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Abstract—The recent advances with respect to the costs, size,
and power consumption of electronic components paved the
way for System of Systems (SoS), Cyber-Physical Systems (CPS),
or the Internet of Things (IoT). As a next stage, these de-
velopments currently motivate the consideration of Complex
Swarm Systems (CSS), i. e., continuously running systems that
will dynamically change after deployment and are connected by
heterogeneous components which can join and leave the system
at any time. Due to this dynamic nature and the constant recon-
figurations, it is not possible to completely verify those systems
with conventional verification methods anymore. Therefore, we
propose a new methodology which follows a different scheme:
Instead of trying to verify all possible behavior of a CSS (which,
due to the vast number of possible instantiations or connections
of the heterogeneous components, becomes an impracticable task
anyway), we aim for verifying that, at least, no scenario which
violates certain (safety-critical) forbidden actions is possible. To
this end, solutions for model-based verification are employed.
By means of a case study, the feasibility and promises of the
proposed methodology are illustrated.

I. INTRODUCTION

The constant improvements in the design of circuits and

systems led to more complex but also more efficient electronic

systems (with respect to costs, size, and power). This eventu-

ally established the development of System of Systems (SoS),

Embedded Systems (ES), and their recent extensions to Cyber-

Physical Systems (CPS) [1], but also paved the way for the

Internet of Things (IoT) [2] or Swarm systems [3].

In the latter case, a system is not constituted by single,

application-specific components assembled in a clearly defined

space anymore. Instead, various heterogeneous components

which are globally connected in a large area may be utilized

to eventually realize different applications. Moreover, these

components may not explicitly be bounded to the respective

systems, but may frequently enter or leave them – resulting in

a highly dynamic system with frequent reconfigurations. The

Terraswarm project [4], [5] provides several examples for such

systems. In the following, we denote such systems Complex

Swarm Systems (CSS).

However, the emerge of CSS also triggers new design

challenges. This particularly holds for safety-critical systems

where verification is essential in order to guarantee that a

system works as expected or, at least, that the system does

not cause fatal actions. For conventional embedded and cyber-

physical systems, impressive improvements have been made

with respect to verification in the past years [1]. However,

all of them usually require a distinct formal model of the

system or component to be verified. Due to the dynamic

nature of CSS, such a distinct model is often not available

anymore. Alternatively only checking the correctness of the

single components and the single applications of a CSS is

usually not sufficient to imply the correctness of the CSS and,

e. g., its future reconfigurations. Hence, alternative verification

methodologies have to be explored.

In this work, we discuss the resulting challenges of these

systems and envision a verification methodology which pro-

poses that every subset of components of a CSS must have

a set of inherent and safety-critical forbidden actions. These

actions must always be considered when developing new

systems and applications. We also propose a new methodology

for checking these forbidden actions using a model-based

approach. While a complete verification of the CSS may not be

possible, proving that there is no scenario where a forbidden

action is executed is possible and feasible. To the best of

our knowledge, this is the first proposal of a verification

methodology for CSS thus far.

In the remainder of this work, these issues are illustrated

and discussed by means of a running example which has

also been applied to conduct first feasibility studies of the

envisioned methodology. To this end, we employed verification

approaches which are already established for single compo-

nents as well as recently proposed solutions for systems pro-

vided in more abstract modeling languages such as UML/OCL.

Because of that, the next two sections first provide a brief

review of model-based verification and, afterwards, introduce

the considered scenario as well as the corresponding model

which is used as a running example. After that, the envi-

sioned verification methodology is introduced in Section IV.

Section V illustrates the application of the methodology to the

running example. Finally, the paper is concluded in Section VI

with an outlook on future works.978-1-5090- 2541-1/16/$31.00 c© 2016 IEEE



II. MODEL-BASED VERIFICATION

The Unified Modeling Language (UML) [6] together with

the Object Constraint Language (OCL) [7] allows for model-

ing complex systems at an abstract level without the need to

provide detailed implementations. While the general structure

and behavior of the system are expressed graphically in terms

of UML (class) diagrams, textual OCL constraints are used

in order to add further restrictions that cannot be expressed

by the UML model notation itself. The OCL is a declarative

language that mainly consists of logic, arithmetic, navigation,

and collection expressions. A comprehensive overview of all

OCL expressions, its keywords, and the precise semantic

definitions are given in [7].

