
An Efficient Physical Design of
Fully-testable BDD-based Circuits

Andreas Rauchenecker
Institute for Integrated Circuits

Johannes Kepler University, Austria
Email: andreas.rauchenecker@jku.at

Robert Wille
Institute for Integrated Circuits

Johannes Kepler University, Austria
Email: robert.wille@jku.at

Abstract—For the manufacturing test of ASICs, it is important
to reach a high test coverage in order to get the defect level as
low as possible. However, complex digital circuits are usually
not fully testable. In order to address that, previous work
suggested to realize the circuits by means of Binary Decisions
Diagrams (BDDs). Here, each node is implemented using mul-
tiplexer gates (MUX gates) which, with some minor additions,
yield 100% testable circuits, with respect to stuck-at and path
delay faults. Unfortunately, current physical implementations of
MUX gates are rather expensive with respect to propagation
delay, power consumption, or transistor count. Hence, despite
the prospect of gaining 100% testability, BDD-based circuits did
not find significant attention yet. In this work, we propose an
alternative realization of MUX gates based on pass transistor
logic which addresses these drawbacks. Experiments show that
this allows for the realization of fully testable BDD-based circuits
which are competitive to or, in many cases, even better than state-
of-the-art realizations.

I. INTRODUCTION

It has always been necessary to test chips during the
manufacturing process. These tests are expensive and time
consuming but are inevitable for mass market products. How-
ever, despite issues related to test pattern generation [1],
compaction [2] [3], etc., the actual design of the circuit
itself also significantly affects the test process. In fact, most
circuit designs are not 100% testable, due to redundancies [4].
Motivated by that, researchers and engineers considered the
question of how to improve the testability of circuits. A
promising proposal in this direction has been made in [5].
Here, so-called Binary Decision Diagrams (BDDs, [6]) – a
graph-based data-structure for the efficient representation and
manipulation of Boolean functions to be synthesized – are em-
ployed. Each BDD can easily be mapped to a circuit composed
of multiplexer gates (MUX gates). On top of that, the authors
of [5] suggested (minor) extensions which eventually resulted
in a MUX circuit with a testability of 100%, with respect to
stuck-at and path delay faults. Due to these promises, BDD-
based circuits received significant interest – however mostly in
the domain of logic design. When it comes to their physical
realization, not so much attention can be observed yet. This
is mainly caused by the fact that hardly any efficient physical
realization of BDD-based circuits is available thus far. More
precisely, each BDD-based circuit basically represents a logic
circuit composed of MUX gates. But most established methods
for the physical design realize MUX gates by standard gates
only (i.e. transform a MUX into a sub-circuit composed of
AND, OR, and NOT gates), which are not optimized for
MUX-realization and usually lead to rather large and expensive
designs. This also applies to CMOS multiplexer cells which
might be available in certain synthesis libraries.

Within other contexts, the realization of MUX gates has
been considered using Pass Transistor Logic (PTL, [7]) –
leading to the proposals e.g. in [8] [9] [10]. But also here,

designs result which either have to be created manually (not
feasible for large circuits), have some problems with inverters,
or rely on, unbuffered signals chains and, because of that, do
not allow for long signal chains, or require complex clock
circuits due to domino logic structure [11]. Hence, also these
approaches do not satisfy the needs for an efficient realization
of BDD-based circuits.

Overall, realizing a given function employing BDD-based
circuits yields significantly larger designs with respect to
propagation delay, power consumption, or transistor count
compared to state-of-the-art designs obtained e.g. by com-
mercial tools such as the Synopsys Design Compiler. As a
consequence, BDD-based circuits got not established despite
their capability of guaranteeing 100% testability. In this work,
we are addressing this problem. To this end, we are proposing
alternative physical realizations of MUX gates which overcome
the drawbacks of previous solutions. This eventually results in
a design flow which allows for the automatic design of fully
testable BDD-based circuits whose propagation delay, power
consumption, or transistor count is competitive or, in many
cases, even better than conventional realizations using state-
of-the-art design tools. By this, we are paving the way for
establishing BDD-based circuits as an efficient alternative to
conventional design which guarantee 100% testability.

