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Abstract. The success of Model-Driven Engineering (MDE) relies on
the quality of the employed models. Thus, quality assurance through
validation and verification has a tradition within MDE. But model ver-
ification is typically done in the context of specialized approaches and
provers. Therefore, verification tasks are expressed from the viewpoint
of the chosen prover and approach requiring particular expertise and
background knowledge. This contribution suggests to take a new view
on verification tasks that is independent from the employed approach
and prover. We propose to formulate verifications tasks in terms of the
used modeling language itself, e.g. with UML and OCL. As prototypical
example tasks we show how (a) questions concerning model consistency
can be expressed with UML object diagrams and (b) issues regarding
state reachability can be defined with UML sequence diagrams.

1 Introduction

Software development following the Model-Driven Engineering (MDE) paradigm
focuses on models in contrast to traditional code-centric approaches. Models
are said to offer advantages like a high degree of abstraction or platform-
independence. As models become the central artifacts – particular in early stages
of the design process – means for model quality assurance in form of valida-
tion (“Are we building the right product?”) and verification (“Are we building
the product right?”) become indispensable. In particular, verification techniques
get more and more important, since they allow to check whether a system to be
realized is described and behaves as intended before a single line of programming
code is written.

Nowadays, the UML (Unified Modeling Language) and the OCL (Object Con-
straint Language) are frequently applied modeling languages. Correspondingly,
a substantial number of verification techniques has been developed for models
provided in UML/OCL. The spectrum of approaches ranges from solutions for
structural and behavioral verification tasks as well as along the employed veri-
fication engines such as theorem provers [8], solvers for Constraint Satisfaction
Problems (CSP) [9]), Petri nets [10], model checkers [18], intermediate languages

1



like Alloy or Kodkod [1, 28], or solvers for Boolean satisfiability (SAT) and SAT
Modulo Theories (SMT) [26,27].

However, these approaches often address the respective verification tasks
from their own particular perspective and with respect to their paradigms. For
example, solutions based on SAT or SMT require a description of the considered
verification tasks in terms of propositional logic or bit-vector logic, respectively.
This poses a significant challenge to the designer, since expertise and background
knowledge about the employed verification approach and the used tool is needed
in order to formulate a verification task. Moreover, this nullifies several of the
benefits of using UML/OCL models such as the easy accessibility of a system de-
scription also for non-technical stakeholders, the high-degree of freedom, as well
as the independence from programming or, in this case, verification languages.

In this work, we propose a solution to this problem by introducing a view on
verification tasks in a tool- and approach-independent manner. The main idea is
as follows: Instead of formulating the respective verification task in a tool-related
language (such as propositional logic or bit-vector logic), we propose to describe
them in terms of the used modeling language (such as UML/OCL) itself. To
this end, we consider some well-known and frequently applied verification tasks
such as consistency or reachability and provide corresponding formulations in
UML/OCL.

Overall, this allows designers to formulate additional properties for an exist-
ing UML/OCL model which are not explicitly part of the system description, but
represent verification tasks. By this, designers can formulate verification tasks
with description means they are most familiar with and in which they designed
the currently considered model anyway.

The structure of the rest of this paper is as follows. Section 2 introduces
central notions and the paper’s background. Section 3 shows how a representa-
tive verification tool for UML/OCL models currently handles verification tasks.
In Sect. 4, the central idea of this work, namely the formulation of structural
verification tasks within UML/OCL is introduced and illustrated. Section 5 con-
centrates on behavioral verification tasks from the developer’s point of view and
discusses advantages of our proposal. Finally, related work is discussed in Sect. 6
before the paper is concluded in Sect. 7.

