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Abstract—The quest of achieving higher computing performance 

is driving the research on quantum computing, which is 

reporting new milestones almost on a daily basis. For practical 

quantum circuit design, fault tolerance is an essential condition. 

This is achieved by mapping the target functions into the 

Clifford+T group of elementary quantum gates. Furthermore, 

the application of error-correcting codes in quantum circuits 

requires the quantum gates to be formed between adjacent 

Qubits. In this work, we improve the state-of-the-art quantum 

circuit design by addressing both of the above challenges. First, 

we propose a novel mapping of Multiple-Control Toffoli (MCT) 

gates to Clifford+T group gates, which achieves lower gate count 

compared to earlier work. Secondly, we show a generic way to 

convert any Clifford+T circuit into a nearest neighbor one. We 

validate the efficacy of our approach with detailed experimental 

studies. 
 

Keywords— Quantum Cost, MCT (Multiple Control Toffoli), 

Clifford+T groups, NNC (Nearest Neighbor Cost)  
 

I.  INTRODUCTION  

Quantum computing [1-2] is one of the most promising 
computing technologies with established theoretical results 

proving that there exists a significant gap between the classical 

and quantum computing [3]. In terms of practical realization, 

new capabilities in devices [4] and circuits [5] are being 

reported on a regular basis.  

Quantum circuits are realized by several technologies such as, 

Ion Trap [6], Nuclear Magnetic Resonance (NMR) [7], Kane 

model [8] and superconducting circuits [9]. In a recent 

breakthrough, 2-qubit quantum gates have been realized in 

Silicon [10]. One of the major hindrances towards practical 

quantum circuit realization is fault-tolerance [11]. This is 
addressed at the logic level with fault detection strategies [12]. 

At the circuit level, error correcting codes are combined with 

physical qubits to provide maximum fidelity. Consequently, 

the universal operator set of Clifford+T [13] is chosen as the 

most suitable set due to the known constructions of Clifford 

group of operators and T gate for most promising error 

correcting codes, including surface codes. For surface codes, it 

is also necessary that the entangled gates are arranged in a 

nearest neighbor fashion. Therefore, an efficient mapping of a 

given function to a Clifford+T circuit with nearest neighbor 

construction is an important design challenge.  
 

A. Preliminaries  

Definition 1: The quantum state of a qubit  𝜓  is the 

superposition of the two basic states  0    𝑎𝑛𝑑   1  which is 

defined as  𝜓  = 𝛼 0  + 𝛽 1 , where 𝛼 and 𝛽 are the complex 

numbers that define probability values for states  0    𝑎𝑛𝑑   1 , 
respectively, such that |𝛼|2 + |𝛽|2=1.  
 

Each of the quantum gates, which are represented by unitary 

matrices, act on qubits. For a k-qubit quantum gate, the size of 

the unitary matrix is 2k x 2k. The number of qubits in the input 

and output of the gate are the same and all quantum gates are 

functionally reversible. The functionality of each quantum 
gate is obtained by multiplying the unitary transformation 

matrix with the quantum state vector.  

In Table 1, we show some of the common single-qubit and 

two-qubit quantum gates together with their operational 

behavior. 
 

Definition 2: A quantum gate library is a collection of 

quantum gates like NOT, CNOT, V/V+, W/W+ etc. that 

performs the logical mapping between quantum gates to 

universal reversible gates (MCT gates). 
 

NCV, NCVW, NCV|v1> are well known gate libraries [14-17] 

that can realize MCT gates. For example, a quantum gate 

realization of the two control Toffoli gate using the NCV gate 

library is shown in Fig. 1(a). 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Definition 3: A fault tolerant circuit is a circuit that can 

continue un-interrupted performance when faults are 

developed in the circuit. 
 