The remainder of this work is structured as follows: The
next section provides the background on BDDs, BDD-based
circuits and their testability, as well as related work on corre-
sponding physical realizations. Afterwards, Section III discuss
various MUX realizations and introduce the newly proposed
solutions. This leads to a design flow for the efficient realiza-
tion of BDD-based circuits which is described in Section IV.
The resulting physical designs have intensely been simulated
and evaluated – the respectively used setup as well as the
obtained results are summarized in Section V. Finally, the
paper is concluded in Section VI.

II. BACKGROUND AND MOTIVATION

This section reviews the basics of BDDs as well as the
synthesis scheme proposed in [5] which yields fully-testable
circuits. Afterwards, we discuss the problems of this approach
with respect to the physical realization of the resulting circuits
and, by this, motivate the contribution of this work.

A. Binary Decision Diagrams

Every Boolean function f : Bn → B can be represented
by a graph-structure defined as follows:

Definition 1. A Binary Decision Diagram (BDD, [6]) over
Boolean variables X with terminals T = {0, 1} is a directed
acyclic graph G = (V,E) with the following properties:

1) Each node v ∈ V is either a terminal or a non-
terminal.

2) Each terminal node v ∈ V is labeled by a value
t ∈ T and has no outgoing edges.

3) Each non-terminal node v ∈ V is labeled by a
Boolean variable xi ∈ X and represents a Boolean
function f .

4) In each non-terminal node (labeled by xi), the Shan-
non decomposition

f = xifxi=0 + xifxi=1

is carried out, leading to two outgoing edges e ∈ E
whose successors are denoted by low(f) (for fxi=0)
and high(f) (for fxi=1), respectively.

The size of a BDD is defined by the number of its (non-
terminal) nodes.

Example 1. Fig.1(a) shows a BDD representing the function
f = x0∧x1. Edges to low(v) (high(v)) are denoted by dashed
(solid) lines. The BDD has a size of 2.

(a) BDD (b) Resulting circuit (c) Fully testable circuit

Fig. 1: BDD and resulting circuits for f = x0 ∧ x1

A BDD is called free if each variable is encountered at most
once on each path from the root to a terminal node. A BDD
is called ordered if in addition all variables are encountered
in the same order on all such paths. The respective order is
defined by π : {1, . . . , n} → {1, . . . , n}. Finally, a BDD is
called reduced if it does neither contain isomorphic sub-graphs
nor redundant nodes. To achieve reduced BDDs, reduction
rules are applied [6]. Applying the reduction rules leads to
shared nodes, i.e. nodes that have more than one predecessor.
In the following, reduced ordered binary decision diagrams are
called BDDs for brevity. BDDs are canonical representations,
i.e. for a given Boolean function and a fixed order, the BDD
is unique [6].

B. Logic Synthesis

Given a BDD G = (V,E), a logic circuit can be de-
rived by traversing the decision diagram and substituting each
node v ∈ V with a MUX gate. More precisely, for each
node v ∈ V , a MUX gate is created where the select input
of each MUX gate is connected to the primary input xi as
given by v and the 0-input (1-input) is connected to the output
of the MUX gates created for low(v) (high(v)).

Example 2. Consider again the BDD from Fig. 1(a). Applying
the synthesis scheme described above yields the circuit as
shown in Fig. 1(b).

Circuits derived from BDDs have the advantageous prop-
erty of being 100% testable for established fault models such
as the stuck-at fault model or the path-delay fault model. To
this end, only one additional input and one inverter has to be
added. More precisely, the terminal node 0 is substituted by the

new primary input (denoted by t for test) and t is additionally
connected to the 1-terminal by an inverter.

Example 3. Fig. 1(c) shows the resulting circuit obtained by
adding t and the inverter as described above.

