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Abstract—Verification and validation of UML/OCL
models is a crucial task in the design of complex soft-
ware/hardware systems. The behavior in those models
is expressed in terms of operations with pre- and post-
conditions. These, however, are often not precise enough
to describe what may or may not be modified in a
transition between two system states. This frame problem
is commonly addressed by providing additional constraints
in terms of so-called frame conditions and has already
been considered in different research areas in the last
decades – except for UML/OCL where corresponding
approaches have been investigated only recently. Besides
that, several approaches for the verification of the behavior
specified in UML/OCL models have been proposed. They
rely on a symbolic representation of all possible system
states and transitions between them. But here, frame
conditions have not been considered yet – a significant
drawback for the underlying verification approaches. In
this paper, we describe how to integrate frame conditions
to symbolic representations. This enables designers to
verify the behavior of UML/OCL models while, at the
same time, respecting the given frame conditions.

I. INTRODUCTION & MOTIVATION

The Unified Modeling Language (UML) [1] is the de facto
standard modeling language for software development, but
its high level of abstraction also allows for the modeling of
complex systems in general. In addition, the Object Constraint
Language (OCL) [2] can be used to extend a UML model
with additional textual constraints that define further properties
and relations between the respective parts of the model. This
way, it is, e. g., possible to restrict valid system states by
invariants or to describe the behavior of operations by means
of pre- and postconditions. The combination of UML and OCL
is a promising abstraction in order to deal the complexity
of today’s electronic system. Thus, researchers started to
investigate the integration of modeling languages in the design
of hardware systems such as embedded systems [3].

However, particularly the descriptions of operations, i. e.,
pre- and postconditions, are often not precise enough to
describe what may or may not be modified in a transition
between two system states. While they usually allow to define
restrictions of the calling and the succeeding system state, they
are unsuitable to describe which parts of the model are allowed
to change inside a frame. Recently, this frame problem has
been addressed by providing additional constraints in terms of
so-called frame conditions. Frame conditions describe which
model elements may change during the transition from one
system state to another and, thus, avoid unintended behavior.

A crucial step in the design process of a complex system
is its verification, i. e., checking whether the derived model is
correct. Several approaches have considered the verification
of behavioral aspects of UML/OCL models using methods
such as Constraint-Satisfaction-Problem (CSP) solvers [4],
Boolean Satisfiability (SAT) [5] or the extended SAT Mod-
ulo Theories (SMT) [6], [7], among others. Most of these

verification methodologies directly or indirectly rely on a
symbolic representation of all possible system states and
transitions between them. Nevertheless, previous works have
either ignored the problem of frame conditions or treated it
manually, which is a significant drawback for the underlying
verification approaches.

In this work, a solution for an explicit integration of
frame conditions in a symbolic representation is described and
illustrated by means of a running example. Furthermore, a
corresponding SAT/SMT-based realization is presented which
enables designers to verify the behavior of UML/OCL models
while, at the same time, respecting the given frame conditions.

II. PRELIMINARIES AND NOTATION

In order to keep the paper self-contained, we briefly review
basic concepts of UML/OCL models and introduce the formal
notation used in this work. After that, we explain the running
example that will be used through the whole paper to illustrate
the presented concepts in terms of the corresponding SMT
constraints. For this purpose, we finally introduce the basics
and notions of SMT.

A. UML/OCL
The Unified Modeling Language (UML) together with

the Object Constraint Language (OCL) allows for modeling
complex systems at an abstract level without the need to
provide detailed implementations. While the general structure
and behavior of the system is expressed graphically in terms
of UML (class) diagrams, textual OCL constraints are used
in order to add further restrictions. OCL is a declarative
language that mainly consists of logic, arithmetic, navigation,
and collection expressions. A comprehensive overview of all
OCL expressions, its keywords and the semantic definitions,
is given in [2].

From a formal perspective, a model m = (C,R) is a tuple
of classes C and relations R (also known as associations).
A class c ∈ C is a 3-tuple composed of sets of attributes A
(of a distinct type), invariants I , and operations O. An oper-
ation o ∈ O is a 4-tuple o = (P, r,C,B) composed of a set
of parameters P , a return value r, as well as sets of pre- and
postconditions (denoted by C and B, respectively).