2 Preliminaries and Background

Modeling languages such as the UML have been established to specify the design
of complex systems. They provide a broad variety of different concepts such as
class diagrams, sequence diagrams, or activity diagrams which are expressive
enough to formally specify a complex system – especially together with textual
constraints, e.g., in terms of OCL. These formal descriptions additionally allow
for the verification of the respective specification already in the absence of a
specific implementation, i.e., in an early stage of the design where flaws can be
eliminated at relatively low costs.
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The corresponding verification tasks can be divided into Structural Verifica-
tion Tasks, where single states of the system are considered, as well as Behavioral
Verification Tasks, where sequences of system states together with the connect-
ing transitions (e.g., described in terms of state charts or operations with pre-
and postconditions) are considered, see e.g., [16] for an overview.

A very common structural verification task is to check the consistency of
a model, i.e., investigating whether the model description is consistent in the
sense that an instantiation of the model exists which satisfies all of the model
constraints. For behavioral verification, a typical task is to consider the reachabil-
ity of certain good or bad states from a given initial state. As these two are very
popular verification tasks, they will be considered as stereotypes in the remain-
der of the paper to illustrate existing approaches and the proposed concepts.
Other verification tasks include, for instance, to check whether (1) the model
satisfies certain properties such that corresponding constraints hold for any in-
stantiation of the model, or to check whether (2) the invariants are independent
or possibly imply each other (e.g., in order to find a minimal set of invariants or
constraints) [13]. Typically either solely structural or solely behavioral aspects
are considered, though there are a few works that consider the model structure
and behavior at once (e.g., by considering operation contracts in combination
with invariants) [15].

For both categories of verification tasks, a variety of automatic solving ap-
proaches have been introduced. The main idea of most of these approaches is
to encode verification problems in a language that can be passed to a dedicated
solving engine and transfer the results (more or less) back to the level of UML
and OCL. In this context, different languages and solving engines have been
proposed such as approaches (a) using theorem provers like Isabelle [8], (b) re-
formulating the problem as a Constraint Satisfaction Problem (CSP) [9], (c) us-
ing Petri nets [10], (d) addressing model checkers [18], (e) using intermediate
languages like Alloy or Kodkod [1,28] though finally resulting in a SAT problem,
or (f) using a direct encoding in the more general language of SMT [26, 27].

All these approaches have their very own characteristics and need a high
amount of expert knowledge and specific experience in order to be used which
cannot be expected from a common developer. And, many approaches often
support a single or a small set of verification tasks only, such that a developer
would need to familiarize with many of these approaches in order to conduct
a reasonable variety of verification tasks. This problem will be illustrated in
more detail in Sect. 3 where we will show how two popular verification tasks
(consistency and reachability) are formulated in one of these approaches.

In order to show examples for verification tasks and also to illustrate the
proposed new concepts, we will make use of a running example as depicted in
Fig. 1. The model describes a CivilStatusWorld with persons having a gender
and a civil status attribute and marriages between persons determined by a
reflexive association. Operations for marrying and divorcing are provided as well
as a query operation spouse determining a (possible) set of persons. Under the
assumption that the model is bigamy-free, this operation returns a singleton set.
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Fig. 1. Example class diagram.

OCL invariants and operation contracts in form of OCL pre- and postcondi-
tions as shown in Fig. 2 further restrict the structural and behavioral aspects of
the model. More precisely, the query operation spouse is defined in a defensive
way as a set-valued operation because the class diagram allows a person to have
both a wife and a husband. The aim of the model is to have the empty set or
a singleton set as the result for spouse, if all multiplicities and the invariant
hold. The invariant establishes a connection between the gender attribute and
the marriage role names as well as a connection between the civstat attribute
and the spouse operation. We only show the contract for the operation marry,
because the divorce contract is formulated analogously. marry has one precon-
dition and a first ordinary postcondition. The second marry postcondition is a
frame condition that explicitly requires that (a) marry does not introduce new
objects nor change the gender attribute and (b) except the spouse set and except
the self object (on which marry is called) all other objects are left unchanged
w.r.t. the roles and the remaining attributes.