Having the resulting circuit and setting t to 0, the original
functionality results. Instead, setting t to 1, the complement is
computed. This allows for executing the desired functionality
while, at the same time, yields 100% testability e.g. for stuck-
at faults. In fact, by changing the value of t, all internal
signals of the circuits change their value. This guarantees full
controllability, i.e. all possible fault locations can indeed be
triggered. Observability, i.e. propagating the faulty effect to
the primary outputs, is easily possible due to the select inputs
of each MUX gate which always allow for the generation of a
respective propagating path. Proofs showing this property have
been provided in [5].

C. Physical Realization

Despite the promises of gaining 100% testability, how
to efficiently realize BDD-based circuits has hardly been
considered yet. A naive solution is to simply map each MUX
gate into a corresponding sub-circuit composed of AND, OR,
and NOT gates and physically realize the resulting structure.
However, this yields rather expensive designs with respect to
propagation delay, power consumption, or transistor count.
Even if dedicated MUX cells are available in a synthesis
library, they are still rather expensive (see also Section III-A).
As an alternative, mapping the corresponding MUX gates to
Pass Transistor Logic (PTL, [7]) seems promising. However,
respective initial works such as proposed in [12] have the big
disadvantage that these circuits are complex and are usually
implemented by hand. Another way proposed in [8] suggested
the introduction of custom library cells called Lean Integration
with Pass-Transistors (LEAP). Here, three custom library cells
have been considered which are capable of mapping one to
three BDD nodes, requiring a complex algorithm for mapping
the whole function. Since this PTL style additionally relies on
a single rail, additional inverters have to be utilized for the
needed inverted control signals of ascending pass transistors –
again, way too much effort for an efficient design.

Finally, an approach proposed in [9] employs a similar
strategy, but utilizes so-called Differential Cascode Voltage
Switch with Pass Gate Logic (DCVSPG) cells rather than
LEAP cells. This eliminates the need for inverters by a
complementary rail. By this, and the fact that DCVSPG has
no output buffer, the authors from [9] assume that DCVSPG
is faster, but evaluations summarized in [13] showed that the
resulting design scheme cannot be applied for longer chains
of logic. This is caused by the fact that the pass signals
have to traverse through the whole logic chain without being
buffered. As a consequence, also this solution is unsuitable
in order to realize BDD-based circuits. Overall, no efficient
physical design for MUX gates exists yet which would allow
for exploiting BDD-based circuits and their 100% testability.

III. DESIGN STYLES FOR MULTIPLEXER

In this work, we aim to address the problem discussed
above by providing an alternative physical design for BDD-
based circuits. The main idea is to reduce the complexity of
the technology mapping stage considering a single library cell
only: a 2-to-1 MUX. Using a dual rail PTL, no inverters and
no additional buffers have to be inserted. This allows for a
mapping of a BDD to the corresponding physical design where
each BDD node can independently be replaced by the proposed
cell (no relations between the respective BDD-nodes have to

be considered). Because of this, even different variations of
cells can be considered – and, eventually, the one which fits
best can be chosen (see design variants in section III-C).

In order to describe the details of the proposed solution,
we continue with a review of the “standard” CMOS and
PTL realizations of a MUX gate and show improvements
to these designs to better suit our purposes. The resulting
designs eventually allow for a physical realization of BDD-
based circuits which is competitive against state-of-the-art
solutions that do not guarantee 100% testability.

A. Standard CMOS Gate

The binary decision diagrams introduced in the previous
chapter can be implemented in hardware with 2:1 MUX cells.
Usually, these cells are available as standard cell in any ASIC
technology and employ the basic CMOS structure of the logic
function Q = A ∗ nS +B ∗ S.

Design variant 1 (STD). The standard (STD) multiplexer
gate realized as CMOS complex gate with NMOS and PMOS
transistors is shown in Fig. 2.

Fig. 2: Standard CMOS realization

B. Pass Transistor Logic Gates

Pass Transistor Logic (PTL, [7]) is predestined for realizing
multiplexer structures. Here, the transistors are not used to
establish a connection to the supply voltage or the ground.
Instead, transistors are used as a pass gate which lets a signal
pass or not depending on a control signal. This behavior
directly describes a multiplexer.