Fig. 1(a): Forward realization 

of 2-control Toffoli gate using 

the NCV library 
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Fig. 1 (c): Fault tolerant design of  Fig.1(a) using Clifford + T group 

 

 

Fig. 1(d): Fault tolerant NNC free design of  Fig.1(c) using naive approach  
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A fault-tolerant quantum circuit is such that, where Phase 

gates (S) in the circuit is free from control nodes. Using 

Clifford+T group, designing such a circuit is possible. In the 

Clifford group, gates such as Hadamard gate (H), Pauli's Z 

gate, Phase gate and CNOT gate are included. Besides that, 

also so-called T/T+ gates are additionally included. 
The fault tolerant design of a V/V+ gate is shown in Fig. 1(b). 

By mapping each of the quantum gates present in an MCT 

structure, an equivalent fault tolerant design can be obtained. 

The equivalent fault tolerant design of Fig. 1(a) is depicted in 

Fig. 1(c). Some well-known metrics that are considered to 

measure performance of a fault tolerant design are stated 

below. 

Definition 4: The quantum cost (QC) of a gate (g) is the 

number of elementary quantum operations performed to 

design the specified gate (g).  
 

Definition 5: The T-count value of a circuit is the number of 

T/T+ gate used to realize the input circuit. 
 

Definition 6: The amount of time that is required to obtain the 

first output after applying an input to a T gate is termed as T-
cycle.     

Definition 7: The minimum number of T-cycles that are 

required to execute all T operations in a fault tolerant circuit 

is termed as T depth. 
 

Definition 8: The number of gates in the circuit is called gate 

count.  
 

Definition 9: Number of cycles used to execute the entire 

circuit is termed as circuit depth.  
 

Definition 8: The Nearest Neighbor Cost (NNC) of a quantum 

circuit is defined as the sum of the NNCs of its gates; where 

for a quantum gate (g) having control at cth line and target at 

tth line has the NNC value |c−t −1|. An NNC free circuit 

always has either 1-qubit or 2-qubit gates in its configuration 

which operates on adjacent qubits by producing 0 Nearest 

Neighbor Cost. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The NNC free design of Fig. 1(a) using a naive approach is 

given in Fig. 1(d). 

B. Related Work and Contribution 

Though Clifford group [18, 19] of operators has the ability to  

 produce fault-tolerant circuits, it is not a universal operator set 

and, therefore, a non-Clifford gate T is added to the existing 

Clifford group and a new fault tolerant group Clifford+T is 

formed.  

Several design and automation approaches for constructing 

fault tolerant circuits using Clifford+T group are reported in  

[20-23], where the researchers have mainly studied the 

minimization of circuit size (T count, Gate count) and run time 
parameters (circuit depth, T depth).  

In a recent work [21], the authors have shown a heuristic 

approach to design fault tolerant MCT structures using the 

Clifford+T group. But the authors have restricted their work 

up-to 3-control MCT gates due to the increasing complexity of 

the approach.  

Moreover, for the physical realization of these fault-tolerant 

quantum circuits, NNC free designs of such circuits are 

another important requirement which is not studied in [21]. 

The most common way of converting a quantum circuit to a 

NNC free one, is by inserting SWAP gates. However, in order 
to minimize the overall cost of the circuit, appropriate SWAP 

sequences have to be incorporated and to achieve further 

minimization in the NNC free design, post synthesis schemes 

[24-28] have been proven very efficient. In [29], a template 

matching technique is proposed, which replaces the SWAP 

insertion scheme and reports suitable results with respect to 

NNC reduction. Although the presented scheme works for 

Clifford+T circuits, it has not been applied to the MCT 

mappings proposed in [21]. 

In this work, we show that an improved mapping of MCT 

gates to NNC free Clifford+T circuit is possible.  
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Matrix Diagram Properties 
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(symbol) 
Matrix Diagram Properties 
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TABLE 1: QUANTUM GATES AND THEIR PROPERTIES 



This is achieved by a set of templates for higher order MCT 

gates (we demonstrate this for up to 5-control lines) and NNC 

reduction by considering the linear nearest neighbor (LNN) 

property for CNOT gates. Our combined approach improves 

the circuit performance significantly. 