When one wants to enable verification of contract behavior, one must either
have an operation implementation (in that case the verification results are rel-
ative to the given implementation) or one must say in a declarative, complete
way what the effect of an operation is, in particular, which things (attributes or
roles from the class diagram) are changed by the operation and which things are
left unchanged. In the example, the two postconditions serve this purpose.

3 Manifesting Consistency and Reachability in Tools

We now explain three typical verification tasks for the running example and show
how they are realized in one UML and OCL tool. The discussion underpins our
claim that specific knowledge and expertise is needed for successfully verifying
properties in UML and OCL models. The three verification tasks are as follows.

1. Assume a system state is given with (a) objects possessing partially specified
attribute values, (b) one female person participating in a marriage (where
the roles wife and husband are left unspecified) and (c) another present male
person. The first verification task now asks whether the system state can be
completed to a full object diagram. If successful, this would prove consistency
of the structural model, i.e., satisfiability of the class diagram including the
multiplicities and the invariants.
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spouse():Set(Person)=
if wife->notEmpty and husband->notEmpty then

Set{wife,husband} else
if wife->notEmpty then

Set{wife} else
if husband->notEmpty then

Set{husband}
else

Set{}
endif endif endif

context Person inv traditionalRoles:
( gender=#female implies wife->isEmpty ) and
( gender=#male implies husband->isEmpty ) and
( spouse()->notEmpty = (civstat=#married) )

context Person::marry(aSpouse:Person)
pre unmarriedDifferentGenders:

self.spouse()->isEmpty and aSpouse.spouse()->isEmpty and
Set{self.gender,aSpouse.gender}=Set{#female,#male}

post married:
Set{aSpouse}=self.spouse() and Set{self}=aSpouse.spouse() and
self.civstat=#married and aSpouse.civstat=#married

post personUnchangedExceptSet:
let x=self.spouse()->including(self) in
Person.allInstances@pre=Person.allInstances and
Person.allInstances->forAll(p|

(p.gender@pre=p.gender) and
(x->excludes(p) implies p.civstat@pre=p.civstat) and
(x->excludes(p) implies p.wife@pre=p.wife) and
(x->excludes(p) implies p.husband@pre=p.husband))

Fig. 2. OCL query operation, invariant, and operation contract.

2. The second verification task asks whether it is possible to construct a system
state with a marriage link where both participating persons have the same
gender that is however not a priori fixed. If this is not possible, then the fact
that in a marriage the participating persons must have different genders is
a consequence of the model.

3. The third verification task checks whether it is possible to find a sequence
of operation calls that leads from four single persons to four married per-
sons. In case all operations, i.e., both marry and divorce, show up, this
would show the satisfiability of the invariants considered together with the
operation contracts. It would guarantee the satisfiability of the structural
model (class diagram with multiplicities and invariants) considered together
with the behavioral model (operation contracts).

We classify tasks (1) and (2) as consistency problems (because they aim at
constructing one consistent system state) and task (3) as a property reachability
problem (because a particular property must be reached when starting in a
given initial situation). A general classification of verification tasks was proposed
recently in [16].

USE (Uml-based Specification Environment) is a modeling tool for a subset
of UML and for full OCL [11,12]. USE offers options to validate and verify UML
and OCL models, in particular by employing a component called model validator
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that is able to automatically construct object diagrams for UML class diagrams
enriched by OCL invariants [12].

The first verification task is realized in USE by expressing the verbally ex-
pressed requirements as an additional OCL constraint and by employing the
USE model validator. In general, the model validator considers a UML and OCL
model with invariants together with a so-called configuration providing bounds
for the possible object diagrams that are to be constructed (configuration exam-
ples can be found in [12]). The configuration bounds determine finite populations
of classes, associations, datatypes and attribute values. The model validator then
tries to construct an object diagram satisfying the class diagram and the invari-
ants under the stated bounds. In this case, the additional constraint requires
three persons to exist with particular attribute values and particular association
participation conditions as stated below.

context Person inv VerificationTask1:
Person.allInstances->exists(A,B,C |

Set{A,B,C}->size=3 and
A.gender=#female and
( (A.husband=B and B.wife=A) or (B.husband=A and A.wife=B) ) and
C.gender=#male)

Fig. 3. USE Solution for first verification task.