Design variant 2 (PTL). Fig. 3 shows the simplest way how
a MUX can be implemented in PTL.

Fig. 3: Simplest PTL realization

The PTL design basically realizes a 2-to-1 MUX gate. A
set of control signals is connected to the gates of the NMOS
transistors and another set of pass signals is connected to the
source pins of the transistor. Depending on the control signals,
the pass signals are handed to the output [7]. In the circuit from
Fig. 3, pass signal A is led to the output if control signal nS
is set to “1” (switching the pass-transistor T1 on). Signal B is

passed to the output if signal S is set to “1” and, therefore, T2
is activated. This behavior can be described with the boolean
equation Q = A∗nS+B ∗S. To avoid unwanted states at the
output, only one of the transistors is allowed to be switched
on. To guarantee this, a single control signal S is used which
switches T2, while nS (controlling T1) is the inverted signal
of S.

The problem of this design variant is that the corresponding
signals suffer from a significant degradation (i.e. their “1”-
voltage level will not be fully reached). Moreover, the driver
strength of a corresponding MUX cell depends on the cell from
which the pass signal originated. Hence, chaining multiple of
these cells leads to an substantial drop of signal strength (in
case of level “1”) and driver strength – until the signal value
can no longer be determined or the following cells cannot be
driven anymore.

C. Optimized Pass Transistor Logic Gates

A first approach in getting a better output signal is by
using PMOS transistors as level restorer. The PMOS transistors
establish a conductive path to supply voltage in case an output
signal is set to “1”. By this, the voltage loss from the pass
transistor is eliminated.

Design variant 3 (DCVSPG). Fig. 4 shows an alternative
design called Differential Cascode Voltage Switch Pass Gate
(DCVSPG, [14]) which utilizes a level restorer at the output.
The restorers are controlled by the complementary output and
are only active when necessary. In addition to the level restorer,
a complementary circuit is necessary to be able to control the
level restorer. This leads to a differential structure. Since for
MUX cells the inverted control signal is required anyway, this
is actually advantageous in a MUX based design.

Fig. 4: DCVSPG realization

In order to improve the driver strength, a CMOS inverter
buffering the output can be attached to the DCVSPG cell. Now
the driver strength of the cell is independent of the preceding
cell and can be adjusted by varying the W/L ratio of the
inverter transistors.

Design variant 4 (CPL). Adding the CMOS inverter yields
the Complementary Pass Transistor Logic (CPL, [15], [16])
cell which is shown in Fig. 5.

Using a CPL circuit, i.e. using an inverter to buffer the
output, allows to skip the level restorer transistor. This is
motivated by the fact that a single pass transistor at the voltage
level is still sufficient to switch the inverter transistors on and
off.

Fig. 5: CPL realization

Design variant 5 (BCPL). Skipping the level restorer tran-
sistor, yields a structure called Buffered Complementary Pass
Transistor Logic (BCPL, [17]) and is shown in Fig. 6.

Fig. 6: BCPL realization

Besides that, another variant is proposed where the level
restorers are not connected to supply voltage but to the
differential output. This yields a solution which is optimized
for power consumption.

Design variant 6 (EEPL). Connecting the level restorers to the
differential output yields a structure called Energy Economized
Pass Transistor Logic (EEPL, [18]) as shown in Fig. 7 .

Fig. 7: EEPL realization

Overall, the considerations from above lead to the proposal
of the following three physical designs for the realization of
single MUX gates and, hence, BDD-based circuits:

1) BCPL, which is the fastest design variant; the re-
duced capacitance due to the lack of level restoring
PMOS transistors leads to a minimum propagation
delay

2) CPL, which is nearly as fast as BCPL but addi-
tionally employs a reduced power dissipation; the
level restorer in front of the inverter ensures that the
transistors are completely switched on or off which
reduces the leakage current.