The rest of the paper is organized as follows. The proposed 
technique with examples is discussed in Section II. Section III 

deals with the experimental results and final concluding 

remarks appear in Section IV.  

II. PROPOSED TECHNIQUE 

Here we discuss the improved design methodology for 

constructing NNC free and fault tolerant MCT structures. The 

entire design procedure is composed of two phases.  

In the first phase, we have modified the algorithm of [21] and 

have incorporated a circuit optimization procedure aiming for 

better mapping of MCT gates to Clifford+T structures. First, 

we execute a heuristic template matching scheme over the 

quantum circuits, followed by two steps of phase gate 
reordering and redundant gates cancellation which together 

improve our design in comparison to the existing approach 

[21]. In the next phase, we have restructured the designs to 

make them NNC free.  
 

Phase 1: Improve mapping scheme for fault tolerant designs 

of NCV based MCT gates: 
 

Before stating the entire scheme, here we are defining a 

template which is extensively in our proposed mapping 

procedure.  
 

 Template 1: The defined template (as shown in Fig. 2(a)) is 

composed of a pair of Toffoli gates in which both the gates 

have the same control lines (c0 and c1) that act on the same 

target line (t). Mapping of each of the Toffoli gate to its fault 

tolerant structure does not lead to an optimization, and for that 
we have chosen a strategy to map both the Toffoli gates jointly 

into a fault tolerant one. We have appended the redundant 

CNOT gates to the initial structure in Fig. 2(b) and then find 

its optimized NCV-based quantum circuit after eliminating the 

redundant gates as depicted in Fig. 2(c). Then we map each 

V/V+ gates to its equivalent Clifford+T group based sub-

circuits. Next, we apply the possible transformation rules that 

have been defined in Table 2 over the circuit followed by 

cancellation of redundant gates present in the circuit.  

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

 
 

 
 

The intermediate design is presented in Fig. 2(d). The final 

fault tolerant structure corresponding to Fig. 2(a) is obtained 

and has been shown in Fig. 2(e). 

Now we present the proposed mapping scheme, which is 

composed of seven steps: 
 

Step1: Take an MCT gate (G) out of which a fault-tolerant 

design is to be obtained. 
 

Step2: Realize this gate as an NCV quantum gate circuit using 

the approach introduced in [14].  
 

Step3: The obtained circuit contains elementary quantum gates 

like NOT, CNOT, V/V+ and Toffoli gates. Now, scan the 

circuit from left to right and replace all the V/V+ gates with its 

equivalent Clifford group based sub-circuits. 
  

Step4: Reorder the circuit as per the rules stated in Table 2. 
 

Step5: Next, substitute all the controlled-Phase gates (S) 

existing in the circuit with equivalent control free Phase gates. 
Now, the circuit is composed of Hadamard gates (H), Clifford 

T/T+, CNOTs gates and a pair of two-control Toffoli gates. 
 

Step6: As the present circuit contains a pair of 2-control 

Toffoli gate, it is necessary to replace that structure with an 
equivalent Clifford+T-based fault tolerant sub structure 

(Template1). To this end, substitute the sub-circuit as in Fig. 

2(a) present in the circuit with the equivalent fault tolerant sub 

structure of Fig. 2(e).  
 

Step7: Apply the following two circuit optimization rules in 

the circuit:  
 

Step7.1: As the product of two H-gates is the identity remove 

two consecutive H-gates from the structure. 
 

Step7.2: Move phase gates (T/T+) across the control node of 

CNOT gates such that T-depth minimizes but no movements 

of phase gates are allowed across the target line of  NOT or 

CNOT gates. Otherwise, the functionality of the entire circuit 

will get modified. 
 

Step7.3: Interchange the control line and target line of two 

qubit phase gates when it is necessary according to rules 

defined in Table 2. 
                  

 

                                                

For better understanding of the entire design procedure, 

consider the following example, where the improved fault 

tolerant design of a 3-control Toffoli gate is discussed. 
 

