriptions [8], [14],
decision diagrams [17], [11], or similar (Boolean) function
representations. Obviously, these approaches are limited by
their restricted scalability and are not competitive to the state-
of-the-art design flows available for conventional circuits and
systems.

In order to address this problem, researchers and en-
gineers started the elaboration of Hardware Description
Languages (HDLs) following the reversible computing
paradigm [20], [16]. Similar to established (conventional)
languages, such as Verilog [10] and VHDL [1], they enable
the designers to express the intended functionality on a sig-
nificantly higher level of abstraction, but at the same time
also respecting the restrictions of the reversible computing
paradigm1. Unfortunately, these restrictions often cause further
design challenges for the implementer.

In fact, in order to guarantee reversibility of the HDL
descriptions, a reversible control flow has to be implemented.
For example, conditional statements do not only require an
if -condition (in order to decide which of the then- or the else-
block is to be executed next), but also a so-called fi-condition
(for the same reason, if the computation is conducted in reverse
direction)2. Moreover, HDL descriptions does occur that is not
possible to realize using a reversible control flow at all. Hence,
designers of reversible circuits and systems are not only faced
with the problem of properly describing a reversible control
flow, but also the uncertainty whether such a control flow even
is possible. Section III describes and illustrates these issues in
more detail.

1Note that similar developments can be observed in the design of reversible
software (see e.g. [22]). Although those are out of the scope of this work,
contributions presented here may be advantageous for the design of reversible
software languages as well.

2In the domain of reversible imperative programming languages, this is
also called fi-assertions; named because this in forward execution has to be
asserted true or false depending on the branch taken [22].

x1 = 3
x2 = 1

x1 = 3 x1 = 2 x1 = 1
x2 = 1 x2 = 2 x2 = 3

f1 = x1 + x2 = 4 f1 = x1 + x2 = 4

?

(a) Conventional computation

x1 = 3 = f−1(4, 2)1 = 1
2
(f1 + f2)

x2 = 1 = f−1(4, 2)2 = 1
2
(f1 − f2)

f1 = x1 + x2 = 4
f2 = x1 − x2 = 2

(b) Reversible computation

Fig. 1: Conventional logic vs. reversible logic

In this work, we propose a solution to these two problems. A
methodology is presented which applies symbolic simulation
in order to automatically generate a representation of all sys-
tem states that originated from the execution of a conditional
statement. From that, the respectively desired fi-condition can
be derived. Moreover, the symbolic simulation (together with
some solving engines) can also be utilized to check whether
a given HDL description allows for a fully reversible control
flow at all; in other words, whether the control flow of the
description is total. Experiments and case studies demonstrate
the efficiency and applicability of the proposed solution. As a
result, some manual and time-consuming tasks for the design
of reversible circuits and systems can now be automated.

The remainder of this work is structured as follows: The
next section provides an overview on the reversible computing
paradigm and respective HDLs. How to describe control logic
in this paradigm is covered in Section III – including a brief
discussion of the resulting design challenges. Afterwards, the
proposed solutions to address these challenges are presented
in Section IV. Finally, results of our experimental evaluation
are described in Section V before the paper is concluded in
Section VI.

II. REVERSIBLE COMPUTATION AND HDLS

Reversible circuits realize bijective functions,
i.e. functions with inputs X := {x1, . . . , xn} and outputs
F := {f1, . . . , fm}, where

1) the number of inputs is equal to the number of outputs
(i.e. n = m) and

2) each input pattern maps to a unique output pattern.
This significantly differs from what conventional circuits
realize, as illustrated by the addition operation shown in
Fig. 1. Following a conventional interpretation of the adder
function (denoted by f1 in Fig. 1(a)), computations can only
be performed in one direction; mapping e.g. an output f1 = 4
back to the inputs does not lead to a unique assignment. In
contrast, a reversible circuit would e.g. realize the addition as
defined in Fig. 1(b). Here, an additional output is added (f2)
which can be used in order to define an f−11 as well as an f−12
and, hence, allows for a reversible computation.

