
Re-writing HDL Descriptions
for Line-aware Synthesis of Reversible Circuits

Zaid Alwardi∗† Robert Wille‡§ Rolf Drechsler∗§

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Collage of Engineering, Al-Mustansiriya University, Baghdad, Iraq

‡Institute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria
§Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{alwardi,drechsle}@informatik.uni-bremen.de robert.wille@jku.at

Abstract—Reversible computing is a promising research field
due to its applications in several emerging technologies. Accord-
ingly, several approaches for the design of reversible circuits
have been introduced – including solutions realizing functionality
provided in terms of hardware description languages. Their main
drawback is, however, that they require a substantial amount
of additional circuit lines. While some solutions addressing this
problem have been proposed in the past, the contribution of
the respectively given HDL code to this drawback has hardly
been considered yet. In this work, we are considering this
problem from this angle: Observations have been conducted
which, eventually, led to a set of re-writing rules for a line-
aware synthesis of reversible circuits from HDL descriptions.
Case studies show the benefits of these rules – in total, substantial
reductions in the number of circuit lines have been observed.

I. INTRODUCTION

Reversible computing is an interesting research field due
to its promising applications in many emerging technologies,
such as quantum computing [1], [2], low power design [3],
[4], [5], or the design of encoders/decoders [6]. Accordingly,
researchers heavily investigated how to synthesize a given
function in terms of a reversible circuit while, at the same
time, keeping the costs of the resulting netlists small. Usually,
costs are measured in terms of gate costs which, depending
on the design objective, e.g. represents quantum costs [7],
[8] or transistor costs [4]. Besides that, it is tried to keep
the number of circuit signals (circuit lines) minimal. This is
mainly motivated by the fact that, in the domain of quantum
computation, each circuit line has to be represented by a qubit
– usually considered a very limited resource [2].

First synthesis approaches e.g. based on permutations [9],
transformations [10], positive-polarity Reed-Muller spec-
tra [11], Boolean satisfiability [12], and others accordingly
aimed for keeping the number of circuit lines minimal.
Since this always required a truth table-like description of
the function to be synthesized, this frequently led to an
exponential explosion and, hence, an applicability for rather
small functions only. As an alternative, hierarchical approaches
have been introduced which decompose a given function to
be synthesized into smaller sub-functions and, hence, apply
a divide-and-conquer scheme. To this end, binary decision
diagrams [13] or two-level function descriptions such as
ESOPs [14] have been utilized. Moreover, even initial ap-

proaches based on Hardware Description Languages (HDL)
have been proposed [15], [16]. These solution indeed allow
for the synthesis of large functionality. But at the same time,
they usually require a significant amount of additional circuit
lines – a serious drawback.

In this work, we aim to improve on this drawback for HDL-
based synthesis of reversible logic. To this end, we focus on the
HDL SyReC as well its corresponding synthesis scheme intro-
duced in [15]. SyReC is capable of realizing large functionality
in terms of reversible circuits, but suffers from a seriously
large number of additionally required circuit lines. Although
significant improvements on that have recently been achieved
by employing a so-called garbage-free synthesis (see [17])
or a dedicated consideration of the synthesis of expressions
(see [18]), the number of additionally required circuit lines
is still far beyond the known theoretical bounds [19]. Also
the application of post-synthesis optimization techniques such
as proposed in [20], [21] does not reduce this number of
additional lines to a moderate level.

As an alternative, we now try to additionally address this
issue from a different angle: Instead of optimizing the syn-
thesis scheme itself, we consider how the originally given
HDL description affects the number of additionally required
circuit lines. To this end, we analyze statements that generate
additional lines and replaced them with equivalent statements
causing less additional lines. Based on our observations, we
derived re-writing rules that allow for a simple pre-synthesis
optimization of a given HDL description. Case studies confirm
that the fashion in which HDL code is provided, has a
significant effect on the total number of additional lines. In
total, substantial reductions can been observed.

The reminder of this work is structured as follows: The next
section reviews the basics on reversible circuits, the reversible
HDL SyReC, as well as the corresponding synthesis scheme.
Afterwards, the motivation of this work is provided, i.e. it
is shown how HDL descriptions may affect the number of
circuit lines. From this, corresponding rules are derived which
are presented and illustrated in Section IV. Their application
is eventually discussed and evaluated in Sections V and VI,
respectively, before the paper is concluded in Section VII.