A relation r = (c1, c2, (l1, u1), (l2, u2)) ∈ R between two
classes c1, c2 ∈ C (not necessarily different) has multiplicity
constraints, i. e., lower bounds li and upper bounds ui that
restrict how often the relation is allowed to be instantiated for
each object of the class ci (i = 1, 2). All relations of a model
together with the union of all attributes (of all its classes) form
the set of model elements.

UML/OCL models represent blueprints for possible instan-
tiations of a system. In terms of UML, these instantiations are
commonly given as object diagrams. Formally, an instantiation
can be represented in terms of a system state σ = (Υ,Λ) com-
posed of a set of objects Υ (instantiations of classes from C
with a unique identifier) and a set of links Λ (instantiations of
relations from R). To this end, the set containing all instances
of model elements is denoted by m(σ).



Turnstile
greenLightOn: Boolean
redLightOn: Boolean
currentlyAuthorized: Integer
timeOpen: Integer
entry: Boolean
goThrough()
advanceTime()
checkCard(card : MagneticCard)

Building
authorized: Set(Integer)
inside: Set(Integer)

MagneticCard
id: Integer

gates

2..∗

building1

inv atLeastOneEntry:
gates->exists( t |
t.entry = true)

inv atLeastOneExit:
gates->exists( t |
t.entry = false)

inv uniqueID:
MagneticCard.allInstances()->forAll(

card1, card2 | (card1 <> card2)
implies (card1.id <> card2.id)

)

context Turnstile::checkCard(card : MagneticCard):
pre : greenLightOn = false
pre : redLightOn = false
post :( ( building.authorized->includes(card.id) )

and ( entry <> building.inside->includes(card.id) )
) implies
( greenLightOn = true
and currentlyAuthorized = card.id)

post : (not ( building.authorized->includes(card.id) ) )
implies
(redLightOn = true)

modifies only: self::greenLightOn, self::redLightOn,
self::currentlyAuthorized

context Turnstile::goThrough():
pre : greenLightOn = true
post :( ( building.inside@pre->includes(currentlyAuthorized) )

and ( not entry )
) implies

( not building.inside->includes(currentlyAuthorized) )
post :( ( not building.inside@pre->includes(currentlyAuthorized) )

and ( entry )
) implies

( building.inside->includes(currentlyAuthorized) )
post : greenLightOn = false
post : timeOpen = 0
modifies only: self.building::inside, self::greenLightOn, self::timeOpen

Figure 1: Class diagram of the access control system

A system can evolve from one state σ to another state σ′ as
the result of an operation call, i. e., by calling an operation on
one of σ’s objects. Formally, an operation call is denoted by
ω = (υ, o), where υ is an object instance in σ of a class c ∈ C
with an operation o. Moreover, the set of all operation calls Ω
for a system state σ is determined by

Ω =
⋃
c∈C

⋃
o∈ops(c)
υ∈Υ(c)

{(υ, o)},

where ops(c) denotes the set of all operations of a class c ∈ C
and Υ(c) denotes the set of all object instances of a class c ∈ C
in a given system state σ.

B. Running Example
All UML/OCL concepts reviewed above are illustrated

using the model given in Fig. 1. In the remainder of the paper,
this model will be used in order to illustrate the problem as
well as the proposed solution. The model, originally presented
in [8], specifies a control system which grants access to
buildings based on magnetic cards as authentication method.
The cards are checked at turnstiles at the buildings’ entries.

The model comprises three classes, namely Building,
MagneticCard, and Turnstile. For instance, the attributes,
invariants and operations of the class Building are formally
interpreted as the sets A = {authorized, inside},
I = {atLeastOneEntry, atLeastOneExit}, and
O = ∅. In the entire model, there is one relation/association,
which relates turnstiles to the corresponding building
ensuring that each Building has at least two Turnstiles.
Formally, this relation is given by the 4-tuple
(Building,Turnstile, (1, 1), (2,∞)). The set of model
elements contains all eight attributes of the three classes and
the relation.