3) EEPL, which is the slowest design variant, but
constitutes the most energy efficient PTL solution
available.

Note that, the DCVSPG variant is not further considered as
this solution is obviously outperformed by the other variants.
Furthermore, recall that all solutions proposed in this subsec-
tion allow for a mapping of single MUX gates without the
need to consider relations to other MUX gates. In contrast
to previously proposed solutions, this allows for a simple
automatic mapping of a BDD-based circuit to a physical design
without any adaption needed for changing the PTL style.
Because of that, all variants summarized above can be easily
realized and simulated and, afterwards, the one with the best
performance according to the designer’s needs can be chosen.
Considering that the effectiveness of a PTL style strongly
depends on the design and function to be realized [7], this
leads to great potential with respect to design exploration.

IV. RESULTING DESIGN FLOW

Based on the discussions and proposals from the previous
section, an automatic design flow can be defined which realizes
an efficient and 100% testable circuit for a given function to
be synthesized. This section describes the respective steps of
the resulting flow.

Assuming the design to be implemented is available in Ver-
ilog on a higher abstraction level, the first step is to transform
the Verilog code into a BDD representation. This task can be
accomplished using tools like CUDD [19] or ABC [20]. Next,
the resulting BDD is to be converted into a MUX circuit and
dumped into a Verilog netlist, representing every MUX gate
with an if-statement. Again, this can be conducted using ABC.
Afterwards, the actual technology mapping is conducted. Here
the respective cell variants presented above are applied and,
if necessary, the respective inverters for control signals are
added. To gain 100% testability in the next phase arrangements
are made as described in section II-B. These steps have been
automated using a Python script. Finally, the resulting netlist
is handed over to a layout tool such as Cadence Encounter
or Virtuoso which conducts the placement and routing and,
eventually, completes the design for manufacturing. Besides
that, corresponding automatic solutions for the simulation of
the performance of the resulting designs have been created.
For measuring the performance of the circuit, one has to
simulate the maximum propagation delay. The most trivial way
would be to perform a static timing analysis on the netlist,
revealing the maximum delay. But this can only be done if
a fully functional synthesis description of the MUX cell is
available. This is not necessarily the case for custom made
MUX cells like the pass transistor logic cells. To be able
to simulate circuits without a full library, one could perform
a transistor-level simulation. Simulating every possible input
case is highly inefficient and, hence, infeasible. Therefore, it
is inevitable to identify the critical path and the corresponding
input case beforehand. Determining the critical path can be
done by analyzing the STD gate representation of this circuit
with tools like Synopsys Primetime or Nanotime. The critical
path detected for this variant should also apply for the PTL
design styles (at least for the PTL styles considered here).
Hence, the resulting critical path with its corresponding input
can be simulated on the transistor level with Simulators such
as Cadence Spectre or Synopsys HSpice.

Overall this leads to the following flow for implementing
and simulating a BDD-based circuit using the proposed PTL
design styles.

Physical Design:
• Create a BDD representation
• Convert the BDD to a MUX representation
• Dump the circuit as a Verilog netlist
• Map the MUX netlist to the proposed PTL

styles
• Modify the netlist to gain 100% testability
• Conduct placement and routing

Simulation:
• Identify the critical path
• Determine the input for the critical path
• Simulate the critical path
• Determine the results

As all these steps can be conducted automatically, all
design alternatives proposed in Section III-C can efficiently be
realized and simulated. Then, the one which fit’s the design
needs best can be chosen.

V. SIMULATION AND EVALUATION

The proposed physical designs and the resulting design
flow have intensely been evaluated and compared to standard
and state-of-the-art solutions. To this end, the design flow
proposed in the previous section has been implemented using
the mentioned tools as well as Python scripts. The design
styles proposed in Section III-C, namely BCPL, CPL, and
EEPL, have been realized in 350nm technology using Cadence
Virtuoso. Then, functions provided in [5] have been taken as
benchmarks and realized using the proposed flow. Finally, the
resulting physical designs have been compared to:

• designs obtained by a solution which realizes the
BDD-based circuit using standard gates (denoted
by STD in the following), i.e. a solution which relies
on the standard cells MUX2X2 and INVX2, and

• designs obtained by synthesizing the desired functions
using the Synopsys Design Compiler (denoted by SYN
in the following).