II. BACKGROUND

This section provides a brief background on reversible cir-
cuits, the reversible HDL SyReC, as well as the corresponding
synthesis scheme which is required to keep the paper self-
contained.

A. Reversible Circuits
Reversible circuits realize functions f : IBn → IBn with

a unique input/output mapping, i.e. bijections. A reversible
circuit G = g1 . . . gd is composed as a cascade of re-
versible gates gi [2]. The inverse of G (representing the func-
tion f−1 and denoted by G−1) can be obtained by cascading
g−1d g−1d−1 · · · g

−1
1 , where g−1i is the inverse gate of gi. Since the

gates considered in this paper are self-inverse (i.e. gi = g−1i),
G−1 can simply be obtained by reversing the order of the
gates of G.

For a set of signals X = {x1, . . . , xn}, a reversible gate has
the form g(C, T), where C = {xi1 , . . . , xik} ⊂ X is the set
of control lines and T = {xj1 , . . . , xjl} ⊆ X with C ∩T = ∅
is the non-empty set of target lines. The gate operation is
applied to the target lines if, and only if, all control lines meet
the required control conditions. Control lines and unconnected
lines always pass through the gate unaltered.

In the literature, several types of reversible gates have
been introduced. Usually, circuits realized by Toffoli
gates and Fredkin gates are considered. A Toffoli gate
has a single target line xj and uniquely maps the
input (x1, x2, . . . , xj , . . . , xn) to the output
(x1, x2, . . . , xi1xi2 · · ·xik ⊕ xj , . . . , xn). That is, a Toffoli
gate inverts the target line if, and only if, all control lines
are assigned the logic value 1. An Toffoli gate with no (one)
control line is also denoted as NOT (CNOT) gate. A Fredkin
gate has two target lines xj1 and xj2 and interchanges their
values if, and only if, the conjunction of all control lines
evaluates to 1.

By definition, reversible circuits can only realize reversible
functions. In order to realize non-reversible functions, addi-
tional circuit lines with constant inputs and garbage outputs
(i.e. don’t care outputs) are applied (see e.g. [11], [19]).
Furthermore, additional circuit lines are also used frequently
in hierarchical synthesis approaches (e.g. [14], [13], [15]).

B. The Reversible HDL SyReC
SyReC has been proposed as a reversible HDL in [15]1.

A SyReC program is composed of modules in which the
desired I/O functionality is specified. Fig. 1 shows such a
module. The first line defines its name (example) as well
as the involved signals with its type (in/out/inout), name
(a, b, x, f), and bit-width (32). Line 2 is an explicit declaration
of an internal signal (wire) which is supposed to be used only
within this module. The remaining lines define the statements
to be executed on these signals. More precisely, the signals on
the left-hand side (LHS) (i.e. t,x,f) are updated according to
a respectively applied reversible operation (ˆ=, +=) and the
expression on the right-hand side (RHS).

1SyReC is partially reviewed within this paper. For more details, we refer
to [15] as well as to the detailed documentation provided at the RevLib
benchmark webpage [22].

1 module example(in a(32), in b(32), inout x(32), out f(32))
2 wire t(32)
3 t ˆ= (a & b)
4 x += (((a * b) + (a / b)) - ((a + b) / t))
5 f ˆ= (((t + b) ˆx) * (a - b))

Fig. 1. Simple SyReC program

t t∧=(a&b)∧
0 garbage&
a a

b b

(a&b)

(a) Original Synthesis Scheme

t t∧=(a&b)∧
0 0& &−1

a a

b b

(b) Garbage-free Synthesis Scheme

Fig. 2. SyReC synthesis for t ⊕= (a�b)

In SyReC, only the reversible operations XOR, increase,
and decrease, i.e. {ˆ=, +=, -=}, are allowed for signal
updates. An expression IE can either be a simple signal
identifier or a binary-expression in the form (IEleft � IEright),
where IEleft and IEright are again (sub-)expression. Binary-
operations � are not restricted to reversible ones, but can
assume a wide range of binary-operators including arithmetic,
bit-wise, logical, relational and shift operators. Reversibility is
guaranteed by asserting that signals on the LHS must not occur
on the right-hand side. Then, signal values are updated only
through reversible operations while the values of the signal on
the RHS always keep their value.