As shown in Fig. 3, the model validator is successful in finding a fitting object
diagram. Thus the first verification task is mastered, and the consistency of the
model has been proven.

For the second validation task another OCL invariant is loaded in addition
to the present model invariant. The invariant is stated below. In particular, this
invariant requires a marriage between two persons which possess the same gender
attribute value.

context Person inv VerificationTask2:
Person.allInstances->exists(P1,P2 |

Set{P1,P2}->size=2 and
(P1.wife=P2 or P1.husband=P2) and
P1.gender=P2.gender )

In this case, the model validator reports that the model is unsatisfiable,
i.e., no valid object diagram can be found. From this fact we conclude that the
additional requirement involving two persons with the same gender in a marriage
cannot be satisfied, and that thus the gender attributes values in a marriage must
be different.

For the third verification task, the stated USE model is first transformed
into a so-called filmstrip model [14]. In the filmstrip model, additional classes
and associations are introduced that serve for representing a sequence of object
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Fig. 4. USE Solution for third verification task (4 persons single to married).

diagrams from the originally stated model within a single object diagram; the
original sequence of object diagrams becomes a sequence of (so-called) snapshot
objects with operation call objects connecting them, as shown in Fig. 4. Addi-
tional OCL constraints guarantee that the filmstrip model behaves properly, for
example, that the snapshot objects are not linked in a cyclic way.

The requirements from the third verification task that initially all persons
are single and all persons are finally married are expressed as OCL invariants on
the filmstrip model as stated below. The subexpressions involving any select the
first, resp. last snapshot. The configuration for this verification task allows up to
four operation calls, either marry or divorce calls, and the four person demand is
reflected by appropriate settings for the number of objects in class Person (and
could be restricted even more by another invariant).

context Person inv allInitiallySingle:
Snapshot.allInstances->any(s | s.pred()=null).person->

forAll(p | p.civstat=#single)

context Person inv allFinallyMarried:
Snapshot.allInstances->any(s | s.succ()=null).person->

forAll(p | p.civstat=#married)

The solution for this verification task is shown in Fig. 4. This filmstrip object
diagram with two operation call objects and three snapshot objects corresponds
to a sequence diagram in the original (application) model with two operation
calls dealing implicitly with three object diagrams: one object diagram before
the first call, one between the two calls, and one after the second call. These
three (implicit) object diagrams are made explicit in Fig. 4 through the three
snapshot objects.
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4 Viewing Verification Tasks as UML Diagrams

This section is devoted to the explanation how verification tasks can be developed
and represented in a way that is independent from an underlying proving engine.
As good UML “citizens”, we believe that UML can be employed for a lot of tasks
within the software development process. The main idea of UML is to represent
issues and artifacts independent of a needed underlying (proving) engine. The
idea that we want to contribute is to allow non-verification experts to phrase
requirements and formal properties with UML, the language they use anyway
to express their models. Even verification experts may find this attractive.

We will go through the verification tasks and present UML diagrams for
them. The first task about UML and OCL model consistency can be graphically
shown as the object diagram in Fig. 5. The elements from the verbal explanation
are translated into respective UML features, basically objects, links possessing
role names and association names as well as attribute values. In some spots,
concrete values (as e.g., #female) or concrete items from the class diagram (as
e.g., Person or Marriage) are shown. Now, the idea, that we come up with,
is not only to allow concrete items in a UML diagram, but to indicate some
“open”, not yet fixed items that represent placeholders that are to be filled by an
underlying engine. Such a UML diagram with placeholders may be seen as a UML
query (stealing ideas from QBE [30]) or a verification task expressed in UML. In
order to distinguish between concrete items and placeholders, placeholders are
syntactically marked with a starting question mark. In principle, every spot in
a UML diagram, where some concrete item may be written down, may also be
filled with a placeholder. In the example we have used placeholders for attribute
values and role names.