Example 1: Initially, the 3-control Toffoli gate which is 

depicted in Fig. 3(a) is decomposed using the mapping 

technique stated in [14]; leading to the circuit in Fig. 3(b).  

Now, by replacing all the V/𝑉+ gates to its equivalent Clifford 

group based sub-circuits, the resulting structure shown in Fig. 

3(c) is derived.  Next, we reorder the phase gates in Fig. 3(c) 
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Fig. 2(d):  Reordering and then removing extraneous gates from the circuit  
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and obtain the modified design in Fig. 3(d). Then, replacing 

all the Phase gates (S) in Fig. 3(d) with equivalent Clifford +T 

based fault tolerant sub-circuits yields the circuit given in Fig. 

3(e). While reviewing the circuit of Fig. 3(e), we found a sub-

structure that matches the template in Fig. 2. So, substitute the 

sub-structure with Template1 and all the redundancies are 
removed from the design as per the principle stated in Step7. 

Finally, in Fig. 3(f), the obtained and improved fault tolerant 

design of the three control Toffoli gate is shown. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Phase 2: Making Clifford+T structures NNC free: 
 

Above, we have shown how to make a quantum circuit fault 

tolerant using Clifford+T group gates and have also 

formulated the strategies to improve the cost metrics of that 

circuit.  In this phase, we process the circuits that have been 

obtained after executing step5 from the previous section in 

order to make them NNC free.  
As stated in Section I, there already exist several well-known 

techniques to make any arbitrary circuit NNC free. Most of the 

approaches apply template matching schemes followed by a 

local and a global reordering scheme of gates to make the 

circuit NNC free. But as these approaches need some serious 

computation, the complexity of this approach quickly 

increases. 

Here we are showing an easier way to make our fault tolerant 

circuits NNC free using two simple templates that replace the 

non-NNC free gates or sub-circuits with equivalent NNC-free 

sub-structures. Interestingly, it can be noted that using any of 
the well-known NNC optimization techniques for the fault-

tolerant circuits considered here would yield the same result. 

However, in order to reduce the complexity, we have used the 

defined templates and associated strategy as proposed in this 

work. 

As the present circuit contains H gates, T/T+ gates, CNOT 

gates and pair of two control Toffoli gates in its design, where 

all the H gates and T/T+ gates in the circuit maintain physical 

adjacency between the two neighboring lines. That means they 

all are NNC free structures. But the CNOT gates and the pair 

of Toffoli gates that are present in the design are not NNC free 

structures and we have to make them NNC free to retain the 

entire design’s NNC at zero.  

To this end, we are utilizing the following templates:  
 

Template2: A CNOT gate having one ancillary line has to be 

replaced with the template as defined in Fig. 4. 

  
 

 

 
 

Template3: The NNC free fault-tolerant design of a pair of 

ancilla free 2-control Toffoli gates is given in Fig. 5. Initial 

diagram of the Toffoli gate is depicted in Fig. 5(a). After 

going through three intermediate stages (Fig. 5(b) to Fig. 

5(d)), the final design is obtained in Fig. 5(e).   

But if the pair of 2-control Toffoli gates contains ancillary 

lines, n for example, then the structure will be a bit different. 

For this scenario, first we have to decompose the initial 
structure using the previously defined template2 so that the 

decomposed design becomes NNC free. Though externally 

this decomposed design looks NNC free, it is not as it contains 

a pair of ancilla free 2-control Toffoli gates which are not 

NNC free. So, we have to substitute this pair of 2-control 

Toffoli gates with the NNC free fault-tolerant structure that we 

have defined earlier (in Fig. 5).  

The above stated idea is explained in Fig. 6, where the initial 

design of a pair of 2-control Toffoli gates containing n 

ancillary lines and its decomposed structure are depicted in 

Fig. 6(a) and Fig. 6(b), respectively. After substituting the pair 
of ancilla free 2-control Toffoli gates (shown in the dotted 

box) in Fig. 6(b) with NNC free fault tolerant structure of Fig. 