C. SyReC-based Synthesis
SyReC programs allow for the definition of complex re-

versible functionality. In order to realize this, a synthesis
scheme as sketched in Fig. 1 for the statement t ˆ= (a & b)
(Line 3 of Fig. 1) is applied. Here, the target signal t is updated
with the result of the binary expression (a & b) using the
reversible update operator ˆ=.

Fig. 2(a) shows the resulting circuit structure. First, the
binary-operator & is realized2. Since & is non-reversible,
constant-input lines are added to the circuit to preserve re-
versibility [15]. This eventually results in a garbage output.
Afterwards, the result of this operation is applied to the
respective reversible update ˆ=, which eventually realizes this
statement (see Fig. 2(a)).

Following this scheme, a new additional circuit lines are
added with each statement – resulting in a large number of
lines. These accumulated lines are the main drawback of
the SyReC-based synthesis approach. Hence, an alternative
has been proposed in [17]. Here, a garbage-free synthesis is
proposed which is sketched in Fig. 2(b). The first steps are
identical to the previous approach. But after the reversible
update has been conducted, a third block is added which
inverses the computation of the first block. Because of that,
the (intermediate) result of the binary operation (which is
not needed anymore) is re-computed to its original value 0,
allowing the same line to be reused by other statements. This

2Operators are defined for various bit-widths. Both signals must have the
same bit-width.

0 0

⊕ ⊕ ⊕

� � � � � �

6 5

1 1 6 6 4 4

2 6

Fig. 3. Effect of expression size

eventually leads to a total number of additionally required
circuit lines, which is bounded by the largest bit-width an
expression in the given SyReC code requires. An example
illustrates the idea:

Example 1. Recall the SyReC code in Fig. 1 and its three
statements in lines 3, 4, and 5. The garbage-free synthesis
results for this program is sketched in Fig. 3. The three
statements have an expressions with 1, 6, and 4 operations,
respectively. Accordingly, 1, 6, and 4 additional circuit signals
(each with the corresponding bit-width) are required. Since
previously used signals can be re-used, the overall circuit
eventually requires max(1, 6, 4) = 6 additional circuit signals.

As a drawback, garbage-free synthesis almost doubles gate
costs. But instead, it significantly reduces the number of circuit
lines (as also experimentally confirmed in [17]). Nevertheless,
the number of additionally required circuit lines remain high
for many HDL programs.

III. MOTIVATION

Garbage-free synthesis as reviewed above already leads to
substantial reductions in the number of additionally required
circuit signals. But as shown in Fig. 3, circuits with a rather
high number of additional lines still result. Moreover, it
shows that this number heavily relies on the size of the
expressions (i.e. its number of operations) to be synthesized.
This motivates a consideration from a different angle: Instead
of optimizing the synthesis approach itself, also the fashion in
which reversible HDL descriptions are given provides potential
for improvement. In this section, we illustrate observations
which can be exploited for this purpose. This eventually
results in re-writing rules, which are proposed and applied
in Section IV and Section V.

A. Split Expressions

As reviewed in Section II-C, garbage-free synthesis adds a
number of lines equal to the number of binary-operators in the
largest expression of a given HDL description. Consequently,
reducing the number of operations in this particular expression
leads to a reduction in the number of lines of the overall circuit.
The example illustrates the idea:

Example 2. Consider the statement in Line 4 of Fig. 1:

x += (((a * b) + (a / b)) - ((a + b) / t))

This statement has the largest expression in the module that
contains 6 binary-operators, which means that 6 lines will
implicitly be added to realize the circuit. This expression is
composed of two sub-expression operands for the operator -:
The left operand is ((a * b) + (a / b)) with 3 operators and

the right operand is ((a + b) / t) with only two. The exact
value of the target signal x can calculated with, even shorter
expressions, as follows:

x += (a * b)
x += (a / b)
x -= ((a + b) / t))

Although equivalent to the original statement, the new code
reduces the size of this expression from 6 to only 2. As a
consequence, only two additional circuit signals are needed
anymore for this statement. Considering the overall structure
as shown in Fig. 3, this allows for realizing the circuit with
4 additional circuit signals only (due to the new bound set by
the statement in line 5).