The task for the underlying proving engine is now to show substitutions or
answers for the placeholders with suitable concrete items. The developer will
typically have a particular expectation for the possible answers. In the example,
this could be that ?RA can only be substituted with the role wife, whereas ?CC

could be replaced by one of #single or #divorced or even #married if it is
allowed to add Person objects and Marriage links.

The second verification task can be graphically presented with the object
diagram in Fig. 6. Here, the placeholder ?G is used in two different spots, for the
gender attribute value of persons P1 and P2 which are required to be connected
by a marriage link. This expresses that the two persons in the marriage possess
the same gender.

The third verification task is represented as a sequence diagram in Fig. 7.
Four lifelines represent objects, two OCL constraints express an initial and a
final condition and placeholders are used for operation calls. The standard UML
sequence diagram features loop and alt (for alternative) are used to formulate
that an operation call can go to one of the four objects and that a sequence of
such calls is allowed.

In Fig. 8 we show a sequence diagram with a solution for the third task.
This solution corresponds to the USE filmstrip object diagram from Fig. 4.
Thus in general, it is desirable to see a found solution not only on the level of
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Fig. 5. First verification task as UML diagram.

Fig. 6. Second verification task as UML diagram.

Fig. 7. Third verification task as UML diagram.

Fig. 8. Solution for third task viewed as UML sequence diagram.
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the employed technology, but it is necessary to transform a found solution onto
the level on which the verification task was formulated. In the concrete case,
the transformation process from the filmstrip object diagram to the sequence
diagram can be automated. The solution for task 1 was already shown as a
UML object diagram in Fig. 3, whereas for task 2 no UML diagram was shown,
because that task was not satisfiable.

Let us shortly wrap up and look back at the verification task formulation
in UML and the proposed use of placeholders. The above examples employ the
following UML diagram and OCL features for task formulation: in the object
diagram we had objects, associations, roles, attribute values, and OCL formulas;
in the sequence diagram we saw lifelines for objects, operation calls, alternative
calls, calls within a loop, and on lifelines closed OCL formulas (or on a lifeline
there could be a partial or complete object diagram as well). These language
features have a precise meaning for task formulation. The proposed verification
tasks can be transformed into prover-specific approaches. For our three example
verification tasks, a precise meaning is given by the added OCL constraints
before starting the verification process. These constraints can be retrieved from
the graphical verification task representation automatically. As said already, in
principle, we do not see any reason to restrict UML language features for task
formulation as long as a precise task is determined.

Essential for our proposal is the use and role of placeholders and the kind of
UML diagram features that placeholders can stand for. Currently we have had
in the examples placeholders for the following features: attribute values, roles in
associations, association names (not in the running example, as there is only one
association in the example class diagram), operation calls and implicit or explicit
operation parameters. The intention of placeholders is that they will be replaced
by the underlying analysis or proving engine with concrete UML “items”. These
UML items either may come from the model (e.g., the class diagram) or may be
explicitly provided by the developer as currently stated in a USE configuration.

5 A Developer’s View on Verification Tasks

So far, we have demonstrated the basic idea of prover-independent verification
tasks and sketched how they can be represented with diagrams. We now want to
focus on the simplifications for developers in regards to the knowledge required
to express verification tasks that can be used in any verification tool. With the
tasks being tool-independent, the developer is not required to have any specific
further knowledge about the tools. Even complex behavioral verification tasks
can be formulated with mostly intuitive UML and OCL language features alone.

