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Abstract—Labs-on-Chips (LoCs) revolutionize conventional
biochemical processes and may even replace laboratories by
integrating and minimizing their functionalities on a single
chip. In a promising and emerging realization of LoCs, small
volumes of reagents, so-called droplets, transport the biological
sample and flow in closed channels of sub-millimeter diameters.
This realization is called Networked Labs-on-Chips (NLoCs). The
architecture of an NLoC defines different paths through which
the droplets can flow. These paths are realized by splitting
channels into multiple successor channels — so-called bifurca-
tions. However, whether the architecture indeed allows to route
droplets along the desired paths and, hence, correctly executes
the intended experiment is not guaranteed. In this work, we
present the first automatic solution for verifying whether an
NLoC architecture allows to correctly route the droplets. Our
evaluations demonstrate the applicability and importance of the
proposed solution on a set of NLoC architectures.

I. INTRODUCTION

Labs-on-Chips (LoCs) enable the miniaturization, inte-
gration and automation of chemical and biomedical proce-
dures [1]. Their dissemination and exploitation significantly
increased in the last decade [2], [3]. LoCs combine different
laboratory functions on a single chip and are successfully used
e.g. for in-vitro diagnostics, DNA sequencing, cell analysis,
organism analysis, drug screening, or protein crystallization.

A possible platform are droplet-based microfluidics (see
e.g. [4]), where tiny volumes (in the order of few micro- to
pico-liters) of reagents — so-called droplets — are manipulated
and controlled. In a promising, emerging realization, the
droplets flow in closed channels of sub-millimeter diameters.
These closed channels prevent evaporation and unwanted con-
tamination and, hence, allow for a long-term incubation and
storage of droplets [3], [S]. In this channel-based realization,
an external pump generates a hydrodynamic force that drives
the droplets through the system. Besides that, the system con-
tains modules, which execute chemical/biological operations
on the droplets. In order to enable the flow of droplets between
modules, these modules are connected by channels. Overall,
modules and channels represent the architecture through which
the droplets flow — yielding a so-called Networked Labs-on-
Chip (NLoC, [6], [7]).

NLoC architectures define multiple paths through which the
droplets can flow. These paths are realized by bifurcations
of channels, i.e. the splitting of a channel in two or more
successor channels. When a droplet arrives at a bifurcation,
it will flow along the successor channel with the lowest hy-
draulic resistance (mainly defined by the channel’s geometry;
see [7]-[10]). By that, the droplet itself increases the channel’s
hydraulic resistance and, therefore, temporarily “blocks” this
channel for following droplets. This principle of selective
blocking is eventually used to route a respective payload
droplet (transporting the biological sample) to the desired
modules to be executed. To this end, so-called header droplets

are utilized which correspondingly block channels that must
not be taken by the payload droplet.

Overall, this leads to complex NLoC architectures in which
various experiments have to be realized. These experiments
are realized by different paths through the NLoC architec-
ture, which all need to be executable. However, for a given
architecture it is not guaranteed that the payload droplet can
indeed be routed along the path defining the required modules.
At the same time, it is a non-trivial task to verify a given
NLoC architecture (as will be illustrated in more detail later
in Sec. III).

In this work, we present an automatic verification solution
for NLoCs, which, for the first time, verifies whether all
desired experiments can indeed be conducted on a given NLoC
architecture. To this end, all possible droplet sequences and,
hence, routings are symbolically considered. Afterwards, satis-
fiability solvers are applied to determine the droplet sequences
which show the executability of the desired experiments and,
by this, witness the correctness of the architecture. An eval-
uation demonstrates the applicability and importance of the
proposed verification solution on a set of NLoC architectures.
This allows to prove whether an NLoC architecture permits to
execute all experiments.