B. Internal Wires
Unfortunately, splitting expressions as discussed above is

only possible if the respective top-level operation of the
expression can be realized by a reversible update. In other
cases, no reversible computation is guaranteed anymore. How-
ever, this problem can be circumvented if wires are applied.
They introduce a constant signal to the circuit and, since
(0 ˆ E) = E, allow to copy the result of an expression E.
Although wires also introduce additional circuit lines in the
worst case, this may prove beneficial as illustrated next:

Example 3. Consider the statement in Line 5 from Fig. 1:

f ˆ= (((t + b) ˆ x) * (a - b))

This statement assigns the result of an expression with 4
binary-operators to the target signal. The root binary operator
of this expression is not reversible (∗), i.e. a splitting as done
before is not possible directly. However, a new wire (w) can
be declared for this purpose. Then, the intermediated result
can be buffered and applied to non-reversible operations. The
value of the target signal (f) is then computed as follows:

w ˆ= ((t + b) ˆx)
f -= (w * (a - b))

In this case the new statements have expressions with only
2 operators each. As the wire signal (w) requires an “own”
circuit signal, the total number of signals for the overall circuit
is reduced to 3 (compared to the original 6 and the 4 obtained
by splitting expressions only).

Of course, the internal signal should be re-computed as well
in order to allow for re-using the corresponding circuit signal
for another statement. For this purpose, the following inverse
statements can be applied:

1) S ˆ= E is a self inverse statement as long as
((S ˆ E) ˆ E)= S, which means that the initial value
of the target signal S is re-computed by repeating this
statement twice3.

2) The inverse statement of S += E is S -= E.
This leads to an undo for internal wires as shown in the

following example.

3The value of the RHS is assumed to be equal (unchaged) in both
statements.

Example 4. Consider again the code from Example3. Adding
the following code re-computes signal w to its initial value 0.

wire w
w ˆ= ((t + b) ˆx)
f -= (w * (a - b))
w ˆ= ((t + b) ˆx) // re-compute w

As a consequence, the corresponding circuit signals can be
re-used for another statement.

IV. DERIVED RE-WRITING RULES

The observations from the previous section show that the
respectively given HDL code may have a significant impact
to the overall number of additionally required circuit lines.
Hence, optimizing an HDL code in this regard provides a
promising approach to correspondingly optimize a resulting
circuit. To this end, several re-writing rules have been obtained
which are introduced in this section. They application and eval-
uation is, afterwards, discussed in Section V and Section VI,
respectively.

In order to describe the re-writing rules, the following
notation is applied:

- S denotes a general explicit signal identifier. Other upper
case letters may also be used for the same purpose if
needed.

- W denotes an internal wire signal identifier.
- � denotes a binary operator, such as arithmetic, logical,

relational, shift, and bit-wise operators.
- ⊕ denotes a reversible binary operator, which is a special

case of �, i.e. {ˆ, +, -}.
- IE denotes an expression that can be a simple signal

identifier or has the general form (IEleft � IEright)
where the operands IEleft and IEright are expressions.

- SS denotes a statement to update the value of a signal S
with the value of the binary expression IE by using the
reversible operator ⊕ =, i.e. SS denotes S ⊕ = IE.

- SS−1 denotes the inverse statement of SS with the inverse
update operator ⊕−1= of the original operator ⊕=,
where (− ≡ +−1) and ˆ is self-inverse.

Using this notation, the following rules for re-writing HDL
statements are proposed:
R1: A signal update statement SS of the form

S⊕ = (IEleft ⊕ IEright)

can be re-written to
S ⊕ = IEleft

S ⊕ = IEright

if ⊕ = and ⊕ are both either ˆ, +, or -.
R2: A statement S + = IE can be re-written to S ˆ= IE, if

(S = 0) (since (0 + E) = (0ˆE) = E).
R3 If

⊕
and ⊕ are two reversible operators and S is a signal

that appears just once within the combined expression
within the statement SS such as

T
⊕

= (. . . (S ⊕ IE) . . .)

then SS can be re-written to
S ⊕ = IE
T

⊕
= (. . . S . . .)

S ⊕−1 = IE

R4: Any statement SS with any arbitrary binary expression
IE on the RHS can be re-written to two sub-expressions
by assigning one of its operands into a wire (W = 0)
as follows:

W ˆ= IEleft

S ⊕ = (W � IEright)
The value of W can be re-computed to 0 using the
inverse statement W ˆ= IEleft if the wire is needed
for reuse in the rest of the program.