UML/OCL class diagrams represent blueprints for a pos-

sible system. Classes and associations provide the main con-

structs in a class diagram. Classes describe what information

can be handled within the modeled system and how the infor-

mation is structured. Attributes define the single data elements

of classes. Furthermore, a class can contain operations as well

as OCL constraints for describing its behavior by means of

pre- and postconditions. Finally, invariants are OCL constraints

that restrict the set of valid system states by enforcing specific

system properties. Overall, a model specified in terms of a

class diagram can be seen as a template for creating a concrete

system state complying to the specification.

The system states themselves are then seen as instantiations

of a class diagram which, in turn, are represented by object

diagrams. Each element in an object diagram has a corre-

sponding counterpart in the class diagram. In other words: an

object is an instantiation of a specific class holding values

for each class attribute (at a particular point in time). A link

connecting objects is an instantiation of an association. A

system state can generally comprise any number of objects and

links. A model is consistent, if there exists a non-empty system

state which satisfies all defined OCL invariants, i. e., the

system properties defined by the invariants, are not violated.

Even if UML/OCL models usually offer no precise im-

plementation details of a complex system, this high-level of

abstraction might already result in an over-constrained model

such that no valid system state can be derived (inconsistent

models) or in which some operations could never be executed

due to too restrictive pre- and postconditions. But even if this

is not the case, the specification may still allow for reaching

“bad states” such as deadlocks or other unwanted behavior.

In order to detect those problems in this early stage of the

design, several approaches for the validation and verification

of models have been proposed. Here, the objective is, e.g., to

check whether the model is consistent or not. Consistency is

a typical verification task that is formally defined, e. g., in [8],

[9], [10]. In order to verify the model, different approaches

have been proposed, e. g., based on solvers for constraint

satisfaction problems [8], [10], solvers for Boolean satisfia-

bility [11], [12], or approaches based on relation logic [13].

Those approaches do not rely on explicitly enumerating

all possible system states. Instead, they utilize a symbolic
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Fig. 1. CSS environment example

representation of the given UML/OCL model which allows

to consider all possible system states. This is particularly

interesting for modeling CSS, since it allows to consider all

possible (re)configurations the system may assume.

In this work, we rely on the solution presented in [11]. The

authors propose to translate the verification task into an in-

stance of a Satisfiability Modulo Theories (SMT) problem [14],

[15]. Then, the problem instance can be solved using so-called

SMT solvers such as proposed in [16]. These solvers allow

for an efficient traversal of large search spaces and, hence,

are suitable to determine whether the model description is

consistent.

III. MOTIVATIONAL EXAMPLE

A. Overview

In this work, the envisioned methodology is motivated and

illustrated by means of a CSS to be designed realizing a

traffic control system. This scenario is especially suited for

illustrating the CSS nature because it is very dynamic, i. e.,

new components can join and leave the system at any time.

Note, however, that the case study is not restricted to a traffic

control system, but can be applied as a general methodology

for CSS verification.

The recent development of technologies like Vehicle to

Vehicle communication (V2V) as well as Vehicle to De-

vice communication (V2D) – well established by the IEEE

802.11p – have raised new opportunities for the development

of CSS applications [17]. Taking those technologies as a

foundation, we propose a CSS composed of three types

of vehicles: normal, autonomous, and emergency. They can

interact with each other as well as with Traffic Lights (TL)

and people, which are recognized by their devices using the

V2D communication.

A possible scenario for the traffic control system involving

the described components, is illustrated in Fig. 1. Here, four

intersections and twelve streets are considered. The CSS

itself is composed of components which may (dynamically)

be placed throughout this environment. This, e. g., includes

sensors (V2V and V2D) as well as actuators (controlling, e. g.,

the traffic lights and, by this, the traffic). The black ellipses at
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Fig. 2. Considered model

the end of each street indicate the limits of the system, i. e.,

vehicles can join or leave the system when crossing those

points.
The resulting system can be seen as a CSS since it is com-

posed of various single components (sensors, vehicles) which

may dynamically join and leave the system, i. e., connect

and/or disconnect. Moreover, on top of that system, different

applications (composed of different sets of components) can

be realized. In the remainder of this work, the following

applications are considered:

1) A smart TL Control Application that operates the single

lights according to the number of cars on their corre-

sponding street, the number of wait cycles of the perpen-

dicular TLs in the local intersection, or other metrics.