II. NETWORKED LABS-ON-CHIP

In Networked LoCs (NLoCs, [6], [7]), a pump produces
a hydrodynamic force, which drives droplets through closed
microchannels. In order to realize an experiment, a payload
droplet has to traverse the desired sequence of modules, which
includes elementary operations such as mixing, splitting, fus-
ing, detecting, or heating. To enable the flow of droplets from
one module to another, the modules are connected by channels.

In this section, we explain how the pump, the modules, and
the channels can be employed to realize NLoC architectures,
how the droplets can be routed, and how this allows to conduct
experiments as well as finally define a discrete model for the
droplet flow.

A. Architecture

An NLoC architecture consists of

o the pump p, which is responsible for the droplet gen-
eration and also produces the force driving the droplets
through the architecture,

e a set of channels C, which allows for directed flows of

droplets, and

« aset of modules M, which defines the available operations

in an NLoC.

The architecture defines how the pump, the channels and the
modules are connected. We denote both, the channels C and
the modules M, as entities. Then, in the general case, an entity
can have multiple predecessor entities and multiple successor
entities. This is formally defined as follows:



Fig. 1: NLoC architecture

Definition 1. Let E be the entities of an NLoC architecture, i.e.
the union of the channels C and modules M (i.e. E := CUM).
Each entity e € E has a set of predecessor entities given by
pred : E — P(E) and a set of successor entities given by
succ: E —P(E). If e is the channel connected to the outlet of
pump p, the function pred returns the empty set 0. Accordingly,
if e is the channel connected to the inlet of pump p, the function
succ returns the empty set 0.

Example 1. Consider the architecture shown in Fig. 1 com-
prised of a pump, four modules, and eleven channels. The
pump p injects the droplets into the channel c1. These droplets
take one of the paths through the NLoC and return through
channel c11 back to the pump p.

The path which a droplet takes through the NLoC depends
on the hydraulic resistances of channels and is described next.

B. Routing of Droplets

The droplet routing utilizes the different hydraulic resis-
tances of channels. The hydraulic resistance of a channel is
mainly defined by its channel geometry, i.e. the channel’s
diameter and channel’s length [7], [11]. The smaller the
diameter the higher the resistance and also the longer the
channel the higher the resistance.

An architecture can define multiple paths through which
the droplets can flow. The paths are realized by bifurcations
of channels, i.e. the splitting of a channel in two or more
successor channels. These successor channels have different
hydraulic resistances. A droplet arriving at a bifurcation will
flow along the channel with the lowest hydraulic resistance.

Example 2. The architecture shown in Fig. 1 contains two
bifurcations: channel c| has c; and c¢3 as successor channels
as well as channel ¢7 has cg and co9 as successor channels.
Overall, these two bifurcations produce four paths, which all
start from pump p and, finally, end in pump p.

When the pump injects a single droplet, it will flow in the
first bifurcation along the channel c, because the hydraulic
resistance of ¢y is lower than the hydraulic resistance of
c3 (denoted with a double arrow 1} in Fig. 1). Afterwards,
this droplet will flow along channel cg because its hydraulic
resistance is also lower than the hydraulic resistance of
channel cy. Finally, the droplet flows back to pump p.

However, droplets themselves increase by their flow the
hydraulic resistance of a channel [7], [9]. Therefore, droplets
may change the hydraulic resistance of channels in a way that
following droplets may take another path. In fact, droplets
are used to increase the hydraulic resistances of channels
and, hence, force the following droplets to take the desired
channels. Overall, a droplet always flows into the channel with
the lowest hydraulic resistance, if it does not already contain
other droplets.
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Fig. 2: A 2-way bifurcation of a channel

Example 3. Fig. 2 shows the first 2-way bifurcation from the
architecture of Fig. 1. The snap-shot shows two droplets d;
and dp. The droplet dy took the channel c, because, at the
arrival time of dy at the bifurcation, the hydraulic resistance
of ¢y was lower than those of c3 (the diameter of c; is larger
than the diameter of c3). However, the following droplet d»
will take the channel c3, because dy increased the hydraulic
resistance of ¢y so that the hydraulic resistance of c3 is now
lower than those of c;.