R5: An internal wire W is redundant and can be substituted
by the signal S, if (S = 0) and W is last accessed to
initialize S with statement: S ˆ= W .

V. APPLICATION OF THE RE-WRITING RULES

The re-writing rules described above can be applied to
optimize a given HDL code with respect to additionally
required lines needed by the synthesis. In this section, the
application of the respective rules is discussed and illustrated
by examples.

Applying the rule R1 is useful with respect to many is-
sues. First of all, when a binary operator is substituted by
a reversible update operator, an additionally required circuit
signal is saved. But besides that, the circuit GS⊕=IE is
also synthesized with lower cost as compared to G(S ⊕ IE)

(since splitting the expression also reduces the size of it).
Hence, two improvements are accomplished at once. A cor-
responding example illustrating this has already been pro-
vided by Example 2. Note that small re-writings have ad-
ditionally to be considered, e.g. when the decrease operator
is applied, e.g. S−=(IEleft + IEright) has to be mapped
to S−=IEleft;S−=IEright (changing the addition from the
original expression to a subtraction).

The rule R2 is conditionally applicable for 0-valued signals,
such as (wire/out) signals before they have been initialized or
after they have been re-computed. The statement GS∧=IE is
synthesized with lower cost than the statement GS+=IE, which
means that the rule can be used to reduce the cost. Besides that,
further simplifications may be achieved in some cases, if R2
is combined with R1 as illustrated in the following example.

Example 5. R1 is not applicable for statement:
S ˆ= (IEleft + IEright), because the two operators
are not equivalent. However, if (S=0), then R2 along
with R1 can be applied to split the statement into
S ˆ= IEleft; S+ = IEright.

Rule R3 is illustrated by means of the following example:

Example 6. R3 can be applied in order to re-write the
statement

y ˆ= ((a * ((b * c) + x) / d)
to

1 x += (b * c)
2 y ˆ= ((a * x)) / d)
3 x -= (b * c) // re-compute x

It is not possible to reduce the size of this expression using
R1 or R2, because the root operator is not reversible (/).
Instead, R3 is applicable for this statement to update signal x

because it appears only once in the expression. The value of
x is increased by the value of the sub-expression (b * c) in
the first line. The signal x is updated to be (b * c) + x), then
used to calculate the required expression in the second line.
Finally the original value of x is re-computed in the last line.

Rule R4 is illustrated by means of the following example:

Example 7. The following statement
y ˆ= (((a * b) / (a + b)) * ((c / d) * (c - d)))
can be re-written to

1 wire L
2 L ˆ= ((a * b) / (a + b))
3 f ˆ= (L * ((c / d) * (c - d)))
4 L ˆ= ((a * b) / (a + b)) //re-compute L

In this example, the original expression contains 7 opera-
tors, while the equivalent program reduces them to only 4 in
the largest expression, plus the declared wire L, i.e. the total
number of required signals is reduced from 7 to 5.

Hence, R4 can be applied to assign the result of a sub-
expression to a signal. If this is done for the sub-expression
of a statement with a larger number of operations, a reduction
in the number of required circuit lines is achieved.

Note that the re-computations of wires as conducted in
rules R3 and R4 increase the gate costs. Hence, this constitutes
a trade-off between circuit lines and gate costs as e.g. also
observed in [21]. Of course, these re-computations can be
omitted if the original signal values are not required for further
statements anymore

The rule R5 can be used, in some cases, to remove wires
as illustrated by the following example:

Example 8. Consider the following code:

1 module rule5(in a(8) in b(8), inout x(8), out s(8))
2 wire w(8)
3 w ˆ= (a * b)
4 y += (w / 2)
5 s ˆ= w

Signal s is declared as an output signal with initial value s=0.
Line 5 sets s to the value of the internal wire w. Hence, R5
can be applied to remove the wire w as follows:

(1) Erase the declaration statement of the wire (w),
i.e. line 2.

(2) Erase the statement initializing signal s, i.e. line 5.
(3) Substitute the wire w with the signal s, as follows:

1 module rule5(in a(8), in b(8), inout x(8), out s(8))
2 s ˆ= (a * b)
3 x += (s / 2)

Removing w reduces one signal. Additionally, removing line 5
decreases the gate cost.