In order to illustrate the simplifications for developers, we consider the model
of a traffic light which is depicted in Fig. 9. As we will see in the following,
the model exhibits significantly more interesting behavioral aspects than the
CivilStatusWorld model considered above.

The main component of the traffic light is the Controller which is connected
to exactly one (visual) signal for cars and exactly one visual and acoustic signal
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Button
pending: Boolean

request()

Controller
request: Boolean

switchPedSignal()
switchCarSignal()

AcousticSignal

status: Boolean

VisualSignal

light: Color

�enum�

Color
Red
Green

2buttons

1controller

pedSound
1

0..1
aController

carLight
1

0..1 cController

pedLight1

0..1
pController

context Button::request():
pre: controller.pedLight.light = #Red
post: controller.request = true and

controller.buttons->forAll(
pending = true)

+ frame conditions

context Controller::switchPedSignal():
pre: request = true
post: pedLight.light <> pedLight.light@pre
post: pedSound.status <> pedSound.status@pre
post: request = false and

buttons->forAll(pending = false)
+ frame conditions

context Controller::switchCarSignal():
post: carLight.light <> carLight.light@pre
+ frame conditions

context Controller inv safety:
not ( (pedLight.light = #Green

or pedSound.status)
and carLight.light = #Green)

context VisualSignal inv oneRole:
pController.oclIsUndefined()

xor cController.oclIsUndefined()

Fig. 9. Traffic light example

each for the pedestrians. Two buttons are connected to the controller that can be
pushed in order to indicate a pedestrian crossing request to the controller. When
one button is pushed, all connected buttons indicate that there is a pending
request. The invariant safety states a general safety property for traffic lights,
i. e., that both the signals for the pedestrians and the signal for the cars must not
indicate a safe crossing at the same time. Finally, the invariant oneRole ensures
that each visual signal can either serve as a signal for pedestrians or cars, but
not both at the same time.

This model allows for instantiating various meaningful states that are vital
for operating the system, but also several states that shall never be reached in
practice. For instance, the standard idling state of the system in which a green
light is shown to the cars while there is no pending request for a pedestrian
crossing is shown on the top of Fig. 10. Below it, we can see a (partially defined)
state where all visual signals are turned red while the acoustic signal indicates
a safe crossing for pedestrians. Though this state is not violating any of the
model’s invariants, it shall never be entered in practice. Thus, it should just be
unreachable by the definition of the operations. As it does not make a difference
for the rejection of the state whether there is a pending request or not, unnamed
placeholders are used to express that the values of the corresponding attributes
are insignificant.

Now, the designer might be interested to find out whether certain states
are reachable from the standard idling state. Using the proposed diagram-based
approach, this task can be formulated very comfortably by (1) specifying the
(partial) system states that shall serve as the start/target of the reachability
analysis in terms of object diagrams and (2) employing them in a sequence
diagram that allows arbitrary behavior in order to reach the target, i.e., a loop
of arbitrary alternative operation calls on arbitrary objects. The corresponding
diagram is shown in Fig. 11. Note that lifelines and objects for signals are not
shown as no operations can be called on them.

While this formulation will fortunately yield UNSAT (proving that the er-
roneous state is not reachable within the number of steps that are specified as
the upper limit of iterations of the loop), the designer might want to find out

11



C1:Controller

request=false

V1:VisualSignal

light=#Red

V2:VisualSignal

light=#Green

A1:AcousticSignal

status=false

B1:Button

pending=false

B2:Button

pending=false

pedLight carLightpedSound

od idle

C1:Controller

request=?

V1:VisualSignal

light=#Red

V2:VisualSignal

light=#Red

A1:AcousticSignal

status=true

B1:Button

pending=?

B2:Button

pending=?

pedLight carLightpedSound

od brokenSignal

Fig. 10. (Partial) system states for the
traffic light model.