5, the final NNC free fault tolerant design of Fig. 6(a) is 

obtained in Fig. 6(c).  
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Fig. 5(c) Equivalent NCV 
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If the defined templates are mapped over the fault tolerant 

design of three controls Toffoli gate in Fig. 3(e), then the 
circuit will be transformed into a NNC free design and after 

applying optimization rules over it finally Fig. 7 is obtained. 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Example 2: The NNC free fault tolerant structure of a 5-

control MCT gate is shown in Fig. 8. The initial design of the 

MCT gate is depicted in Fig. 8(a).  Fig. 8(b) presents the fault 

tolerant realization of the gate. After removing all the non 

NNC based gates from the circuit, the final fault-tolerant NNC 
free design is given in Fig. 8(c).      

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 7: NNC free fault tolerant design of 3-control MCT gate  
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Fig. 6(c): Optimized NNC free structure of Fig. 6 (a) 
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Fig. 8(c):  NNC free fault tolerant design of 5-control MCT gate 
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III. EXPERIMENTAL RESULTS 

Here we give two sets of results in two separate tables – Table 
3 and Table 4 where we have shown various cost metrics after 

applying our entire approach over MCT gates and benchmark 

circuits [30].  We have compared our results with [21] where 

fault tolerant circuits are designed followed by NNC free 

technique as stated in [29]. Percentage improvements in both 

the tables are calculated and are shown. In Table 3, it can be 

observed that improvements are attained when MCT sizes 

increases but in that table for the first two rows improvements 

are not seen as the gates in the respective two rows do not 

have any ancillary lines. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

IV. CONCLUSION 

In this work, we have proposed an improved design technique 

for constructing NNC free fault tolerant quantum circuits 

relying on the Clifford +T library for MCT gates. The 

proposed scheme has two phases. In the initial phase, we have 

improved the mapping scheme from MCT gates to its fault-

tolerant design by reducing gate count and circuit depth, while 

in the second phase, we have made these circuits NNC free. In 
future work, we will investigate how to realize higher order 

MCT gates as NNC free fault tolerant quantum circuits.   
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TABLE 3: FAULT-TOLERANT NNC FREE DESIGN OF MCT GATES 

No.  of 

control 

lines 

Cost metrics obtained 

using 

technique [21] followed 

by [29] 

Proposed design cost 

metrics  

% 

Improvements 

n  QC TC 

 

GC 

 

CD  QC TC 

 

GC 

 

CD QC% CD% 

0  1 0 1 1  1 0 1 1 0 0 

1  1 0 1 1  1 0 1 1 0 0 

2  20 7 20 13  19 7 19 13 5 0 

3  62 18 62 49  56 18 56 46 9 6 

4  102 28 102 81  94 28 94 76 7 6 

5  178 44 178 150  140 44 140 128 21 14.66 

Average improvement 7 4 

 
TABLE 4: COMPARATIVE ANALYSIS USING BENCHMARK CIRCUITS 

Benchmark 

names 

Cost metrics obtained 

using 

technique [15] followed 

by [21] 

Proposed design cost 

metrics 

 

% 

Improvements 

n  QC TC 

 

GC 

 

CD  

 

QC 

 

TC 

 

GC 

 

CD QC CD 

mod5adder  438 99 438 319  417 99 417 313 4 1 

permanent 

2x2 
 160 42 160 121  150 42 150 116 6 4 

main\2of5\d

esign#1 
 514 125 514 416  475 125 475 396 7 4 

bnhmrk_1  281 72 281 232  235 72 235 205 14 11 

bnhmrk_2  342 90 342 280  290 90 290 250 15 10 

bnhmrk_3  198 51 198 163  159 51 159 141 19 13 

Average improvement 11 7 

 
GC: Gate Count 

count 

 

TC: T-Count 

 

QC: Quantum Cost  

 CD: Circuit Depth 

count 

 

n:  No. of control lines  

count 

 