Videos at http://www.jku.at/iic/eda/nloc show physical real-
izations of the scenarios discussed above.

C. Realization of Experiments

An experiment is defined by a sequence of modules to be
executed. To execute an experiment, the payload droplet has
to be routed along the path of the architecture containing the
desired sequence of modules. The experiment is finished when
the payload droplet arrives at the pump'.

Definition 2. Ler @ := {01,¢2,...} be the set of experiments
to be conducted. Then, an experiment ¢ € ® is a sequence
of modules with ¢ € M", where n € N is a natural number
defining the number of modules in the experiment.

The routing of the payload droplet is done by temporarily
“blocking” those paths which the payload must not flow into.
This blocking is achieved by using header droplets. The
following example illustrates this routing.

Example 4. Consider the experiments ® := {(mj,m3,ms),
(ma,m3,ma),(my,m3)}, which represent possible paths
through the architecture given in Fig. I.

For example, in order to execute the experiment
(m1,m3,my), the payload droplet has to traverse the specified
modules. When the payload droplet arrives at the first bifur-
cation, it will flow into ¢y because it has a lower hydraulic
resistance than c3. After the payload droplet executed/passed
my, c4, C¢, M3, and c7, it arrives at the second bifurcation. Also
here, the payload droplet flows into cg, which is connected
to my. Finally, the droplet flows through ciy and c11 back to
the pump completing the experiment.

However, for executing the experiment (mp,m3,ma), the
payload droplet cannot just flow along the channels with
the minimal hydraulic resistance. Instead a header droplet
has to be used to route the payload droplet. Therefore,
a header droplet precedes the payload droplet, flows into
channel cy, and increases cy’s hydraulic resistance (i.e the
header “blocks” this channel). By this, the following payload
droplet correctly flows into channel c3, which is connected to
the desired module my. Afterwards, the module ms executes
its operation on the payload droplet. Finally, the payload
droplet takes the channel cg at the second bifurcation, which is
connected to the last module my4 of the experiment completing
the experiment. The determination of the droplet sequence for
the last experiment (my,m3) is considered later in Sec. III.

'Note that some pumps allow a re-injection of the same payload droplet
and, therefore, allow to combine experiments.



As explained, in addition to the payload droplet, usu-
ally a number of header droplets is required to execute
the experiments. These header droplets are injected by the
pump, flow through the whole NLoC architecture and are
eventually disposed in the pump. Furthermore, the modules
have to forward these header droplets (i.e. the modules must
not execute the operations on header droplets). Therefore,
modules are equipped with forwarding channels. The required
distinction? between the payload and header droplets is based
on the different droplet sizes. Therefore, droplets must not
coalesce (i.e. merge) with others because it would change their
sizes and, hence, would break the distinction. Furthermore, a
coalescence of the payload and a header droplet would destroy
the biological sample.

D. Discrete Model

The time a droplet needs to pass/execute a channel or a
module depends on the following constraints:

« The time a droplet needs for passing a channel mainly
depends on its hydraulic resistance. But it also depends
on all other channels and their composition in the NLoC.

o The time a droplet needs for passing a module depends,
for a payload droplet, on the execution time of the
operation and, for header droplets, on the time required
to be forwarded to the outlet of the module.

The used discrete model simplifies the physical reality and
is motived by the work of [10], which uses a continuous time
and, hence, also continuous droplet positions within entities.
In our model, we discretize the continuous time into time steps
and do not consider all interrelations of droplets. This allows
us to specify the time a droplet requires to pass/execute an
entity as an amount of time steps. Therefore, we formally
specify the time which droplets require to pass/execute a
channel or a module as follows:

Definition 3. The number of time steps a payload droplet
requires to pass/execute an entity e € E is defined by the func-
tion pSteps : E — N. Accordingly, the function hSteps: E — N
defines the number of time steps a header droplet needs to
pass an entity e € E. Note that, in the following, we assume
that payload and header droplets require an equal number of
time steps to pass a channel, but the required time can differ
for modules, i.e. depending on the droplet either the module
executes an operation or it forwards the droplet.