In the following the obtained results are summarized and
discussed. Before that, we briefly review the considered quality
criteria.

A. Considered Metrics

In our evaluations, the following metrics have been con-
sidered:

1) Propagation delay: For simulating the propagation de-
lay, the critical path with its input wiring had to be found.
This has been achieved by analyzing the gate netlists with
the Synopsys tool Nanotime. Assuming the critical path is the
same for all logic styles, analyses have been carried out using
this path. Since synthesis with the Synopsis Design Compiler
yields a completely different structure, the SYN design has
also been analyzed with Nanotime for its own critical path.

2) Power Consumption: For an estimation of the power
consumption, the current drawn from the supply voltage source
has been measured and used for calculating the power using

P = Vdd

∫ 8ns

0

|i(t)|dt. (1)

The resulting value is the power consumed for one switch-
ing event. This value has been multiplied by 106 – assuming
the circuit is running at 1 MHz.

3) Transistor count: The number of transistors in the
designs is being used as a measure for the area of the resulting
designs. It should be mentioned that pass transistor logic
utilizes more NMOS transistors than PMOS transistors. Since
PMOS transistors are usually larger than NMOS transistors,
pass transistor logic results in a smaller design even if the
transistor count is the same or slightly above the transistor
count of the standard CMOS style.

Furthermore, note that the transistor count of SYN is only
an estimation since the Synopsis Design Compiler only pro-
vides the cell area as a result. To estimate the transistor count,
the obtained cell area has been divided by the cell area of
the standard NAND gate (providing us with the corresponding
number of NAND gates) and, afterwards, multiplied by four
(since one NAND gate is realized using four transistors).

B. Obtained Results

The obtained results are summarized in Tables I to III for
propagation delay, power consumption and transistor count,
respectively. The first column respectively provides the name
of the benchmark, while the remaining columns list the results
for each considered design style.

1) Propagation delay: Results are shown in Table I. As
clearly can be seen, BCPL performs best in terms of prop-
agation delay. An exception can only be observed when the
BDD results in a much more complex structure than standard
synthesis approach (see e.g. benchmarks i5 and b9). CPL
is almost as fast as BCPL (as expected; see discussions in
Section III-C) – only the additional capacitance of the level
restorer transistors slows the design down. EEPL is rather slow,
even slower than STD version. Moreover, it is interesting that
in 5 out of 12 cases, the BDD-based realization is faster than
the one automatically synthesized using the commercial tool
(i.e. SYN).

TABLE I: Propagation delay in ns

Proposed S-o-t-a
BCPL CPL EEPL Best PTL STD SYN

9symml 1.321 1.395 2.158 1.321 1.988 2.525
alu2 1.886 2.268 3.772 1.886 2.699 5.354

b9 1.646 1.878 2.957 1.646 2.732 1.488
C17 0.573 0.605 0.812 0.573 0.898 0.606

count 2.805 3.176 5.044 2.805 4.641 4.583
f51m 1.210 1.371 1.953 1.210 1.977 1.815

i1 1.528 1.683 2.600 1.528 2.633 1.243
i5 2.780 2.950 4.779 2.780 4.332 0.571

t481 1.057 0.799 1.673 0.799 1.445 3.796
tcon 0.263 0.288 0.305 0.263 0.575 0.599

x2 1.008 1.185 1.748 1.008 1.798 1.138
z4ml 1.030 1.111 1.673 1.030 1.549 1.675

2) Power consumption: Results are shown in Table II. As
can be seen, power consumption strongly depends on the
considered benchmark. It can be said that BCPL is more
“power hungry” – especially if the design gets larger. The
reason for this is the missing level restorer causing more cross-
current through the buffers/inverters since the transistors are
not completely turned off. CPL draws a little less current
except for smaller designs, where the additional capacitances
results in more consumed energy than the cross current in
the BCPL buffer. Overall, EEPL is the most power efficient
design, as it has been designed for energy efficiency. In most
cases, the SYN design draws less current than the PTL designs.
This is due to the CMOS structure drawing only current while
switching and has in static case nearly no current consumption.

