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Abstract—The advances in silicon photonics motivate the
consideration of optical circuits as a promising circuit technology.
Recently, synthesis for this kind of circuits received significant
attention. However, neither the corresponding function descrip-
tions nor the resulting synthesis approaches explicitly considered
how optical circuits actually conduct computations – eventually
leading to circuits of improvable quality. In this work, we present
a synthesis flow which has explicitly been developed for this
technology. To this end, we introduce and exploit OR-Inverter
graphs (OIGs) – a data-structure which is particularly suited
for the design of optical circuits. Experimental results confirm
the efficacy of the OIG structure and the resulting synthesis
approach. Compared to several alternative solutions – relying
on conventional function representations – the number of gates
can be reduced by half or even significantly more than that.

I. INTRODUCTION

The post-CMOS computing technology is gaining impor-
tance as the scaling of transistors is approaching its physical
limits. Optical circuits emerge as an alternative to current
circuit technologies thanks to the advances in silicon pho-
tonics [1]. In electronic digital systems, optical technology is
already in use as ultra-fast interconnects [2], [3]. This requires
back and forth conversion from the optical to the electrical
domain at every interconnect interface – obviously a significant
drawback. The conversion, however, can easily be avoided if
the underlying systems are realized by optical technologies
only. This motivates research in the area of designing full-
scale optical circuits.

The design automation is one of the key driving forces
behind the reduction of the circuit design time and the op-
timization of the circuit quality. Thus far, Electronic Design
Automation (EDA) has played a crucial role in the development
of complex conventional circuits [4]. The major design step
usually starts with a logic level abstraction and, afterwards,
moves down to the physical realization, where the desired cir-
cuit is refined with respect to the respective technological con-
straints. Although physical constraints in optical technology
are not entirely solved yet, initial models and corresponding
gate libraries already exist for the purpose of logic synthesis
and optimization. At this stage, considering logic synthesis and
optimization is motivated by the fact that EDA for conventional
systems started with logic design automation before physical
design automation was actually developed [5].

The main goal of logic synthesis is to determine an
efficient realization of a Boolean function. Thus far, Boolean
functions are represented by different data structures such
as the two-level descriptions Sum-of-Products (SoPs) and
Exclusive-Sum-of-Products (ESoPs) [5], [6], Binary Decision
Diagrams (BDDs) [7], or AND-Inverter graphs (AIGs) [8].
These representations employ either AND-OR, AND-EXOR,
multiplexer (MUX), or Boolean conjunction (AND) as logic
primitives. However, the efficacy of any representation heavily
depends on the targeted circuit type i.e. on the richness of
the applied gate library and on the capability of each library
element (i.e. logic gate) to implement the desired Boolean
function.

Initially, optical logic synthesis was limited to dedicated
functionality such as adders [9], [10], multiplexers [11], di-
viders [12], etc. Recently, also the synthesis of arbitrary
Boolean functions has been considered – leading to ap-
proaches, e.g. based on BDDs [13]–[15] but also solutions
based on SoPs, ESoPs, or AIGs have been observed [13], [16].
Although, this initiates the automatic synthesis of optical logic
circuits for large Boolean functions, often, the synthesized
circuits are expensive with respect to the number of required
gates. This is mainly because of the fact that, during synthesis,
the respective functions representations are simply mapped to
corresponding optical gates – without explicitly exploiting the
characteristics of optical circuits.

In this paper, we propose a novel methodology to
synthesize optical circuits. To this end, we introduce
a data-structure called OR-Inverter Graphs (OIGs) – a
logic representation which is similar to AIGs but em-
ploy OR nodes rather than AND nodes in addition to the
regular/complement edges. We motivate the utilization of OIGs
by considerations that clearly show the suitability of the
corresponding OR and NOT operations for the common optical
library. In fact, mapping an OIG into an optical circuit yields
significantly smaller realizations compared to existing function
representations.