2) An Emergency TL Control Application which is activated

when an emergency vehicle (in service) like an ambulance

enters the system. As an example, consider the ambulance

vehicle shown in Fig. 1 and leaving the point A for

the point B. In this case, the application is supposed to

detect the presence of the ambulance and, then, force the

actuators to control all traffic lights on the emergency

vehicle’s way to green. Accordingly, the perpendicular

TLs of all corresponding intersections are supposed to

turn to red.

3) A Vehicle Safety Application which will activate an

emergency break system every time a vehicle is in a

eminent collision with another vehicle or a person (in

order to prevent a crash or a passing over). If a vehicle

tries to cross a red light, the Vehicle Safety Application

will also activate the emergency breaks of all autonomous

vehicles as well as set the TL to a red signal in order to

warn drivers of all other vehicles.

Considering these applications, the CSS serves as a platform

providing the respectively needed components. The applica-

tions in turn use a subset of the available components of

the system in order to derive the required information and to

trigger the respective actuators. As a traffic control system as

considered here obviously is a safety-critical system, verifying

its correctness is, of course, crucial. To this end, the flexibility

of the system itself (components may join and leave) as well as

its applications (components are used for different purposes)

have to be considered. While, at the first glance, this seems

to be easy to comprehend for a simple scenario as discussed

here, cases causing serious problems can easily be overseen.

As a consequence, a verification methodology is required

which utilizes as good as possible the existing state-of-the-

art verification solutions but, additionally, considers the char-

acteristics of the underlying CSS, i. e., its dynamic nature

with numerous heterogeneous as well as joining and leaving

components which may reconfigure themselves over time. In

this work, we are proposing such a methodology. Applying

the proposed verification scheme that will be presented in

Section V eventually shows that even a presumably simple

CSS as discussed here may inherit a fatal error with serious

consequences.

B. Considered Model

In order to represent the interaction between the compo-

nents, a structure as described in Fig. 1 is considered. For

being more objective and make explanations easier, just one

of the four intersections of the figure will be considered.

Nevertheless, the issues discussed in this work can be easily

expanded for the complete scenario and also for any combi-

nation and instantiation of the objects.

As a formal basis for these tasks, we use a description of the

considered system provided in UML/OCL as shown in Fig. 2.

In the remainder of the paper, this model will be used in order

to illustrate the proposed solution.

The model has classes for vehicles, conjunctions, traffic

lights, streets, and persons (represented by connected devices).

The class Vehicle has an attribute for detecting when it is

breaking and the attribute driving indicates if the car is



moving or not. V2V and V2D proximity sensors (cf. the

Boolean attributes V2V_PS and V2D_PS) are set to true if

an imminent collision to another vehicle or a person, respec-

tively, is detected. There are three types of vehicles inherited

from the abstract class Vehicle. The Emergency vehicle has an

additional Boolean attribute priority which indicates if it

is in service or not. Normal, i.e., non-autonomous, vehicles

have an operation redTLwn which warns the driver if the TL

is red.

Furthermore, each vehicle – independently from its precise

class type – is located on one street slot and, thus, the abstract

class Vehicle has an one-way relation to the class StreetSlot.

Hence, streets do not provide any information; only the sensors

in the vehicles. In the model, a street slot is either vertical or

horizontal – defined by an corresponding enum data type. The

vehicles on the streets have a direction which is one of the

two related conjunctions – ensured by an omitted invariant.

Additionally, every street slot starts and ends at an abstract

Conjunction, which can be a NormalConjunction for three or

four streets, an EndConjunction for representing the end of the

system (e. g., represented by the black ellipses in Fig. 1, or

a ConnectingConjunction for connecting two slots of streets.