Obviously, these differences have to be reflected in hardware
description languages such as [20], [16] which are dedicated
to reversible circuits. The basic syntax of these languages,
e.g. for the declaration of modules or signals, are similar
to conventional languages such as VHDL or Verilog. But
data operations have to be defined in a purely reversible
fashion. Consequently, the elementary language construct of
an arbitrary variable assignment (such as used in the majority
of the existing languages) can not be used as they are clearly
non-reversible. In contrast, reversible hardware description

languages are making use of so-called reversible assignments
(also known as reversible updates [22]).

Reversible assignments have the form v ⊕= e such that the
variable v does not appear in the right-hand side expression e.
In general, the operator ⊕ can realize any function f , as long
as there exists an inverse operator g such that

v = g(f(v, e), e) (1)

for all variables v and for all expressions e. For example,
in [20], ⊕ is defined by ⊕ ∈ {ˆ, +, -}. Here, “+” (addition)
is inverse to “-” (subtraction) and vice versa, while “ˆ” (bit-
wise exclusive OR) is inverse to itself. When executing the
description in reverse order, all reversible assignment operators
are replaced by their inverse operators.

Using reversible assignments, arbitrary (even non-
reversible) expressions e can be applied on the right-hand
side. This is possible since the input values to the operation
are also given to the inverse operation when reverting the
assignment. For example, to specify a multiplication a ∗ b, a
new free signal c can be introduced which is used to store
the result (i.e. c ˆ= a ∗ b is applied). By this, syntactical
expressiveness of the language is guaranteed, while all
operations are conducted in a reversible fashion.

Example 1. Following the principles sketched above, the
following code (using the SyReC syntax3) describes a re-
versible circuit computing the value p(x) of the parameterized
polynomial ax2 + bx+ c.
module pol(in a, in b, in c, in x, out res)

res ˆ= a∗x∗x
res += b∗x
res += c

The first line declares all signals, while the following lines
include the statements to be realized. Since all statements per-
form a reversible assignment, computations can be performed
in either direction, i.e. are reversible.

III. CONTROL LOGIC IN REVERSIBLE HDLS
AND RESULTING DESIGN CHALLENGES

Relying on reversible assignments the reversible data flow
is ensured. However, in a similar fashion the control flow has
to be made reversible. This is clearly manifest in conditional
statements. Here, in contrast to non-reversible languages, is
has to be guaranteed that the correct block (either, the then-
block or the else-block) is executed when performing the
computations in reverse direction. To this end, an additional
fi-condition has to be provided for each conditional statement.
If computations are performed in forward direction, the fi-
condition can be applied as an assertion. If computations
are performed in reverse direction, the fi-condition decides
whether the then-block or the else-block is supposed to be
executed next and the if -condition can be used as the end-
assertion. The following example illustrates the idea.

Example 2. Consider the following two conditional state-
ments
if (b = 5) then

x += y // executed if b = 5
else

3Note that, although we are illustrating our contributions by means of
SyReC descriptions, the proposed methodology is applicable to control logic
described in various languages. The syntax of SyReC has been sketched
in [20], while a complete definition is available in a technical document
provided in [19].

x −= y // executed if b != 5
fi (b = 5);

and

if ((x % 2) = 1) then
// executed if x % 2 (fwd) or (x − 3) % 2 (bwd)

x += 3;
else

x += 1;
y += c;

fi (((x − 3) % 2) = 1)

The first does not modify any of the signals of the conditional
expression (signal b in this case). Hence, the if- and the
fi-condition are identical. In contrast, the then-block of the
second conditional statement modifies the value of signal x.
Hence, a suitable fi-condition different from the if-condition
has to be provided in order to ensure correct execution
semantics in both directions.

The examples above are very simple, but in general it is
not obvious to derive a correct fi-condition. In particular when
more complex or even nested conditional statements have to
be considered, the generation of a correct control logic for a
reversible circuit becomes a hard and error-prone task, which
has been conducted manually thus far.

Besides that, another problem poses an obstacle to the
correct generation of control logic for reversible circuits.
Statements in the then/else-blocks could prevent the generation
of a fully reversible control logic; in other words, the if -
conditions together with two statements might not implement a
total and injective (bijective) function. Then, only fi-conditions
that satisfy parts of the range can be derived.

The following example illustrates the problem4.