Experimental evaluations confirm these findings. The pro-
posed OIG-based synthesis is capable of realizing circuits
which improve alternative solutions, e.g., based on SoPs,
ESoPs, BDDs, and AIGs by 98%, 89%, 54%, and 56%, re-
spectively (with respect to the number of required gates)

In the following, the proposed approach is introduced as
follows. Section II reviews the basics on optical circuits and
the commonly applied gate library. Afterwards, Section III
discusses the applicability of function representations such
as the above-mentioned SoPs, ESoPs, BDDs, and AIGs with
respect to the considered optical domain. This provides the
motivation of the approach which, afterwards, is described
in detail in Section IV. Finally, Section V and Section VI
summarize the obtained experimental results and conclude the
paper, respectively.

II. OPTICAL CIRCUITS

To keep the paper self-contained, this section briefly re-
views the common logic model and gate library used in the
domain of optical logic synthesis.

Optical circuits are usually realized by means of a Mach-
Zehnder Interferometer (MZI) switch which is based on Semi-
conductor Optical Amplifiers (SOAs). In the logic domain,
the resulting structure is abstracted to a so-called MZI gate.
Each MZI gate has two input ports and two output ports. The
inputs can either be sourced by light (representing binary 1)
or darkness (representing binary 0). Logically, an MZI gate is
defined as follows [17], [18]:

Definition 1: An MZI gate realizes a Boolean function
B2 → B2 composed of two optical inputs p and q as well
as two optical outputs f and g. In the presence of both input



MZI
p
q

f
g

(a) MZI gate (b) Splitter (c) Combiner

Fig. 1: Optical gates

MZI

MZI
x0

x1

F
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signals, the outputs f and g produce 1 and 0, respectively.
The presence of input signal p and the absence of input signal
q leads to the logic value 0 and 1 at the outputs f and g,
respectively. Therefore, the functions

f = p ∧ q and g = p ∧ q′

are realized. Fig 1(a) provides the graphical representation of
an MZI gate.

In addition, splitters and combiners are used as optical logic
elements in order to realize logic functions.

Definition 2: A splitter divides an optical signal into two
signals – each with only half of the incoming signal power. In
contrast, a combiner merges two optical signals into a single
one and, by this, inherently realizes the OR-function. A splitter
(combiner) may have more than two outputs (inputs). Then, in
case of a splitter, the strength of the signal is divided by the
number of outputs. Fig. 1(b) and Fig. 1(c) provide the graphical
representation of both elements.

Together these logic elements form a gate library that
allows to realize any Boolean function.

The size of an optical circuit is determined in terms of
number of MZI gates. This is motivated by the fact that
each MZI gate needs to be physically realized. Sometimes,
also the number of splitters and the number of combiners are
considered. However, as they are significantly easier to realize
than the MZI gates, they are often considered negligible.
Besides that, the number of splitters has an effect to the final
strength of the applied optical signals.

Example 1: Fig. 2 shows an optical circuit composed of
two MZI gates, two splitters, and one combiner.

III. MOTIVATION

Independent from the respective technology, synthesis is
the task of generating a circuit structure which realizes a
given (Boolean) function to be synthesized. Corresponding
algorithms approach this task from different angles i.e. they

• rely on different function representations which are
used as input including Boolean Algebra and two-
level representations such as Sum of Products (SoPs)
and Exclusive Sum of Products (ESoPs) as well as Bi-
nary Decision Diagrams (BDDs, [7]) or AND-Inverter
Graphs (AIGs, [8]) and

• realize circuits using different (universal) gate libraries
allowing for the realization of all possible functions
such as {AND, OR, NOT}, {AND, XOR, NOT},
{MUX}, or {NAND}.

Quite often, an obvious relation between the respective
function representation and the used gate library exists. For
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Fig. 3: Mapping function representations to conv. circuits

example, Boolean algebra, SoPs, and ESoPs can directly be
realized by circuits composed of {AND, OR, NOT} and
{AND, XOR, NOT}, respectively. The nodes of a BDD
directly correspond to MUX gates, while the nodes of an
AIG directly corresponds to NAND gates. Fig. 3 sketches the
corresponding mappings.