The different relations for different directions have to be

restricted until each street has exactly two ends. For modeling

this, the class StreetSlot as well as the different conjunction

classes are enriched with invariants. For example, the two

defined ends of a ConnectingConjunction have to be different.

Furthermore, at an EndConjunction vehicles can ap-

pear as well as disappear – conducted by the operation

carDisAppear. Corresponding pre- and postconditions for

the operation ensure that vehicles can only disappear when

they are driving towards the EndConjunction and are on the

only connected street of the EndConjunction. Vice versa, for

every new vehicle appearing on the correspondent street, its

direction is set opposite to the direction of the EndConjunc-

tion.

The operation changeStreetSlot models the move-

ment of a vehicle by changing the street slot in which the

vehicle is located. If two vehicles are in the same slot, and

the variable driving is set to true,1 they will be dangerously

close and the emergencyBreakSystem will be activated.

All traffic lights of a normal intersection can only change

their lights either (1) in the standard mode (if no emergency

vehicle driving towards this intersection is detected) or (2) in

the emergency vehicle mode (if on any of the connected streets

an emergency vehicle has been detected drives towards the

intersection and is in service). In the latter case, the traffic

light will give a signal to the intersection to ensure that all

other traffic lights will switch to red. If an autonomous vehicle

tries to cross a red light the emergencyBreakSystem will

be activated. If non-autonomous vehicles intend to cross a red

light, the operation redTLwn will be activated.

Create a
UML/OCL model

Is the model
consistent?

Add the
invariant FA(i)

Is the
model still
consistent?

remove the
invariant FA(i)

i < size(FA)

i++

Fix the model

Violation of
FA(i) detected

No violation
detected

✓ ✗

✓

✗

✓

✗

Fig. 3. Proposed methodology

IV. PROPOSED METHODOLOGY

Because of the reasons discussed in Section III-A, verifying

a CSS is not a trivial task. In fact, checking the absence of

errors of the individual components and applications is not

sufficient to imply the correctness of the CSS itself. The dy-

namic nature of the CSS and the constant reconfigurations do

not allow a completely precise model of a CSS. Therefore, it

is necessary to have a new flexible and alternative verification

scheme that supports the CSS.

Initiatives like the Terraswarm project propose that the

objects of the swarm can be released for the developers so

that they are free to create applications. In a similar way,

this is already done in platforms for smartphones [4], [5].

However, since those applications do usually control cyber-

physical systems which can potentially deal with safety-critical

systems, we propose that each subset of components of a CSS

must additionally be equipped with a set of inherent forbidden

actions. These forbidden actions are not allowed to occur – no

matter what application or configuration the system will later

assume. Hence, before releasing the components, developers

have to guarantee the integrity of their CSS with respect to

these forbidden actions.

For the CSS considered in this work, the following set of

forbidden actions is considered:

1) A vehicle invading another vehicle’s safety space while

it is moving.

2) A vehicle invading a person’s safety space while it is

moving.

3) A vertical and a horizontal TL in the same intersection

being green at the same time.

The first action will prevent a direct crash involving vehi-

cles, the second one will prevent to run over persons, and the

third one prevents two or more perpendicular TLs to be green

at the same time – all situations are obviously to be avoided.

1Vehicles are allowed to be close if they are not in motion.
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Fig. 4. Violation of forbidden actions

The set of forbidden actions will be then translated into

OCL invariants, which will be individually checked. Fig. 3

shows the general flow of the methodology for verifying the

model. FA is the set of forbidden actions with i = 1, 2, ..., I
being the index of this set.

First, the model must be checked for consistency as previ-

ously described in Section II. Once the model is proven to be

consistent, a new class ForbiddenAction is added to the model.

It has no relations or operations, just the currently considered

forbidden action (FA(i)) translated into an OCL invariant.

With the new invariant, the model is checked again. If it is

now proven to be consistent, a violation of the FA is detected

(since an instantiation of the CSS is possible where a forbidden

action occurs). In this case, the model cannot be released

but has to be corrected and checked for consistency again.