Applying these rules result in programs with larger number
of statements but with shorter expressions. These programs are
optimized for garbage-free synthesis to produce circuits with
less additionally required circuit lines. On the downside, this
resulting programming style is usually less readable compared
to the originally given code.

Example 9. The following SyReC program represent the a
re-written equivalent to the program in Fig.1:

1 module example(in a(32), in b(32), in x(32), out f(32))
2 wire t(32)
3 t ˆ= (a & b)
4 x += (a * b)
5 x += (a / b)
6 a += b
7 x -= (a / t)
8 a -= b
9 t += b

10 t ˆ= x
11 a -= b
12 f ˆ= (t * a)

Expressions in this code contain one or no operator at all.
Consequently, only one line is implicitly added to the circuit,
in comparison to the original code which adds 6 lines.

VI. EXPERIMENTAL EVALUATION

The effect of the proposed re-writing rules to the number
of lines as well as the costs of the resulting circuits has
been evaluated. To this end, we considered HDL descriptions
(taken from RevLib [22] and provided in SyReC notation) and
optimized them using the rules from above. Afterwards, we
realized the resulting HDL descriptions using the synthesis
approach proposed in [15] together with its optimizations as
proposed in [17]. In this section, the obtained results are
summarized and discussed.

Table I provides a numerical overview of the obtained
results4. The first column denotes the name of the HDL
description as well as the total number inputs/outputs which
have to be derived according to the HDL code. Afterwards,
the number of actually derived circuit lines and the resulting
quantum costs are reported for the synthesis approach orig-
inally proposed in [15], the garbage-free synthesis approach
proposed in [17], and the results obtained by applying the
proposed re-writing rules and, afterwards, synthesizing the
resulting HDL code with the garbage-free synthesis approach.
For the number of circuit lines, we did not only list the total
number of lines but also the percentage difference of them
with respect to the number of input/output lines (i.e. 50% in
this column states that, with respect to the input/output lines
which are needed anyway, 50% additional lines are introduced
because of the synthesis scheme). Finally, columns denoted
by Diff. list the percentage difference of the results obtained
by the proposed method compared to the results of the state-
of-the-art proposed in [17] (i.e. 50% in this column states
that the proposed scheme yields a circuit which has 50%
of the additional lines/quantum costs than the circuit derived
from [17]).

The numbers clearly show that the proposed re-writing rules
lead to substantial reductions in the number of additionally re-
quired circuit lines for almost all considered HDL descriptions.
In some cases, the number can be reduced to just a fraction
of what was needed before. Moreover, all these improvements

4The first row shows the results of the HDL description from Fig. 1 which
has not been taken from RevLib.

TABLE I
EXPERIMENTAL EVALUATION

Number of Circuit Lines Quantum Cost
Benchmark Orignal [15] Garb.free [17] Proposed Diff. Orignal [15] Garb.free [17] Proposed Diff.

name Lio Lt Lad% Lt Lad% Lt Lad% wrt. [17] wrt. [17]
Fig. 1 128 512 300% 352 175% 192 50% 29% 2460912 4921296 4919024 100%
Acc 160 352 120% 288 80% 256 60% 75% 2435006 4569948 4869820 107%
Var10 96 376 292% 208 117% 128 33% 29% 44626 87168 85888 99%
Fact4 48 152 217% 104 117% 72 50% 43% 4841 9640 6956 72%
Fact8 80 280 250% 168 110% 120 50% 45% 9665 19264 16060 83%
Poly4 56 136 143% 88 57% 80 43% 75% 10836 21248 17384 82%
Poly4-loop 56 160 186% 104 86% 80 43% 50% 9153 17856 17384 97%
Poly8 88 376 327% 152 73% 128 45% 63% 38144 75488 41300 55%
Poly8-loop 88 288 227% 168 91% 128 45% 50% 18289 35696 41300 116%
alu-233 98 229 134% 133 36% 133 36% 99% 1704912 3407588 3401244 100%
alu-flat-239 50 118 136% 67 34% 67 34% 100% 181662 363012 361172 99%
cpu-alu-16bit-242 55 404 635% 142 158% 142 158% 100% 662531 1281717 1229192 96%
cpu-alu-32bit-243 103 756 634% 254 147% 252 145% 99% 2235491 4381653 4222827 96%
cpu-control-unit-244 232 391 69% 290 25% 272 17% 69% 40433 80142 79093 99%
lu-238 98 197 101% 133 36% 132 35% 97% 6557 10462 7966 76%
simple-alu-234 98 229 134% 133 36% 133 36% 100% 144791 287346 278504 97%
varops-250 96 224 133% 192 100% 192 100% 100% 2801 4176 3120 75%