When defining the time step interval, it has to be en-
sured that the resulting distance between two ‘“time step-
consecutive” droplets prohibits an unexpected coalescence of
these droplets. Alternatively, a minimum distance (specified as
an amount of time steps) between droplets can be use to avoid
unintended coalescences.

III. PROBLEM STATEMENT

Example 4 discussed two droplet sequences realizing the
experiments (mj,ms,m4) and (my,m3,my4) on the architecture
given in Fig. 1. However, an NLoC architecture is only valid, if
it allows to execute all experiments defined in ®. Therefore, in
this section we discuss the determination of droplet sequences
intended to realize the last experiment (my,m3) by using the
discrete model introduced above.

Tab. I shows two different droplet sequences. Each col-
umn represents an entity, where the column widths define
the required time steps a droplet needs to pass/execute the

2This distinction between the payload and header droplets is done using an
integrated sorter. For a possible passive realization see e.g. [12].
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entity. Each row represents the position of payload and header
droplets for a particular time step . More precisely, whether a
module or parts of a channel contain a header droplet, contain
a payload droplet, or does not contain a droplet at all, is
represented by an empty circle ( 19! ), a filled circle (i® ), or
an empty cell (i.:) respectively. As already discussed, sorters
in modules route header droplets directly to the outlet of the
module and this forwarding is assumed to require a single time
step in this example. These forwarding channels are denoted
with the suffix FW in the headers of Tab. I.

In the first droplet sequence (at the top of Tab. I), a header
(denoted as :©:) is injected in time step r = 1. At the first
bifurcation, this header takes the channel ¢, because c;’s
hydraulic resistance is lower than those of c3 (i.e. Tab. I shows
that ¢, requires 2 time steps compared to 3 time steps of ¢3). In
time step 1 = 2, the payload (denoted as :®:) gets injected. Due
to the fact that the header is still in channel ¢, (and, therefore,
the hydraulic resistance of this channel is increased), the
payload intentionally flows into channel c3. After the payload
passed channel c3, the operation of module m, is executed in
time step t = 6. However, in the chosen droplet sequence, the
two droplets would coalesce afterwards in channel c¢ in time
step + = 8. Therefore, the chosen sequence is invalid.

In the second droplet sequence (at the bottom of Tab. 1), the
header is injected in time step # = 1 and the payload is injected
in time step t = 3. Therefore, it is avoided that the droplets
would again coalesce in time step t = 8§ as in the first sequence.
When further considering the droplet’s flow, we can determine
that the header flows into channel cg in time step + = 11 as
its hydraulic resistance is smaller than those of cg. When the
payload arrives at the second bifurcation in time step t = 12,
the header is already in the forwarding channel of module my4.
Hence, the hydraulic resistance of channel cg is, again, less
than those of channel cg. This causes the payload to flow
into channel cg and, finally, into module m4. However, the
requested experiment (my,m3) does not contain module my.
Therefore, this droplet sequence is invalid as well.



As illustrated by these two sequences, determining a droplet
sequence, which correctly executes the given experiment
(ma,m3), is a non-trivial task. This motivates the question
whether there exists a valid droplet sequence for this experi-
ment. Actually, for the given architecture no droplet sequence
exists, which would realize the experiment (my,ms3). This
motivates the following problem statement:

Given is the architecture including the time step specifi-
cation of the entities E as well as the experiments P.
Wanted is a verification whether all experiments ® can
be realized on the given architecture, i.e. whether for each
experiment ¢ € ® a droplet sequence can be determined,
which routes the payload droplet through all modules
defined in ¢.