If instead the model including FA(i) is no longer consistent,

it has been proven that this specific forbidden action can never

occur in the CSS. This process is repeated for each FA. If

the model is not consistent for each one of them, it is proven

that no scenario, configuration, etc. will violate the forbidden

actions.

V. APPLICATION AND RESULTS

The flow presented in Fig. 3 has been implemented and

was applied in order to verify the considered model. In order

to conduct the actual checks, the methodology reviewed in

Section II has been utilized. More specifically, we have used

the approach originally presented in [11] for the consistency

checks.

In addition to that, we needed to define an upper bound for

the maximal number of components (i. e., object instantiations)

to be considered (required to eventually solve a finite prob-

lem). This is not a restriction to the proposed methodology

as, eventually, each CSS will always be composed of a

finite number of components. In our evaluations, we set this

parameter to 6 objects per class, i. e., overall, the CSS can

be instantiated with at most 9 · 6 = 54 components. Finally,

the lower bound on the number of components is set to 1 –

prohibiting the instantiation of an empty system state which

always would satisfy all constraints.
Applying the methodology and this setting to the considered

example and the three forbidden actions led to the following

results:
The first consistency check (without considering any for-

bidden action) was completed successfully. This means that

the model in general is free of contradictions and we can

continue with checking the forbidden actions. Checking the

forbidden actions, however, unveiled serious flaws. In fact,

the CSS as modeled in Fig. 2 indeed allows for configurations

and situations in which a forbidden action is violated. More

precisely:

• The first flaw was caused by the modeling process of

the movement of the car. The designer expected that the

violation would occur as described in Fig. 4(a), but he

has not considered that two cars are allowed to be in

the same street slot as long as they are driving towards

opposite directions,2 as illustrated in Fig. 4(b). For fixing

the problem, new invariants must be added for describing

this situation and then checking flow must be restarted.

• The second violation was found for the third forbidden

action, horizontal and vertical traffic lights are green at

the same time. This forbidden action can occur, when

there are two emergency cars, both in service, driving

towards the same conjunction and one is located in a

vertical and the other one in a horizontal street. Such a

situation is sketched in Fig. 4(c). This could also happen

in a scenario with three or more emergency cars, leading

to a probable crash.

Both cases are not obvious and, hence, could have easily

been overseen by the designers. Using the proposed methodol-

ogy, it is possible to guarantee that situations or configurations

in which forbidden actions occur are never possible. After

2In this work, we are not considering overtaking.



fixing the two mentioned flaws, the verification flow was

restarted and, eventually, no further violations could have been

detected. By this, the absence of forbidden actions for a CSS

can be guaranteed – surely an important quality criteria for a

system which dynamically may change over time.

Concerning the run time performance, the methodology is

capable of proving the occurrence (or absence) of forbidden

actions in acceptable time. However, in order to get a more

detailed view, we further evaluated the scalability by increas-

ing the number of components to be considered. Fig. 5 shows

the resulting verification time with respect to the number of

instances per class. Since there are nine (non abstract) classes

of objects, the graph shows results for up to 117 objects (i. e.,

components). These numbers have been obtained from an Intel

i5 with 2.6 GHz cores with 16 GB of RAM.

As expected, the verification time increases exponentially.

This is in line with the performance of verification approaches

for conventional circuits and system [1]. Hence, how to

improve the verification methodology will also be an issue

in the domain of CSS.

VI. CONCLUSIONS

The next generation of electronic systems will be subject

to frequent dynamic changes after deployment and will be

connected by heterogeneous components which can join and

leave the system at any time. In this work, we denoted

those systems Complex Swarm Systems and discussed the

challenges which will emerge in their design and, in particular,

in their verification. In order to address these challenges, we

envisioned a verification methodology which is capable of

checking the considered systems despite their dynamic nature.

To this end, we do not aim for a complete verification anymore,

but, instead, guarantee that at least no forbidden actions

can occur. Solutions for model-based verification have been

applied for this purpose. By means of a running example, the

underlying problem and the feasibility of the proposed meth-

dology has been illustrated and demonstrated, respectively. By

this, we are laying down the foundation for the verification

of CSS. Future work will focus on improving the proposed

methodology with respect to efficiency and scalability.
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