Example 3. Consider the following conditional statement

if (x = 6) then
x −= 3;

else
x += y;

fi (x = 3)

This statement works for most of the possible assignments
of x and y in both directions. However, a problem occurs if
e.g. x = 1 and y = 2 are considered. In forward direction, this
would not satisfy the if-condition and, hence, would trigger
the execution of the else-block (leading to x = 3 and y = 2).
This assignment however would satisfy the fi-condition, i.e., if
executed in reverse direction, the then-block would reversibly
be executed (leading to x = 6 and y = 2). In other words, the
two input states (x, y) = (1, 2) and (x, y) = (6, 2) both map
to the output state (3, 2) – a clear violation of the reversible
computing paradigm.

Cases like this are called partially reversible control state-
ments in the following, as they only implement a partial
reversible function. Often the conditional statements become
partial reversible only because of a very small set of possible
signal assignments5, so detecting such signals becomes even
harder than generating the fi-condition. Again, no automatic
support is available to the designers thus far.

4Note that, for sake of clarity, we will restrict our observations to non-
negative variables only. The solution presented in this paper is applicable to
integers of arbitrary bitwidth with the usual over- and underflow behavior.

5In Example 3, this only occurs for inputs (6, y∗) and (x∗, y∗) with x∗+
y∗ = 3.

Overall, this leads to two major challenges to be addressed
when designing control logic in HDL-based synthesis of
reversible circuits, namely
• how to efficiently generate a correct fi-condition for a

given control statement and
• how to efficiently check whether a control statement is

partially or fully reversible.
In the remainder of this work, we propose a methodology
which automatically solves these tasks for the designer.

IV. PROPOSED SOLUTION

Here, we propose a methodology that relies on the sym-
bolic simulation of a given HDL description to automatically
address the challenges discussed above. Specifically, we utilize
predicate transformer semantics that is based on Hoare logic.
In the following, we will review the semantics of Hoare logic
and, by this, provide the basis for the proposed solution.
Afterwards, we detail how this semantics is actually applied
for fi-generation as well as the automatic check for partial
reversibility.

A. Hoare Logic and Rules for Symbolic Simulation
Hoare logic [9] is based on so-called Hoare triples, which

have the form

{P} S {R} , (2)

where S is a statement (or a sequence of statements) and P
as well as R are pre- and post-conditions, respectively, i.e. as-
sertions in predicate logic. This triple is to be interpreted
as follows: If the pre-condition P holds, then executing the
statement S ensures that the result R holds.

The logic comes with two basic axioms

{P} skip {P} (3)
{P [E/x]} x← E {P} (4)

where P [E/x] states that, in P , every free occurrence of
the variable x is replaced by the expression E. The first
axiom simply states that performing nothing does not change
the system state (the pre-condition is equal to the post-
condition). The second axiom formalizes a variable assignment
as illustrated in the following example.

Example 4. The Hoare triple

{x+ 4 < 42} y ← x+ 4 {y < 42}
describes the situation that, if x+ 4 < 42 holds, the value of
y is less than 42 when being assigned the value of x+ 4.

Using these axioms, further rules can be derived. Two
further rules are of particular importance for the proposed
solution. The first one,

{P} S {R′} {R′} S′ {R}
{P} S;S′ {R}

, (5)

defines the symbolic simulation of two consecutive statements
(i.e. the composition of statements). The second one,

{B ∧ P} S {R} {¬B ∧ P} S′ {R}
{P} if B thenS elseS′ {R}

(6)

defines the symbolic formulation of an if-statement (note the
additional assertion B and its negation ¬B which are used to
distinguish whether the then-block S or the else-block S′ is
simulated).

Building upon this, it is possible to symbolically simulate
a given HDL description (according to [7]). More precisely,
given a pre-condition {P} and a sequence of statements S, a
so-called strongest post-condition (denoted by sp(S, P)) can
be derived, which describes all possible system states that can
be reached by executing S from system states satisfying P .
To this end, the axioms and rules from Eq. 3 to Eq. 6 are for-
mulated as transformation rules for skip (S), assignment (A),
composition (C), and if-statement (I):

sp(skip, P) :=P (S)
sp(x← E,P) :=∃k : x = E[k/x] ∧ P [k/x] (A)
sp(S;S′, P) :=sp(S′, sp(S, P)) (C)

sp(if B thenS elseS′, P) :=sp(S, P ∧B)

∨ sp(S′, P ∧ ¬B) (I)

Note that the variable k in (A) needs to be a free variable.