System B1 B2 C1

OD idle

loop

alt

?OP

?OP

?OP

OD brokenSignal

Fig. 11. Simple reachability formula-
tion

whether it is possible to reach a state that enables a safe crossing for pedestrians
and, at the same time, allows for returning to the idling state afterwards. This
task can be formulated by extending the existing diagram with another loop of
arbitrary operation calls (for returning to the initial state) and an intermediate
state (which expresses the safe crossing for pedestrians) as shown in Fig. 12.
The corresponding partial object diagram for the intermediate state is shown in
Fig. 13. Note that the state only requires the visual signal for the pedestrians to
show a green light, while the assignment of all other attributes are left open.

While this formulation will unfortunately also yield UNSAT (proving that
there is no possibility to reach a green light for pedestrians and return to the
idle state afterwards), the designer may query whether the intermediate state
is reachable at all. This can be formulated by simply replacing the target state
– more precisely, its object diagram – in the first sequence diagram with this
state. Then, the formulation will yield that the intermediate state is indeed reach-
able from the idle state (e.g., using the operation call sequence B1.request(),
C1.switchCarSignal(), C1.switchPedSignal()), but interchanging start and
target state will show that this is not true for the way back, i.e., the idle state
is not reachable from the intermediate state. One reason for this could be, that
the intermediate state – more precisely, all states for which the visual signal for
the pedestrians shows a green light – are deadlocks. To verify this property, a
formulation as in Fig. 14 can be employed which asks whether any operation
can be called in a (partially) given system state at all. In this special case, the
operations B1.request() and C1.switchPedSignal() may not be called, since
their preconditions are not fulfilled. In addition, calling C1.switchCarSignal()

would yield a situation where both the lights for pedestrians and cars are green,
which violates the safety invariant. Consequently, the state characterization in
Fig. 13 indeed describes a deadlock scenario. Note that, in contrast to the pre-
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System B1 B2 C1

OD idle

loop

alt

?OP

?OP

?OP

OD pedCrossing

loop

alt

?OP

?OP

?OP

OD idle

Fig. 12. Extended reachability formulation

C1:Controller

request=?

V1:VisualSignal

light=#Green

V2:VisualSignal

light=?

A1:AcousticSignal

status=?

B1:Button

pending=?

B2:Button

pending=?

pedLight carLightpedSound

od pedCrossing

Fig. 13. Deadlock states

System B1 B2 C1

OD pedCrossing

alt

?OP

?OP

?OP

Fig. 14. Deadlock check

vious diagrams, there is no more loop in Fig. 14 and no restrictions are applied
to the succeeding system state.

To summarize, this small case study shows that a wide spectrum of behavioral
verification tasks can be formulated independently of a specific prover technology
in terms of a modeling language, here UML-like sequence diagrams with some
additional, new features.

6 Related Work

There is related work sharing the aim of this paper to improve the usability
of UML/OCL verification techniques. Concerning the question of building a
user-friendly interface, much work has, e.g., been done in the theorem prover
community (see e.g., [2, 17, 19, 20]). There seems to be a high awareness in that
community for the need to improve the usability of provers [6]. On the one
hand, this is an implicit requirement as using theorem provers requires much
interaction by the user. On the other hand, it is recognized that these provers
focus on assisting particularly trained and skilled users, while they are difficult to
use for non-expert users. Consequently, user-friendly interfaces play an important
role in promoting the benefits of the underlying techniques [2].

However, these approaches do not aim at hiding details of the underlying ver-
ification technique, but only provide a “nicer”, graphical interface. To this end,
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the potential of using UML diagrams to hide details and, thus, make verification
easier accessible, has been recognized. UML diagrams have been used for various
purposes so far: many verification approaches present solutions (witnesses found
by the prover) back at the level of the model, e.g., in terms of UML diagrams.
In contrast, in [23] UML sequence diagrams are used for visualizing patterns of
temporal logic as part of a UML-based front-end to a formal verification/model
checking toolset. More precisely, the sequence diagrams depict the desired be-
havior which the user can select from and combine in order to tailor dedicated
verification tasks (formulas). In [21], it is suggested to combine UML diagrams
and the B formalism in a design flow for hardware. However, the user can hardly
specify particular properties to be verified.