IV. VERIFYING THE ARCHITECTURE

In this section, the proposed automatic solution to the
problem motivated above is described. Therefore, we explain
our verification strategy and its symbolic formulation.

A. Verification Strategy

In order to verify whether an architecture allows to execute
an experiment, all possible droplet sequences have to be
considered. To this end, it is important to know the maximum
length of the droplet sequences to be considered (as this
defines the search space). In fact, the given architecture bounds
the maximum length of a droplet sequence to a finite number
as follows:

The time a payload needs to execute an experiment is
specified by the required modules and channels it flows
through — denoted as #y. Only header droplets, which during
the execution of an experiment are in the NLoC, can have
an impact on the payload’s path (i.e. on the taken channels).
Therefore, we derive how many time steps headers can be
injected before or after the payload and still may have an
impact on the payload’s path. Then, the time span between
the earliest and the latest possible time defines the maximal
length of the droplet sequence. This earliest and latest possible
time is given as follows:

o The earliest possible time for injecting headers is given
by the longest path of the architecture. This longest path
is defined as the entities with the largest sum of time
steps — denoted as #,,4,pari, in the following. That means, if
headers are injected at most t,,4.pa;, time steps before the
payload, they can still be in the NLoC when the payload
is injected. So these headers may have an impact on the
payload’s path.

o The latest possible time for injecting headers is given
by the time required to execute the experiment (i.e. 7).
Even if headers enter the NLoC after the payload, they
potentially may impact the payload’s path (i.e. headers
may “overtake” the payload by taking another path and
then block a channel). Therefore, the latest possible time
a header can be injected and still may have an impact
on the payload’s path, is given by the time required to
execute the experiment 7.

Definition 4. Let T be the maximal length (i.e. the up-
per bound) of a droplet sequence, which is given by
T = twaxparh + ly.

This upper bound of the droplet sequence length guarantees
that, if the architecture allows to execute an experiment ¢,
a valid droplet sequence is definitely within this bound.
Otherwise, if within this upper bound no droplet sequence

can be determined, we have verified that the given architecture
does not allow to execute experiment ¢.

However, even with this upper bound a significant amount of
sequences have to be considered. More precisely, for an upper
bound T, there are T — 1 possible time steps, where either
a header droplet can be injected or not — resulting in 27!
possibilities. Even if many of those can easily be excluded,
still a huge (exponential) search space results.

Hence, we address this problem not by enumerating all
possible droplet sequences and validating whether they execute
the given experiment. Instead, we transform the determination
of a droplet sequence as a decision problem, i.e. “Is there at
least one valid droplet sequence for each experiment ¢ € P,
which correctly executes ¢ using a droplet sequence consisting
of at most T time steps?”. We symbolically formulate this
decision problem as a SAT Module Theories (SMT, [13])
instance, which is passed to a corresponding solving engine?.

B. Symbolic Formulation

This section provides the details of the symbolic formu-
lation, which initially represents all (also invalid) droplet
sequences and flows. Afterwards, we introduce constraints
which ensure a valid droplet flow, enforce the execution of
the experiment, and prevent the coalescence of droplets.

a) Symbolic Formulation of the Droplet Sequence and
Droplet Positions: The droplet sequence is represented by
two bit vectors. One bit vector represents the injection of the
payload droplet and the other represents the injection of header
droplets. Both vectors are of length 7. More formally:

Definition 5. Let injP be the vector of length T representing
the injection of the payload droplet. Further let injH be the
vector of length T representing the injection of the header
droplets. The left-most bit represents t = 1 in our notation.
Therefore, a 1 at position t in these bit vectors (i.e injPt] = 1
or injH[t] = 1) represents the injection of a payload/header
droplet in time step t. The time step in which the payload
is injected is given by the upper bound, i.e. the payload
is injected in time step tyaxpan- Therefore, the vector injP
contains a 1 at position tyaxpan (i.€. injP[tmaxparn] = 1).