Example 5. Consider the statement S = x ← x + 2 and
the pre-condition P = x 6= y. Applying the rule (A) as defined
above yields the strongest post-condition

sp(x← x+ 2, x 6= y) = ∃k : x = k + 2 ∧ k 6= y ,

which can easily be reduced to x− 2 6= y. This symbolically
describes all possible system states that can be reached by
executing x← x+ 2 from system states satisfying x 6= y.

Based on these rules, the challenges sketched in Section III
can now be addressed.

B. Generation of fi-conditions
The if -condition of a conditional statement is a symbolic

description of all system states which are supposed to enter
the then-block. In a similar fashion, the fi-condition is a sym-
bolic description of the system states which originated from
executing the then-block. Hence, in order to automatically
derive a fi-condition, it is sufficient to perform a symbolic
simulation as described in the previous section. More formally,
for a given if -condition B and a then-block composed of
statements Sthen, the desired fi-condition is equivalent to the
strongest post-condition sp(Sthen, B).

However, in order to become applicable for the purposes
considered here, some additional adjustments and assumptions
have to be employed. In order to describe those properly, we
first assume the notation of a reversible conditional statement
to be

Sif := if (B) then Sthen else Selse fi (). (7)

where Sif , B, Sthen, and Selse denote the entire conditional
statement, the if -condition, the statements of the then-block,
and the statements of the else-block, respectively. Note that the
fi-condition is intentionally left empty as it is about to be gen-
erated. Furthermore, we assume that Sthen and Selse are fully
reversible (sequences of) statements which, however, may be
empty (i.e. Sthen = skip or Selse = skip is possible). Finally,
we firstly assume that there are no nested if-statements6.

The overall procedure for fi-generation is given in Algo-
rithm 1. Initially, it is assumed that all system states are
allowed to execute the statements; hence the pre-condition P
is set to true (line 1). Afterwards, all statements of the HDL
description are traversed (line 2). If the currently considered

6How to deal with nested if-statements is discussed after the main procedure
has been introduced.

Algorithm 1: Generation of fi-conditions
Data: Reversible HDL description HDL given as a list

of statements S
Result: Reversible HDL description with fi-conditions

1 P ← true
2 foreach S ∈ HDL do
3 if S is not an if-statement then
4 P ← sp(S, P)
5 else
6 Pthen ← sp(Sthen, P ∧B)
7 Pelse ← sp(Selse, P ∧ ¬B)
8 P ← Pthen ∨ Pelse

9 add Pthen as fi-condition to S

statement S is not a conditional statement, P is accordingly
updated using rules (S) or (A) (line 4). Rule (C) is implicitly
employed by iteratively updating the condition P . Otherwise,
the rule (I) is applied which splits the determination of
the post-condition into two steps (lines 6/7), leading to a
post-condition Pthen obtained for the then-block and a post-
condition Pelse obtained for the else-block. The disjunction of
both yields the updated description for P (line 8). Moreover,
the post-condition Pthen additionally yields the fi-condition for
the currently considered if-statement and can accordingly be
updated (line 9).

Using Algorithm 1, fi-conditions can be automatically gen-
erated for many HDL descriptions. However, problems remain
when nested if-statements occur. Then, two further issues have
to be dealt with:

1) Inner if-statements would be skipped
This is because an entire conditional statement Sif is
always considered to be a single statement S ∈ HDL
as defined in Eq. 7. Hence, strictly following Algo-
rithm 1 would indeed generate a fi-condition for Sif but,
afterwards, move directly on with the next statement
S′ ∈ HDL – leaving possible further if-statements
within Sthen and Selse unconsidered.

2) Inner if-statements are subject to restricted system states
In order to correctly determine the strongest post-
condition and, hence, the fi-condition, P is constantly
updated in Algorithm 1. However, if a fi-condition for an
inner if-statement is to be generated, the if -conditions of
the respective outer if-statements have to be additionally
employed. This is not yet incorporated in Algorithm 1.

Obviously, the first issue can easily be handled by modifying
Algorithm 1 such that not only top level statements are tra-
versed, but also all statements within the respective then- and
else-blocks. Dealing with the second issue, however, requires a
more elaborated adjustment. In order to describe that properly,
let’s consider again the underlying problem using the following
example.