The behavior of the operations of the class Turnstile is
defined by means of pre- and postconditions as follows:1

• The operation checkCard checks whether a person in-
serting a MagneticCard may pass the respective turnstile
and

• the operation goThrough allows the currently autho-
rized person to pass the turnstile.

1The “modifies only” conditions (highlighted in red) will be covered later
in Section IV.

B1:Building
authorized = {1}
inside = ∅

T1:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = -1
timeOpen = 0
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = -1
timeOpen = 0
entry = false

M1:MagneticCard
id = 1

B1:Building
authorized = {1}
inside = {42}

T1:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = 1
timeOpen = 0
entry = true

T2:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = -1
timeOpen = 0
entry = false

M1:MagneticCard
id = 1

T1.checkCard(M1)

Figure 2: A valid transition between two valid system states

Two possible instantiations of the model, i. e., system
states, representing a single building and two turnstiles are
shown in Fig. 2. As indicated there, calling the operation
checkCard(M1) on T1 leads to the transition from the
system state depicted on the top of Fig. 2 to the system state
depicted on the bottom of Fig. 2.

C. Boolean Satisfiability and Satisfiability Modulo Theories
The Boolean Satisfiability (SAT) problem is defined as

follows: Let f : Bn → B be a Boolean function. Then, the
SAT problem is to determine an assignment for the variables
of f so that f evaluates to true or to prove that no such
assignment exists.

Example 1. Let f(x1, x2, x3) = (x1 + x2 + x3) · (x1 +
x2) · (x2 + x3) where + and · denote the logical OR and
AND operation, respectively. Then, x1 = x2 = x3 = 1 is a
satisfying assignment for f . The value of x1 ensures that the
first clause becomes satisfied, the value of x2 does that for the
second clause, and so on.

Satisfiability Modulo Theories (SMT) is an extension of
SAT which allows to formulate decision problems at a higher
level of abstraction. In this work, we will make use of the
theory of Quantifier-free Bit Vectors (QF_BV) which allows to
work on bit vector logic rather than pure Boolean logic. In the
following, we will provide SMT formulas using the SMT-LIB
syntax [9] where each constraint is provided in Polish notation,
i. e., each operation is encapsulated by parentheses and the
operator is provided before the (ordered) list of operands.

Example 2. Consider the following SMT formulas over two
bit-vectors bv1, bv2:

1 (not (= bv1 bv2) )
2 (= ((_ extract 1 1) bv2) #b1)

The first formula is composed of two operations, namely
negation (not) and equivalence (=) and states that the bit
vectors bv1 and bv2 shall differ in at least one position,
i. e., in a symbolical notation bv1 6= bv2. The second formula
illustrates how to access individual bits of a bit vector, namely
using the extract operation with the indices of the first
and last extracted bit being equal, as well as how to use
constant values (#b...). The constraint enforces that the
second last bit2 of the bit vector bv2 is set to 1. Solving this
SMT instance may lead to the assignments bv1 = #b1101
and bv2 = #b1010.

III. RELATED WORK AND CONSIDERED PROBLEM

This section reviews related work on frame conditions and
discusses the use of symbolic representations for verification
and validation of behavioral UML/OCL models. Based on that,
the problem considered in this work is explicitly stated.

2The bits of a bit vector are enumerated from right to left starting with 0.



A. Frame Problem and Frame Conditions
In UML/OCL class diagrams, behavior can be expressed

in terms of operations with pre- and postconditions. At a first
glance, these declarative descriptions of the operation’s behav-
ior ideally fit to the paradigm of designing systems without
the need to provide detailed implementations. However, when
we look more closely, they may allow for undesired behavior.