Power consumption has also a direct relation to the transistor
count as one can see when comparing Table II with
Table III.

TABLE II: Power consumption in uW

Proposed S-o-t-a
BCPL CPL EEPL Best PTL STD SYN

9symml 2.777 1.961 1.851 1.851 1.199 27.880
alu2 26.199 19.203 16.942 16.942 38.664 95.084

b9 88.647 125.836 18.941 18.941 26.813 9.506
C17 1.902 2.297 1.497 1.497 1.484 0.533

count 114.755 48.157 42.213 42.213 35.477 30.655
f51m 9.092 6.284 5.844 5.844 11.834 21.065

i1 12.433 28.488 5.804 5.804 4.694 10.467
i5 496.311 326.188 69.418 69.418 4.929 0.522

t481 33.613 28.870 6.806 6.806 20.380 42.209
tcon 0.814 0.853 16.012 0.814 1.538 2.291

x2 6.640 11.182 4.741 4.741 11.255 4.224
z4ml 5.726 3.968 3.698 3.698 3.330 1.041

3) Transistor count: Results are shown in Table III. In 3
out of the 12 cases, SYN requires the smallest amount of
transistors. As expected, the STD realization consists always of
more transistors than the PTL designs. BCPL has the smallest
transistor count of all PTL styles, as expected since it has the
smallest number of transistors per cell. Overall one can say that
the difference to SYN is limited and that the PTL designs are
competitive to the SYN design. The benchmark i5 is a extreme
case since there the BDD results in a significantly larger and
more complex design compared to the standard approach.

TABLE III: Transistor count

Proposed S-o-t-a
BCPL CPL EEPL Best PTL STD SYN

9symml 184 230 230 184 290 204
alu2 1368 1710 1710 1368 2250 1408

b9 1536 1920 1920 1536 2462 454
C17 56 70 70 56 92 30

count 1520 1900 1900 1520 2312 636
f51m 424 530 530 424 700 566

i1 384 480 480 384 600 222
i5 4856 6070 6070 4856 7596 660

t481 224 280 280 224 376 942
tcon 64 80 80 64 96 160

x2 304 380 380 304 500 200
z4ml 192 240 240 192 312 114

4) Summary: Overall, the results clearly show that efficient
physical realizations for BDD-based circuits can be obtained
which are competitive or, in many cases, even better than
conventional realizations using state-of-the-art design tools. By
this, the benefit of 100% testability in BDD-based circuits can
be exploited without the need to accept the drawback of costly
physical realizations anymore. The results also show that of the
three proposed PTL styles each has its own benefits. And these
benefits can be exploited efficiently by deciding per design
from which PTL style the function benefits the most.

VI. CONCLUSION

In this work, we proposed several designs for the realiza-
tion of BDD-based circuits. By this, we addressed the problem
that, although BDD-based circuits come with the promise of
100% testability, they hardly made it into practice yet due
to their costly physical implementation. Here, three different
design styles have been presented – each with their respective
characteristics. As corresponding physical realizations can
automatically and efficiently been derived for each logic style,
the designer can eventually decide which fits the required
specifications best. Simulations and evaluations confirmed that
the proposed designs are competitive or, in many cases, even
better than conventional state-of-the-art realizations. This is a
substantial step towards establishing BDD-based circuits and
their 100% testability as an efficient alternative to conventional
designs.

REFERENCES

[1] C. Wang, S. M. Reddy, I. Pomeranz, X. Lin, and J. Rajski, “Conflict
driven techniques for improving deterministic test pattern generation,”
in International conference on Computer-aided design, 2002, pp. 87–93.