Example 6. Consider the following conditional statements:
if(((3 <= x) && (x <= 6)) && (y = 1)) then
if(x = 6) then

x −= 3;
else

x += y;
fi (...)

else
skip

fi (...)

Algorithm 2: fi-generation for nested if-statements
Data: If-statement Sif , pre-condition P valid before Sif

Result: Returns post-condition of provided if-statement;
recursively adds valid fi-conditions to all
if-statements visited in the process (including
itself)

/* Initialize block conditions */
1 Pthen ← P ∧B
2 Pelse ← P ∧ ¬B
/* Iterate over statements */

3 foreach S ∈ Sthen do
4 if S is if-statement then
5 Pthen ← result of Algorithm 2 with S and Pthen

6 attach Pthen as fi-condition to S
7 else
8 Pthen ← sp(S, Pthen)

9 foreach S ∈ Selse do
10 if S is if-statement then
11 Pelse ← result of Algorithm 2 with S and Pelse

12 attach Pelse as fi-condition to S
13 else
14 Pelse ← sp(S, Pelse)

15 return Pthen ∨ Pelse

The pre-condition P to be applied for the innermost then-block
is not just x = 6, but must additionally take the condition from
the outer if-statement (i.e. 3 ≤ x∧x ≤ 6∧y = 1) into account7.
This becomes particularly obvious in this example, since the
inner if-statement alone is partially reversible (in fact, it
represents the same situation as discussed in Example 3). Only
due to the additional consideration of the condition from the
outer if-statement, a fi-condition for a fully reversible HDL
description can be generated.

To solve with this problem, we revise the part of Algo-
rithm 1 that is responsible for dealing with if-statements (lines
6-8). Instead of directly deriving the strongest post-conditions
with fixed P ∧B and P ∧¬B, the procedure shown in Algo-
rithm 2 is called. Also here, P is updated depending on the
respectively considered if-statement and its condition B (see
lines 1/2). But in contrast to Algorithm 1, P is further updated
whenever the procedure encounters another if-statement. This
is realized by recursively calling Algorithm 2 as shown in
lines 5/11. The result of this recursive call derives the fi-
condition for the currently considered if-statement, whereas
the overall return value is used by Algorithm 1 to update the
current system state P . Following these schemes, also cases
as discussed in Example 6 are fully supported.

C. Check for Partial Reversibility
As discussed in Section III, checking whether a given

reversible HDL description indeed is fully reversible remains
the second challenge designers have to address when creating
control logic for reversible circuits and systems. A (sequence
of) statements S is partially reversible, if there exist two
different input states whose execution of S yields the same
output state. Since assignment statements are by definition
fully reversible, they can never be the reason for a partial

7Note that, in a similar fashion, the negation of 3 ≤ x ∧ x ≤ 6 ∧ y = 1
must be taken into account, if an inner if-statement existed in the else-block.

reversible HDL description. In contrast, conditional statements
allow for the execution of two different sequences of state-
ments (the then-block and the else-block) and, hence, may
indeed transform two different input states to the same output
states (as illustrated in Example 3).

In order to check that, the method for fi-generation as
introduced above can be re-used and accordingly extended.
Recall that a (generated) post-condition sp(Sthen, P ∧B) is a
symbolic representation of all system states that originate from
the execution of all statements in the then-block. Accordingly,
a (generated) post-condition sp(Selse, P ∧ ¬B) is a symbolic
representation of all system states that originate from the
execution of all statements in the else-block. Hence, if there
exists an output state which originated from two different input
states, the conjunction

sp(Sthen, P ∧B) ∧ sp(Selse, P ∧ ¬B) (8)

must evaluate to true.
This constitutes a typical satisfiability problem (SAT,

cf. [4]): If an assignment to all variables of an HDL description
exists which satisfies Eq. 8, a system state showing the partial
reversibility can be derived. If it has been shown that no such
assignment exists, the HDL description has been proven to
be fully reversible. In order to conduct those checks, various
powerful solving engines (so called SAT solvers) have been
proposed in the past and can be utilized for this purpose. To
this end, Eq. 8 has to be converted into a proper format and,
afterwards, simply passed to a SAT solver.