Example 3. Consider again Fig. 2 which shows two system
states of our running example from Fig. 1. Both system states
are valid, i. e., all model constraints are satisfied. Moreover,
it is possible to get from the system state in the top to the
one in the bottom, i. e., an operation whose preconditions
(postconditions) are satisfied in the top (bottom) system state.
As intended by the operation’s postconditions, the green light
of turnstile T1 is turned on by the operation call. However,
at the same time it would also be possible to to turn on the
green light of the other turnstile T2 and to add an arbitrary
id (e. g., 42) to the inside attribute of the building B1
(as highlighted in red in Fig.2). Although such a behavior
is obviously not intended, it is completely in line with the
postconditions.

In general, the shortcoming of declarative descriptions like
pre- and postconditions is that they often do not make clear
enough which model elements are allowed to change during
an operation call. In other words: they do not specify what is
within the frame that might be modified by an operation – the
so-called frame problem [10]. In order to address the resulting
under specification of the model, so-called frame conditions
have been proposed. In the past, various approaches have been
developed for this purpose for UML/OCL models:
• A straightforward approach is to manually specify what

is not in the frame (as it is done in [11]) by extending
the postconditions with constraints like modelElement
= modelElement@pre. This case study, however, il-
lustrates very impressively how time-consuming it is to
create these constraints in the first place and to maintain
them later on in the case of design changes.

• Another approach to frame conditions is to automatically
derive them from the postconditions using a paradigm
such as nothing else changes [12], [13] which includes
every model element that is referenced within postcondi-
tions in the frame of what may change (and nothing else).
Again, the results of this implicit approach are also often
not exactly what the designer intended and, besides that,
it is hard to manually adjust them – which would have
to be done by rewriting the postconditions themselves.

• Finally, a more thorough approach has been suggested by
Kosiuczenko [14], [15]. The idea is to specify the set of
variable model elements, i. e., model elements that are al-
lowed to be changed during an operation call, at the same
level as pre- and postconditions in terms of so-called
invariability clauses3 which are of the form modifies
only: scope::modelElement. For instance, the
clause modifies only: self::greenLightOn
expresses that the operation may only change the attribute
greenLightOn of the turnstile on which the operation
is called (self). However, the scope can also be more
complex and may contain navigation or collections. Be-
sides that, it is even possible to allow objects of a certain
class to be created or deleted during an operation call
using the construct Class::allInstances().
This approach enables the designer to precisely define
frame conditions in a very comfortable, understand-
able and maintainable fashion. Moreover, there exists a

3A variation of this idea is to specify the set of variable
model elements within the postconditions using an OCL primitive
modifiedOnly(Set) [16].

methodology to assist the designer in the initial gen-
eration of the frame conditions [17] and an approach
that does most of the work automatically and requests
feedback of the designer in ambiguous cases only [18].

Overall, frame conditions are very important for obtaining
precise model descriptions and are a key ingredient when
considering behavior of UML/OCL models.

B. Validation and Verification Using Symbolic Representations
UML/OCL allows to explicitly specify the design of com-

plex systems without a precise implementation. At this high-
level of abstraction, however, descriptions might result which
are, e. g., over-constrained such that no valid system state can
be derived (inconsistent models) or in which some operations
could never be executed due to too restrictive pre- and postcon-
ditions. But even if this is not the case, the specification may
still allow for reaching “bad states” such as deadlocks or other
unwanted behavior, e. g., due to inadequate frame conditions.

In the recent past, several approaches for the validation
and verification of behavioral models have been proposed.
In order to verify the model, SAT/SMT-based approaches
such as introduced in [5], [6] do not rely on explicitly
enumerating all possible system states and operation calls.
Instead, they utilize a symbolic representation of the given
UML/OCL model which allows to consider all possible system
states and operation calls at the same time.4 This symbolic
representation consists of a set of variables which can describe
an arbitrary system state and arbitrary transitions (also invalid
ones). Passing this problem instance to a solver would yield
an arbitrary behavior of the system. Consequently, additional
constraints are applied to enforce that all system states and
transitions are valid and, beyond that, satisfy the considered
verification objective.