Lio: Total number of input/output lines according to the HDL descriptions Lt: Total number of resulting circuit lines
Lad%: Percentage difference in the number of resulting circuit lines with respect to the number of input/output lines

can be obtained while, at the same time, hardly increasing
the resulting quantum costs. In fact, in almost all cases the
quantum costs remain the same or even get reduced. This
is particularly remarkable since previous studies frequently
showed a trade-off between the number of circuit lines and
the quantum costs [21].

Overall, the evaluation shows that re-writing HDL descrip-
tion for reversible circuit synthesis is a promising direction to
get more compact results than the current state-of-the-art.

VII. CONCLUSIONS

In this work, an improvement for the synthesis of HDL
descriptions for reversible circuits has been proposed. Here,
the substantial amount of additionally required circuit lines
constitutes a major problem. Instead of further optimizing the
synthesis scheme itself, we proposed to change the respec-
tively given HDL code instead. This motivated an observation
which eventually resulted in the derivation of re-writing rules.
Case studies and experimental evaluations showed that apply-
ing the re-writing rules yields substantial improvement with
respect to the number of additionally required circuit lines. At
the same time, the costs of the circuit remain stable or are
even also improved.

ACKNOWLEDGMENTS

This work has partially been supported by the EU COST
Action IC1405.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Foundations of Computer Science, pp. 124–134, 1994.

[2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[3] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling – a gedanken model,” Proc. of the IEEE,
vol. 91, no. 11, pp. 1934–1939, 2003.

[4] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[5] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[6] R. Wille, R. Drechsler, C. Oswald, and A. Garcia-Ortiz, “Automatic
design of low-power encoders using reversible circuit synthesis,” in
Design, Automation and Test in Europe, 2012, pp. 1036–1041.

[7] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[8] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-control toffoli gates,” in Int’l Symp. on Multi-
Valued Logic, 2011, pp. 288–293.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[10] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[11] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[12] R. Wille, H. M. Le, G. W. Dueck, and D. Große, “Quantified synthesis
of reversible logic,” in Design, Automation and Test in Europe, 2008,
pp. 1015–1020.

[13] R. Wille and R. Drechsler, “Effect of BDD optimization on synthesis
of reversible and quantum logic,” in Conference on Reversible Compu-
tation, 2009, pp. 33–45.

[14] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli gate cascade
generation,” in Communications, Computers and Signal Processing,
2007. PacRim 2007. IEEE Pacific Rim Conference on, 2007, pp. 206
–209.

[15] R. Wille, E. Schonborn, M. Soeken, and R. Drechsler, “SyReC: A
hardware description language for the specification and synthesis of
reversible circuits,” INTEGRATION, the VLSI Jour., vol. 53, no. 3, pp.
39 – 53, 2016.

[16] M. K. Thomsen, “A functional language for describing reversible logic,”
in Forum on Specification and Design Languages, 2012, pp. 135–142.

[17] R. Wille, M. Soeken, E. Schönborn, and R. Drechsler, “Circuit line
minimization in the HDL-based synthesis of reversible logic,” in IEEE
Annual Symposium on VLSI, 2012, pp. 213–218.

[18] Z. Al-Wardi, R. Wille, and R. Drechsler, “Towards line-aware realiza-
tions of expressions for HDL-based synthesis of reversible circuits,” in
Conference on Reversible Computation, 2015, pp. 233–247.

[19] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the minimal
number of lines for large reversible circuits,” in Design, Automation
and Test in Europe, 2011, pp. 1204–1207.

[20] R. Wille, M. Soeken, and R. Drechsler, “Reducing the number of lines
in reversible circuits,” in Design Automation Conf., 2010, pp. 647–652.

[21] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler, “Trading off circuit
lines and gate costs in the synthesis of reversible logic,” INTEGRATION,
the VLSI Jour., vol. 47, no. 2, pp. 284–294, 2014.

[22] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