The general and nice idea to employ placeholders in query languages is due
to QBE [30]. A combination of model checking but having in mind a particular
application for business processes is proposed in [3]. Placeholders, partly also
with similar notation as here, have been used in the study of class model pat-
terns and anti-patterns [5, 7], in the consideration of general model quality [4]
and in the context of domain-specific languages [22]. Recently, there has been a
proposal for a “user-friendly” interface to Alloy which employs a similar idea to
formulate verification tasks by modelling them graphically [29] focusing on struc-
tural verification. In [24, 25] so-called partial models are put forward, a general
framework being less tuned to specific verification tasks as we want to cover.

So far UML diagrams in combination with OCL expressions have not been
used as a means for formulating dedicated structural and behavioral verification
tasks.

7 Conclusion

This contribution proposed to formulate model verification tasks from the view-
point of the employed modeling language. We aim to relieve the developer from
expressing tasks only on the basis of the used approach and proving engine. Our
proposal aims at giving non-verification experts the option to work with formal
verification approaches. We have used UML object diagrams to formulate con-
sistency issues and UML sequence diagrams for reachability topics. Central in
our approach are so-called placeholders representing open items that can occur
in UML diagrams and that should be substituted by model elements. Solutions
in terms of substitutions and thus verification task feedback should be given
in terms of the employed modeling languages as far as possible, e.g., as UML
diagrams.

We have concentrated here on prover-independent task formulation. As one
topic for future work we identify the open details for the transformation into
prover- and approach-specific task formulation. The expressibility of the ap-
proach, i.e,. the answer to the question which verification tasks can be formulated
by UML diagrams, is bounded on the one hand by the employed verification task
features, but on the other hand it is an open question how to enable the formu-
lation of all possible verification tasks in general by the modeling language itself.
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Our proposal has to be consolidated and validated by an implementation of what
has been sketched by the features that we used for task formulation. Other UML
diagram kinds than object and sequence diagrams, in particular communication
diagrams with communication channels and state machines for attribute, role or
OCL expression evolution have to be studied in more detail. Good explanations
in the case of unsatisfiable tasks indicating the “guilty” model parts or at least
identifying the “innocent” model parts have to be developed. Guilty model parts,
i.e., the parts that essentially contribute to the invalidity could be any model
element, e.g., classes, associations, invariants, contracts or even more detailed
information, for example, subformulas of constraints. Last but not least, larger
case studies should give feedback on the practicability of the proposal.
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Transformation (ICMT 2014). pp. 170–185. Springer, LNCS 8568 (2014)

15. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and Unrolling: A
Comparison of Verification Approaches for UML and OCL Behavioral Models. In:
Seidl, M., Tillmann, N. (eds.) Proc. 8th Int. Conf. Tests and Proofs (TAP 2014).
pp. 99–116. Springer, LNCS 8570 (2014)

16. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Towards a Catalog of Struc-
tural and Behavioral Verification Tasks for UML/OCL Models. In: Oberweis, A.,
Reussner, R. (eds.) Proc. Modellierung (MODELLIERUNG’2016). pp. 115–122.
GI, LNI 254 (2016)

17. Homik, M., Meier, A.: Designing a GUI for proofs - evaluation of an HCI experi-
ment. CoRR abs/0903.3926 (2009)

18. Lam, V.S.W.: A Formalism for Reasoning about UML Activity Diagrams. Nordic
Journal of Comp. 14(1), 43–64 (2007)

19. Lapets, A., Kfoury, A.J.: A user-friendly interface for a lightweight verification
system. Electr. Notes Theor. Comput. Sci. 285, 29–41 (2012)
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