In this work, we rely on the solution presented in [6].
Here, the authors propose to translate the verification task
into an instance of a Satisfiability Modulo Theories (SMT)
problem. The corresponding symbolic representation is created
in terms of the SMT bit-vector logic QF_BV (cf. Section II-C).
Then, the problem instance can be solved using so-called
SMT solvers. These solvers allow for an efficient traversal
of large search spaces and, hence, are suitable to determine
precise assignments to the symbolic formulation and, by this,
a sequence of transitions satisfying the considered verification
objective.

C. Considered Problem
As reviewed in the previous section, powerful approaches

for verifying and validating the behavior of UML/OCL models
using symbolic representations have been suggested. However,
to the best of our knowledge, all of these approaches either
require frame conditions to be specified manually within the
postconditions or apply an implicit interpretation in order
to automatically extract them from the model – with all
the weaknesses and drawbacks already discussed above in
Section III-A.

So far, there is no approach for behavioral verification that
supports explicit frame conditions as, e. g., provided by the
“modifies only” clauses. This is mainly caused by the non-
availability of translations from these frame conditions into
the corresponding symbolic representation. Consequently, in
the remainder of this work we consider the dedicated trans-
lation of explicit frame conditions and their integration into
(existing) symbolic representations. We keep our description
generic such that it can be used for any means of symbolic

4However, all these approaches require so-called problem bounds in order
to limit the search space, i. e., they need to be provided with a fixed number or
at least a range of objects that shall be instantiated as well as a finite domain
for all data types.



representation. Nonetheless, we will always present precise
formulations in SMT in order to illustrate the method.

The resulting symbolic representation will, for the first time,
allow for behavioral verification of designs while, at the same
time, respecting frame conditions. Moreover, besides conven-
tional verification tasks, the proposed solution can additionally
be used to validate the frame conditions themselves, i. e., to
check whether they are consistent (do not completely prohibit
the execution of the corresponding operation) or whether they
express what the designer intended.

IV. SYMBOLIC REPRESENTATION OF FRAME CONDITIONS

In this section, we will first review how sequential behavior,
i. e., a transition with exactly one operation call between two
system states, is translated into a symbolic representation.
Based on this, we will explain, how explicit frame conditions
can be added to the symbolic representation.

A. Symbolic Representation of a State Transition
In [6], [7], the authors explain how a sequence of operation

calls can symbolically be formulated. Here, we will just review
the idea for the formulation of a single transition representing
one operation call between two system states.

σ σ′Ω 7→ B

Figure 3:
State transition

The general idea is sketched by
means of Fig. 3: Two system states,
σ, σ′, are connected with a transi-
tion. In order to describe which op-
eration call is executed on the transi-
tion, a helper function from the set of
all possible operation calls Ω to B is

used. Furthermore, for all instantiated model elements of both
system states, a set of variables representing the respective
values, e. g., of attributes or relations are introduced.

Then, it remains open how to explicitly assign all variables
so that, with respect to the corresponding pre- and postcondi-
tions of a respective operation call, a valid transition from σ
to σ′ is derived. More precisely:

Formulation 1. For a model m = (C,R) and two system
states σ and σ′, let Ω be the set of all operation calls which can
be performed for the transition between σ and σ′. Further, let
α : Ω 7→ B be a map indicating if an operation call is executed
or not. Then, all possible operation calls for the transition are
symbolically represented by∧

ω∈Ω

(α(ω) = 1)⇒ (JCωK ∧ JBωK) (1)

where
• JCωK is a constraint enforcing the precondition for system

state σ, and
• JBωK is a constraint enforcing the postcondition for

system state σ′ (maybe by using σ as well).
Besides that, the number of possible operation calls is re-
stricted by

(∑
ω∈Ω α(ω)

)
= 1 in order to ensure that only

one operation call is executed on the transition.5

Using this formulation, a satisfying assignment to all used
variables including the exact mapping for α must exist if
a transition from the calling system state σ to the terminal
system state σ′ exists. From this assignment, the respective
operation call for the transition can eventually be obtained. If
no such assignment exists, it has been proven that a transition
between the two given system states does not exist.