Example 7. Consider again the conditional statements from
Example 3. Applying the method for fi-generation as intro-
duced above for sp(Sthen, x = 6) yields the post-condition
x = 3. For sp(Selse, x 6= 6), the post-condition x − y 6= 6 is
generated. Passing the conjunction of both conditions, i.e.

x = 3 ∧ x− y 6= 6,

to a SMT solver, yields a satisfying assignment x = 3 and y =
0. This assignment indeed represents an output state showing
the non-reversibility of the conditional statement (as already
discussed in Example 3).

V. EXPERIMENTAL EVALUATION

In the previous section, we proposed a methodology to both
automatically check whether a conditional statement given in
a reversible HDL is indeed fully reversible and automatically
derives a corresponding (correct) fi-condition. In order to
evaluate the performance of the obtained hypotheses, the
proposed approach has been thoroughly tested. In this section,
the obtained results are summarized and discussed.

For this purpose, we implemented the proposed approach
on top of RevKit [15]. To conduct the check for partial
reversibility as described in Section IV-C, the SAT solver
Z3 [5] has been utilized. All evaluations have been conducted
on an Intel Core 2 Duo machine with 2.4 GHz and 4 GB of
main memory.

As benchmarks, we applied a variety of HDL descriptions
known from the literature. This includes different versions of
an arithmetic logic unit (alu, cpu alu, simple alu), an arbiter
that allocates access to shared resources (arb), as well as a
control unit (cpu control unit), a program counter (cpu pc),
and a register bench (cpu register) of a CPU8. Besides that,
special examples have been implemented that have been

8All these HDL descriptions have been taken from [19].

explicitly constructed to evaluate certain corner-case scenarios
of the approach. This includes benchmarks with if-statements
including an empty then-block (empty then) and an empty
else-block (empty else), nested if-statements including various
read/write statements in the corresponding then/else-blocks
(nested if), examples realizing decoders/encoders (decoder)
or determining the maximum value of a variable (max value),
and further examples representing corner cases (misc). For
selected descriptions, also corresponding versions including
a partially reversible if-statement to be detected have been
considered (denoted by the addition partial).

Table I summarizes the obtained results. The first column
gives the name of the respective HDL descriptions (following
the naming convention as introduced above), while the three
following columns provide the total number of statements,
the total number of if-statements, and the maximal depth of
nested if-statements for each example. Column REVERSIBLE?
states whether an HDL description has been proven to be fully
reversible (X) or not (×, i.e. the HDL description is partially
reversible). The final column provides the total runtime (in
CPU seconds) required to check the entire HDL description
for partial reversibility and to generate all fi-conditions.

The results confirm the benefits of the proposed approach.
For an error-prone and time-consuming design task, which has
been conducted manually thus far, an automatic and efficient
solution has been presented. In fact, all desired fi-conditions
can be generated in negligible run-time, i.e. within up to a bit
more than a CPU second only. Moreover, at the same time, it
can be checked whether the given HDL descriptions are indeed
fully reversible. Because of this, we were able to prove that the
HDL descriptions used in literature thus far are indeed fully
reversible (see column REVERSIBLE? for the first 10 HDL
descriptions in Table I).

VI. CONCLUSIONS

In this work, we considered the generation of control logic
in hardware description languages following the reversible
computing paradigm. Here, obstacles occur since (1) corre-
sponding descriptions may not necessarily be reversible and
(2) conditional statements in reversible logic require a fi-
condition in addition to the established if -condition. Both
issues resulted in new design tasks which have been addressed
manually thus far. We proposed a solution which applies sym-
bolic simulation as well as solvers for satisfiability problems
in order to automatically tackle these tasks. Experimental
evaluations on HDL descriptions used in literature as well as
explicitly designed corner cases confirmed the applicability of
the proposed methods. Using the approaches presented in this
work, the required fi-conditions can automatically be generated
in negligible run-time. Moreover, automatic checks whether
an HDL description indeed is reversible are possible. By this,
the important tasks for the design of reversible circuits and
systems eventually got automated. Methods like this will be
an important part of future design tools.