In addition to the droplet sequences, a formulation is
needed which symbolically represents the state (i.e. the droplet
positions) of an NLoC at every time step. From the discus-
sion above, we already know that there cannot be a droplet
sequence longer than 7' time steps. Additionally, considering
the maximal time steps that the latest possible injected droplet
needs to flow back to the pump (given by the longest path),
T + tyaxpari, time steps have to be considered. In all those time
steps droplets must not coalesce.

Therefore, for all modules and channels and each time step
0 <t < T + tyaxpath, two bit vectors representing the header
droplets and the payload droplet are introduced, respectively.
The lengths of the payload (header) bit vectors are defined by
the function pStep (hSteps) — cf. Def. 3. A symbolic one-hot
encoding is applied to these bit vectors, where a 1 represents
the presence of a payload/header droplet within a channel or
module. When a payload (header) droplet enters a channel or
module, the left most bit of the payload (header) bit vector is
assigned 1. Then, the positions of the 1 in the vector represent
how long droplets are already in the entity. More formally:

3In the past, corresponding SMT solvers have already successfully been
applied in the design of electrowetting-based LoCs (see e.g. [14]) as well as
continuous-flow-based LoCs (see e.g. [15]).
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Fig. 3: Symbolic formulation of droplet positions

Definition 6. For each entity e € E and each discrete time step
0 <t < T +tymaxpan, we introduce a bit vector for the payload
droplet pd,.; and for the header droplets hd,;. The lengths of
the bit vectors pd,; are defined by pSteps(e) and the lengths
of the bit vectors hd,; are defined by hSteps(e).

Example 5. Fig. 3 shows the channel cy4 in time t = t, with
its currently contained droplets. Furthermore, it shows the
corresponding bit vectors hd., ;. and pd., ;.. Their assignments
represent the state of this channel cy.

Passing this symbolic formulation to a solving engine would
yield an arbitrary assignment of the bit vectors and, hence,
it is not guaranteed that the droplets correctly flow through
the NLoC, that an experiment is executed, or that no droplets
coalesce. Therefore, we have to restrict the assignments of the
symbolic formulation.

b) Enforcing the Droplet Flow: The hydrodynamic force
produced by the pump p causes a flow of the payload and
header droplets through the NLoC. To realize this flow, the
time a droplet is already contained in an entity has to be
increased in each time step. The used one-hot encoding allows
to do this with a single right shift. Note that this also handles
a droplet leaving an entity because the execution of the right
shift operation drops a 1 contained in the last position (i.e.
the execution of the shift operation drops hd,,[hSteps(e)] and
pdey[pSteps(e)]). In the following, we formally discuss the
flow of the header droplets. Likewise, it is applied to the bit
vectors representing payload droplets.

The flow of header droplets is formally enforced as

T+lmuxl’ath
/\ /\ hdes = (hde,t—l > 1) Vi (1
ecE  t=1

Eq. 1 executes a single right shift on the bit vector Ad, ;1 of
time t — 1 and assigns this value to bit vector hd,,;. However,
it does not consider the droplet flow between entities (e.g. a
droplet leaving a module and entering the successor channel).
Depending on the entity e, three cases have to be differentiated
for the droplet flow between entities (replacing the place
holder .. of Eq. 1):

« In case e is the channel connected to the outlet of pump p
(i.e. pred(e) = 0), the pump injects new droplets into this
channel within the first 7 time steps. The injection se-
quence of headers is represented by the vector injH. A 1
(i.e. injH[t] = 1) represents the injection of a new header
in time ¢. This motivates the following replacement:

= injH[t]. 2)

o In case e is a channel after a bifurcation, a droplet only
flows into channel e, if it has the lowest hydraulic resis-
tance compared to the other successor channels of the bi-
furcation and it does not already contain droplets [7], [9].
Therefore, let f be the channel before the bifurcation
(i.e. the predecessor of e). Three requirements have to
be fulfilled so that a droplet flows into the channel e
in time step f: (1) there has to be a header droplet,
which leaves the predecessor f in the next time step ¢
(i.e. part 1 of Eq. 3), (2) the channel e itself does not

already contain droplets (which would have increased the
hydraulic resistance) (i.e. part 2 of Eq. 3), and (3) all
channels with a lower hydraulic resistance already contain
other droplets (i.e. part 3 of Eq. 3). This motivates the
following replacement:

w=hdy,1[hSteps(f)| Nhdes—1 =0 pdes—1 =0N

1 2
A hdg;—1 >0V pdg;— >0. (3)
{gesucc(f):hSteps(g)<hSteps(e)}

3

« In all other cases, it is necessary to check if one of the
predecessors contains a header, which leafs the prede-
cessor in the next time step ¢ (i.e. hdy,—1[hSteps(f))).
If so, this header enters e. This motivates the following
replacement:

\/ hdy;_1[hSteps(f)]. 4)
fepred(e)

These constraints are adopted to also ensure the flow of the
payload droplet but, due to their similarity, are not explicitly
shown here.

Passing this formulation to a solving engine now already
ensures the correct flow of droplets. However, it does not
ensure that the experiments are executed or that no droplets

coalesce.

c) Enforcing the Experiment: Initially, before the exe-
cution of the experiment starts (at t = 0), we ensure that the
NLoC does not already contain droplets, i.e.

[\ hdep=0Apdeo=0. )
eckE

=

The payload droplet has to be routed through the sequence
of the desired modules defined by the experiment ¢. In order
to ensure this execution of ¢, we enforce that each module
defined in ¢ executes at some time step its operation on the
payload droplet. Therefore, we enforce all bit vectors pd,;
representing the modules contained in ¢ to be greater than 1
at some time 1 <¢ <T. In contrast, the payload droplet is not
allowed to traverse any module not contained in the experiment
(i.e. M\ ¢). Therefore we enforce those pd,, vectors to be
equal to O all time. This motivates the constraint:

N \T/pde,, >0A A

ecd t=1 ecM\¢

T+tmaxparh

/\  pdes=0. (6)

t=1

d) Preventing Droplet Coalescence: Finally, it is only
left to enforce that droplets never coalesce. Therefore, we have
to ensure that always at most one droplet enters an entity in
each time step 7, i.e.

T +taxparh
AN N Y pdpalpSteps(f)]V hdg,[hSteps(f)]) <1 (7)
ecE  t=1 fe€pred(e)

Passing the resulting formulation to a solving engine now
only yields assignments representing valid droplet sequences
and valid droplet flows, which correctly execute the experi-
ment 0. If the solving engine determines that no assignment
is possible satisfying all constraints, it has been proven that
the given architecture does not allow to execute the experi-
ment ¢. If instead a satisfying assignment is determined, the
assignments of the vectors injP and injH represent the droplet
sequence executing the experiment ¢. This process is repeated
for all experiments ¢ € ® and if there is a satisfying assignment
for all experiments, the proposed solution has proven that the
given architecture is capable of executing all experiments.



TABLE II: Evaluation results

NLoC M| |C| |®| Avg. ¢ Length Max. T Valid Time [s]
NLoC architectures created by graphs from [16]:

DAGmar8 8 21 5 4.0 4 v/ 3
DAGmarl0 10 28 10 7.0 151 v 31
DAGmarl2 12 28 8 7.1 182 v 54
DAGmarl4 14 35 14 7.4 181 v 109
DAGmarl6 16 31 9 9.7 239 v 72
DAGmarl8 18 41 24 12.0 261 v 908
DAGmar20 20 44 36 14.0 309 v 868
DAGmar22 22 49 96 12.5 292 v 8905
DAGmar24 24 55 64 14.1 325 v 8392
DAGmar8 8 21 6 4.0 84 X 2
DAGmarl0 10 28 11 7.0 151 X 11
DAGmarl2 12 28 9 7.3 184 X 31
DAGmarl4 14 35 15 7.5 182 X 22
DAGmarl6 16 31 10 9.8 241 X 32
DAGmarl8 18 41 25 12.0 261 X 112
DAGmar20 20 44 37 14.0 309 X 199
DAGmar22 22 49 97 12.5 292 X 1026
DAGmar24 24 55 65 14.1 325 X 2855
NLoCs architectures inspired and created from [17]:

Bl 8 15 3 6.3 137 v 4
B2 10 30 8 6.0 137 v 35
B3 12 36 10 7.1 222 v 280
B4 15 46 12 7.8 201 v 464
B5 17 53 14 9.2 260 X 953

[M|: number of modules |C|: number of channels |®|: number of experiments
Avg. ¢ Length: average length of the experiments Max. T: upper bound of time
steps for all experiments Valid: validity of the architecture Time [s]: required

run-time in CPU seconds

V. EVALUATION

The proposed solution has been implemented in Java result-
ing in an automatic verification method for NLoC architec-
tures. To this end, the SMT solver Z3 [18] in its latest version
has been utilized. In order to evaluate the proposed solution,
we used NLoC architectures generated using DAGmar [16] as
well as NLoC architectures inspired and created from [17]. We
use the proposed solution to efficiently verify whether these
architectures allow to execute the given set of experiments. All
experiments have been conducted on a 3.8 GHz Intel Core i7
machine with 32GB of memory running 64-bit Ubuntu 16.04.

The results are summarized in Tab. II. The first five columns
provide the name, the number of modules (|M|), the number of
channels (|C|) of the architecture followed by the considered
number of experiments (|®|), and the average length of these
experiments (Avg. ¢ Length). Afterwards, the respective re-
sults are reported. First, the maximum of all droplet sequence
upper bounds (Max. T) is provided. Second, we state whether
an architecture does allow (denoted by v') or does not allow
(denoted by X) to execute all experiments (Valid). Finally, the
last column provides the required run-time (in CPU seconds).

The first part of Tab. II shows architectures generated using
the graph library DAGmar [16]. These architectures can be
scaled with respect to the number of modules, channels, and
experiments. In this way, we were able to evaluate archi-
tectures of different size. To test both cases, i.e. executable
experiments as well as nonexecutable experiments, we define
two sets of experiments. The first set contains all executable
experiments on a given architecture and the second set addi-
tionally contains a nonexecutable experiment. We group the
first set in the upper half and the second set in the lower half
of the first part of Tab. IL.

For all architectures, the proof that no valid droplet sequence
exists for one of the experiments takes less runtime than the
proof that there are valid droplet sequences for all experiments.
That is because as soon as one experiment cannot be executed,
the verification can be aborted and the given architecture is
proven invalid.

The NLoC architectures inspired and created from [17] are
shown in the second part of Tab. II. Our verification solution
shows that only four out of five NLoC architectures indeed
allow to execute all experiments. For the last architecture (BS),
which also represents the largest NLoC architecture with the
most experiments, our solution verifies that not all experiments
can correctly be executed. Hence, this architecture cannot be
used to conduct all desired experiments. Overall, the results
show that the proposed solution has acceptable run times for
the considered NLoC architectures.

VI. CONCLUSIONS

In this work, we presented the first automated solution
for verifying whether a Networked Labs-on-Chip architecture
allows to execute all experiments. Therefore, the presented
solution proves the existence or non-existence of a droplet
sequence realizing an experiment on the given architecture.
In order to efficiently tackle this verification problem, a
symbolic formulation has been proposed. Afterwards, sat-
isfiability solvers are utilized. Evaluations showed that the
solution efficiently verifies NLoC architectures and confirmed
the applicability and importance of a verification solution.
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