In [6], Formulation 1 is realized in SMT-LIB syntax in
terms of the QF_BV theory and passed to an SMT solver.
Those solvers are capable of determining such assignments

5In both system states also the invariants have to be satisfied. But since
this is not the focus of this work, details are omitted for brevity.

or proving their non-existence in an efficient fashion. More
precisely, the formulation for a single transition is applied as
follows:

Example 4. Consider again the running example model as
given in Fig. 1. The α function for the transition is represented
by the bit vector ~ω of size dlog2|Ω|e,6 where each possible
assignment is related to exactly one operation call. More
precisely, the possible operation calls are counted beginning
from 0 and, therefore, the possible assignment is restricted
by: ~ω < |Ω|. Then, the constraint for the operation call
ω = (T1, checkcard(M1)) read as follows:

1 (=> (= ~ω #b000)
2 (and (= σ::T1::greenLightOn false)
3 (= σ::T1::redLightOn false)
4 ... ) )

The first line realizes the left-hand side of the implication
sketched in Eq. (1) (assuming that 000 is the unique iden-
tifier of ω). Afterwards, the preconditions of the operation,
represented by the bitvector 000, are enforced (see Line 2–3).
Hereby, the system states are represented by the assignments
to the respective attributes of the instantiated classes. For
example, the value of the attribute greenLightOn of the
object instance T1 of the class Turnstile is represented by
σ::T1::greenLightOn for the calling system state and
σ′::T1::greenLightOn for the succeeding system state,
respectively. Based on that, the two preconditions (checking
the values of greenLightOn and redLightOn) are en-
forced by the SMT constraint in Line 2–3. The postconditions
are realized in a similar fashion.

B. Adding Constraints for Frame Conditions
To support frame conditions in symbolic representations,

a description of their effect on the model elements has to
be added. To this end, further variables are introduced which
symbolically represent whether a respective model element is
supposed to be affected by a transition or not. This is described
by a set of functions which map each instantiated model
element to a Boolean value indicating if the corresponding
element is allowed to change or not.

Formulation 2. For the impact of frame conditions on a
transition, three different types of variability maps V from
m(σ) to B are created. If V(µ) evaluates to true, then the
value of the model element µ is variable during the operation
execution. Otherwise, it is not allowed to change its value.

Since the evaluation of each explicit frame condition state-
ment depends on the scope which itself mostly depends on the
calling object, the impact for each possible frame conditions
statement must be considered. Thus, Fω denotes the set of all
frame conditions of the operation call ω. Then, the maps:

V : m(σ) 7→ B,
∀ω ∈ Ω :Vω : m(σ) 7→ B, and

∀ω ∈ Ω : ∀ f ∈ Fω :Vω,f : m(σ) 7→ B
are introduced, whereby

1) V represents whether a model element µ is affected in
general by a transition,

2) Vω represents whether a model element µ is affected by
the operation call ω, and

3) Vω,f represents whether the model element µ is affected
by the frame condition f ∈ Fω of the operation call ω.

Example 5. Consider again the running example: Each map
is represented with a bit mask of length |m(σ)|, where each bit
represents the result of the map regarding a unique model ele-
ment. Since the system state given in Fig. 2 has 16 instantiated

6We assume that |Ω| > 1, i. e., there is more than one operation call.



model elements, each map requires a bit mask with 16 bits. As
stated in Formulation 2, maps are needed for the overall frame
conditions of the transition, the six different operation calls,
and within them for each frame condition statement, leading
to a total of 25 maps.

The maps allow for a representation about what model
elements are to be changed during a transition. Now this
information has to be explicitly employed to the symbolic
formulation. To this end for the constraints have to be added.
First, constraints for the overall constraint map, i. e., V , are
added:

Formulation 3. The instance of a model element µ ∈ m(σ)
belonging to an attribute7 of a class is variable by the
transition if V(µ) = 1 holds and it is not allowed to change
its value if V(µ) = 0. This yields the following constraint:∧

µ∈m(σ)
µ belongs to attribute

(V(µ) = 0)⇒ (σ(µ) = σ′(µ)) , (2)

where σ(µ) represents the precise value of µ in system state σ.