ACKNOWLEDGMENTS
This work has partially been supported by the European

Union through the COST Action IC1405.
REFERENCES

[1] IEEE Standard VHDL Language Reference Manual Amendment 1:
Procedural Language Application Interface, 2007.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates
for quantum computation. Physical Review A, 52(5):3457–3467, 1995.

[3] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz. Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature, 483:187–189, 2012.

TABLE I: Experimental Evaluation

HDL DESCRIPTION STMTS.

IF-STMTS.

MAX. DEPTH

REVERSIBLE?

TIM
E

alu 233 7 3 2 X 0.08
alu flat 23 12 4 0 X 0.04
cpu alu 16bit 242 80 25 17 X 0.48
cpu alu 32bit 243 80 25 17 X 0.36
lu 238 8 3 2 X 0.03
simple alu 234 7 3 2 X 0.03
arb8 235 17 8 7 X 0.08
cpu control unit 244 41 7 1 X 0.12
cpu pc 246 5 2 1 X 0.02
cpu register 247 3 1 0 X 0.01

empty then partial 3 1 1 × 0.01
empty then 3 1 0 X 0.01
empty else partial 3 1 1 × 0.01
empty else 3 1 1 X 0.01
nested if1 partial 15 7 2 × 1.10
nested if2 18 4 2 X 0.04
nested if3 7 3 1 X 0.03
decoder1 partial 9 4 3 × 0.04
decoder2 9 4 3 X 0.04
decoder3 partial 17 8 7 × 0.09
decoder4 17 8 7 X 0.08
decoder5 partial 15 7 6 × 0.07
max value 15 7 2 X 0.08
misc1 partial 6 2 0 × 0.03
misc2 partial 3 1 1 × 0.01
misc3 3 1 0 X 0.02
misc4 partial 10 1 0 × 0.35
misc5 partial 6 2 0 × 0.03
misc6 partial 9 3 0 × 0.03

[4] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook
of Satisfiability. IOS Press, 2009.

[5] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. Z3 is available at http://z3.codeplex.com/.

[6] A. De Vos. Reversible Computing: Fundamentals, Quantum Computing
and Applications. Wiley-VCH, Weinheim, 2010.

[7] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program
Semantics. Texts and Monographs in Computer Science. Springer, 1990.

[8] K. Fazel, M. Thornton, and J. Rice. ESOP-based Toffoli gate cascade
generation. In Pacific Rim Conference on Communications, Computers
and Signal Processing, pages 206–209, 2007.

[9] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[10] IEEE Std. 1800. IEEE SystemVerilog, 2005.
[11] C.-C. Lin and N. K. Jha. RMDDS: Reed-muller decision diagram

synthesis of reversible logic circuits. J. Emerg. Technol. Comput. Syst.,
10(2):14, 2014.

[12] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Automation Conf.

[13] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[14] Y. Sanaee and G. W. Dueck. ESOP-based Toffoli network generation
with transformations. In Int’l Symp. on Multi-Valued Logic, pages 276–
281, 2010.

[15] M. Soeken, S. Frehse, R. Wille, and R. Drechsler. RevKit: A toolkit
for reversible circuit design. In Workshop on Reversible Computation,
pages 69–72, 2010. RevKit is available at http://www.revkit.org.

[16] M. K. Thomsen. A functional language for describing reversible logic.
In Forum on Specification and Design Languages, pages 135–142, 2012.

[17] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for
large functions. In Design Automation Conf., pages 270–275, 2009.

[18] R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz. Automatic design
of low-power encoders using reversible circuit synthesis. In Design,
Automation and Test in Europe, pages 1036–1041, 2012.

[19] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
an online resource for reversible functions and reversible circuits. pages
220–225, 2008. RevLib is available at http://www.revlib.org.

[20] R. Wille, E. Schönborn, M. Soeken, and R. Drechsler. SyReC: A
hardware description language for the specification and synthesis of
reversible circuits. INTEGRATION, the VLSI Jour., 53:39–53, 2016.

[21] R. Wille, M. Soeken, N. Przigoda, and R. Drechsler. Exact synthesis
of Toffoli gate circuits with negative control lines. In Int’l Symp. on
Multi-Valued Logic, pages 69–74. IEEE, 2012.

[22] T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a reversible
programming language. In Conference on Computing Frontiers. Pro-
ceedings, pages 43–54. ACM, 2008.