[2] S. Eggergluss and R. Drechsler, “Improving test pattern compactness in
sat-based ATPG,” in 16th Asian Test Symposium (ATS 2007), Oct 2007,
pp. 445–452.

[3] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded de-
terministic test,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–792, May 2004.

[4] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Archi-
tectures. Elsevier, 2006.

[5] R. Drechsler, J. Shi, and G. Fey, “Synthesis of fully testable circuits
from BDDs,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 23, no. 3, pp. 440–443, March 2004.

[6] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
Aug 1986.

[7] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design -
A Systems Perspective. Addison-Wesley Publishing Company, 1993.

[8] K. Yano, Y. Sasaki, K. Rikino, and K. Seki, “Top-down pass-transistor
logic design,” IEEE Journal of Solid-State Circuits, vol. 31, no. 6, pp.
792–803, Jun 1996.

[9] G. P. R. Reddy, J. Ghosh, A. P. C. R. Mandal, and B. B. Bhattacharya,
“Power-delay efficient technology mapping of bdd-based circuits using
dcvspg cells,” in 2008 3rd International Design and Test Workshop,
Dec 2008, pp. 123–128.

[10] C. Scholl and B. Becker, “On the generation of multiplexer circuits for
pass transistor logic,” in Proceedings Design, Automation and Test in
Europe Conference and Exhibition 2000 (Cat. No. PR00537), 2000, pp.
372–378.

[11] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. D. Micheli,
“Decision diagrams and pass transistor logic synthesis,” Technical
Report - Departments of Electrical Engineering and Computer Science,
Stanford University, no. CSL-TR-97-748, Dec 1997.

[12] R. Chaudhry, T. H. Liu, A. Aziz, and J. L. Burns, “Area-oriented
synthesis for pass-transistor logic,” in Computer Design: VLSI in
Computers and Processors, 1998. ICCD ’98. Proceedings. International
Conference on, Oct 1998, pp. 160–167.

[13] G. Gristede and W. Hwang, “A comparison of dual-rail pass transistor
logic families in 1.5v, 0.18um cmos technology for low power applica-
tions,” in GLSVLSI-2000, 2000, pp. 101–106.

[14] F.-S. Lai and W. Hwang, “Design and implementation of differen-
tial cascode voltage switch with pass-gate (dcvspg) logic for high-
performance digital systems,” IEEE Journal of Solid-State Circuits,
vol. 32, no. 4, pp. 563–573, Apr 1997.

[15] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and
A. Shimizu, “A 3.8-ns cmos 16 times;16-b multiplier using comple-
mentary pass-transistor logic,” IEEE Journal of Solid-State Circuits,
vol. 25, no. 2, pp. 388–395, Apr 1990.

[16] R. Zimmermann and R. Gupta, “Low-power logic styles : Cmos vs cpl,”
in Solid-State Circuits Conference, 1996. ESSCIRC ’96. Proceedings of
the 22nd European, Sept 1996, pp. 112–115.

[17] A. Rauchenecker and T. Ostermann, “Examination of different adder
structures concerning di/dt in a 180nm technology,” in Electromagnetic
Compatibility of Integrated Circuits (EMC Compo), 2015 10th Interna-
tional Workshop on the, Nov 2015, pp. 103–108.

[18] M. Song, G. Rang, S. Kim, and B. Kang, “Design methodology for
high speed and low power digital circuits with energy economized
pass-transistor logic (eepl),” in Solid-State Circuits Conference, 1996.
ESSCIRC ’96. Proceedings of the 22nd European, Sept 1996, pp. 120–
123.

[19] F. Somenzi, “Cudd: Cu decision diagram package,”
http://bessie.colorado.edu/ fabio/CUDD.

[20] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and
scalably-verifiable sequential synthesis,” in Computer-Aided Design,
2008. ICCAD 2008. IEEE/ACM International Conference on, Nov 2008,
pp. 234–241.