Example 6. Assume that, in the running example, the at-
tributes greenLightOn and redLightOn of the object
instance T1 are related to bit number 0 and 1 of the bit
mask V representing the overall frame conditions map. Then,
the precise SMT constraints obtained by Eq. (2) are:

1 (and (=> (= ((_ extract 0 0) V) #b0)
2 (= σ::T1::greenLightOn
3 σ′::T1::greenLightOn))
4 (=> (= ((_ extract 1 1) V) #b0)
5 (= σ::T1::redLightOn
6 σ′::T1::redLightOn)) )

As a next step, it should be ensured that the overall frame
condition map equals the frame condition map of the executed
operation call. For this purpose, a slight modification of Eq. (1)
is required:

Formulation 4. To support frame conditions in a symbolic
representation, Eq. (1) is refined to:∧

ω∈Ω

(α(ω) = 1)⇒ (JCωK ∧ JBωK ∧ V = Vω) .

Since only one of the premises of the implications for the
operation calls can be satisfied, only satisfying assignments
are possible in which the overall variability map will be equal
to the overall variability map of the corresponding operation
call. In the next step, the overall variability map is defined:

Formulation 5. If the disjunction of the values of all variabil-
ity maps Vω,f for a fixed ω and a fixed instance of a model
element µ is true, then the variability map Vω should also
state the model element is variable. This is ensured by:

∀µ ∈ m(σ) :
∧
ω∈Ω

Vω(µ) =
∨
f∈Fω

Vω,f (µ)

 .

Example 7. For the operation call T1.checkCard of the
running example, the following constraints in the SMT-LIB
format are added:8

7The precise constraint for associations is a bit more complicated and is
given later in more detail, but the main idea is the same one.

8The operations checkCard and goThrough are abbreviated to cC and
gT, respectively.

1 (= V::T1::cC
2 (bvor V::T1::cC::fc1
3 V::T1::cC::fc2
4 V::T1::cC::fc3))

Finally, a precise definition of all Vω,f respecting the
corresponding frame condition f given by modifies only-
statements must be given.

Formulation 6. Let f be a frame condition of an operation o
and ω = (υ, o) a corresponding possible operation call. Then,
Vω,f is defined for each instantiated model element µ as
follows:

∧
µ∈m(σ)

∣∣∣∣∣∣∣∣
if the object of µ is in the scope of f
and µ is an instance of the model element of f
then Vω,f (µ) = 1
else Vω,f (µ) = 0
endif

Example 8. For the operation call T1.checkCard of our
running example, consider the three frame conditions:
modifies only: self::greenLightOn,

self::redLightOn,
self::currentlyAuthorized

In all three frame conditions the scope is self, which
is T1 for the assumed operation call. Assuming again that
T1.greenLightOn has the index 0 in the corresponding bit
mask of Vω,f , the following SMT constraints are generated for
the first frame condition:

1 (= ((_ extract 0 0) ω::T1::cC::fc1) #b1)
2 (= ((_ extract 1 1) ω::T1::cC::fc1) #b0)
3 (= ((_ extract 2 2) ω::T1::cC::fc1) #b0)
4 ...
5 (= ((_ extract 15 15) ω::T1::cC::fc1) #b0)

In a similar fashion, the SMT constraints for the other two
frame conditions are generated.
Example 9. For the operation call T1.goThrough of our
running example, let us now consider the frame condition
modifies only: self.building::inside.

Here, the scope is self.building which, in principle,
could be any building. Thus, we cannot directly assign all
bits as in the previous example. However, the scope can
be evaluated similar to navigation expressions in any OCL
constraint (i. e., in an invariant, a pre- and/or postconditions).
To this end, we use the placeholder ?self.building? to
denote the complete SMT constraints for the scope. This will
be a bit mask where a 1 states that the corresponding object is
in the scope and a 0 states that the object is not in the scope.
Further, assume that the model element inside of B1 has
the index 12. Then the constraints are:

1 (= ((_ extract 0 0) ω::T1::gT::fc1) #b0)
2 ...
3 (= ((_ extract 11 11) ω::T1::gT::fc1) #b0)
4 (ite (= ((_ extract 0 0) ?self.building?
5 #b1)
6 (= ((_ extract 12 12) ω::T1::gT::fc1)
7 #b1)
8 (= ((_ extract 12 12) ω::T1::gT::fc1)
9 #b0)) )

10 ...

Let us now come back to the precise handling of as-
sociations. An association has two ends and each end can
be flagged as variable using frame conditions or not. Since
flagging one end of an association as being variable should
not only make the flagged association end variable but also
the other end of the association. Hence, we have to adjust the
formulation of links in the symbolic representation in order to
get a more detailed constraint for handling frame conditions
on associations.
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Figure 4: Idea of links in the symbolic representation

In Fig. 4, a partial sketch of the symbolic representation of
a system state with two Buildings and four Turnstiles (Mag-
neticCards are omitted) is provided. A satisfying assignment
should obtain valid links between the object instances of the
two classes. But since no details are known, the symbolic
representation must allow all possible links. Thus, for each
object instance owning an association end, a relation can be
represented by a map from all possible object instances of the
class of the other end of the relation to B. For the gates relation
of B1, where the opposite end is an instance of Turnstile,
this is the map λB1,gates : {T1, T2, T3, T4} 7→ B. Obviously,
links are symmetric and, thus, corresponding constraints must
be added for the Turnstile objects. They are indicated by
gray lines in Fig. 4 between possibly linked object instances
(indicated by gray dots with a matching name).

Having this idea in mind, it is easy to understand that the
variability of associations cannot work on the single result
of the variability map. More precisely, the premise of the
implication for every possible link must check the values of
both connected instances of the model elements. If at least
one of the two values allows for a change of the link status,
the link may change. On the other side, if both values are not
allowing for a change, the link must be constant.

Formulation 7. For a model element µ ∈ m(σ) belonging to
an association r ∈ R, a formulation similar to the one from
Eq. (2) is used:

∧
µ∈m(σ) where

µ of r=(c,c′,_,_)∈R
object of µ is υ
υ∈Υ(c)

∧
υ̃∈Υ(c′)

(
(V(µ) = 0 ∧ V(r, υ̃) = 0)

⇒
(
λσυ,r(υ̃) = λσ

′

υ,r(υ̃)
)) ,

(3)

where λσυ,r(υ̃) represents the status of the possible link be-
tween υ and υ̃ for the relation r and V(r, υ̃) refers to the
opposite instantiated model element. As relations have two
ends, Eq. (3) must also be applied with the changed order of
the classes.

Example 10. For the running example, the precise SMT
constraints for the associations obtained from Eq. (3) are:

1 (=> (and (= ((_ extract 13 13) V) #b0)
2 (= ((_ extract 15 15) V) #b0))
3 (= ((_ extract 0 0) σ::T1::building)
4 ((_ extract 0 0) σ′::T1::building)))
5 (=> (and (= ((_ extract 14 14) V) #b0)
6 (= ((_ extract 15 15) V) #b0))
7 (= ((_ extract 0 0) σ::T1::building)
8 ((_ extract 0 0) σ′::T1::building)))
9 (=> (and (= ((_ extract 15 15) V) #b0)

10 (= ((_ extract 13 13) V) #b0))
11 (= ((_ extract 0 0) σ::B1::gates)
12 ((_ extract 0 0) σ′::B1::gates)))
13 (=> (and (= ((_ extract 15 15) V) #b0)
14 (= ((_ extract 14 14) V) #b0))
15 (= ((_ extract 1 1) σ::B1::gates)
16 ((_ extract 1 1) σ′::B1::gates)))

With all those revised and additional constraints, the sym-
bolic representation does now explicitly consider all frame
conditions.

V. CLOSING REMARKS

This work provided a concept for integrating frame condi-
tions in symbolic representations to be used in the verification
and validation of UML/OCL models. This enables the designer
to verify the behavior of UML/OCL models while, at the
same time, respecting the given frame conditions. Future work
now focuses on the implementation and evaluation of these
concepts as well as their extension to the creation and deletion
of objects between two system states or to the support of
concurrent operation calls [19].
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