Moreover, the respective relations are often exploited when
technological constraints and/or physical realizations are to be
considered. For example, it is known that, in current transistor
technologies, a NAND gate is considered significantly cheaper
than e.g. {AND, OR, NOT}-gates. Hence, when e.g. area or
power are of significant importance, a synthesis based on AIGs
(which can directly be mapped to a NAND-circuit) might be
the preferred design scheme.

For the domain of optical circuits, respective considerations
have not been made yet. In fact, almost all existing approaches
for the synthesis of optical circuits focused on investigating
whether and how established (conventional) function repre-
sentations can be utilized in order to create circuits composed
of MZI, splitter, and combiner gates. For example, synthesis
based on Boolean Algebra, SoP, or ESoP as introduced in [13],
[16] relies on so-called virtual gates i.e. sub-circuits realizing
the respective AND, OR, XOR, NOT operations. Synthesis
using BDDs as introduced in [13]–[15] relies on MZI sub-
circuits realizing different BDD node configurations. A synthe-
sis approach based on AIGs has, to the best of our knowledge,
not been proposed yet, but would rely on sub-circuits realizing
NAND operations.

Fig. 4 sketches the corresponding mappings. As can clearly
be seen, for all functions representations considered thus far,
no direct mapping to elementary optical gates exists – in fact,
several gates are required to realize just a single building
block. This obviously leads to optical circuits which are rather
expensive.

Motivated by these observations and discussions, this work
aims for developing an alternative function representation, and
a corresponding synthesis approach, which is explicitly dedi-
cated to the gate library reviewed in Section II. Considering
the available elementary building blocks, we can see that the
splitter and the combiner are the cheapest gates in this library.
While the splitter only realizes a fanout and, hence, not an
“actual” Boolean function, the combiner serves as a realization
of an OR gate. Since the OR operation itself is not universal,
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we additionally consider MZI gates in order to realize the
NOT (Inverter) operation. OR and NOT constitute a universal
gate library which allows for realizing all Boolean functions.
At the same time, both operations are already available as
elementary building blocks (the very cheap combiner and
the single MZI gate as shown in Fig. 5). In contrast to
the previously proposed synthesis approaches reviewed above,
this may provide the basis for a significantly more efficient
synthesis scheme. Hence, in the remainder of this work, we
consider the question how to develop a synthesis scheme which
relies on OR and NOT only.

IV. PROPOSED APPROACH

In order to develop a synthesis scheme for optical circuits
which relies on OR and NOT operations only, we introduce
the concept of an OR-Inverter Graph (OIG). OIGs are inspired
by the AIGs from conventional circuit design. In this section,
we first review and illustrate the background on AIGs. Based
on that, OIGs are introduced and it is shown how OIGs can
be derived from AIGs. These considerations eventually lead to
a synthesis scheme for optical circuits which is described in
detail at the end of this section.

A. AND-Inverter Graph

An AND-Inverter Graph (AIG) is a directed acyclic graph
G = (V,E) which is composed of three types of nodes.
The first type has no outgoing edges and represents a unique
terminal node which serves as primary output. The second
type has no incoming edges and represents primary inputs. The
third type has two incoming edges and one outgoing edge and
represents a Boolean AND operation. These AND nodes also
have two kinds of outgoing edges: a regular edge representing
the actual functionality and a complement edge representing
the negation of this functionality. More formally, an AIG is
defined as follows:
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Fig. 6: AND-Inverter graph for function f

Definition 3: An AND-Inverter graph (AIG) over the pri-
mary input variables X = {x1, x2, · · · , xn} and with the
primary output variables Y = {y1, y2, · · · , ym} is a directed
acyclic graph G = (V (= {VX ∪ Vg ∪ VY }), E) with the
following properties:

• Each primary input (PI) node v ∈ VX is labeled by
xi ∈ X and has no incoming edges.

• Each primary output (PO) node v ∈ VY is a terminal
labeled by yj ∈ Y and has no outgoing edges.

• Each non-terminal node v ∈ Vg represents a Boolean
conjunction (AND) of the functions represented by the
two incoming edges.

• An edge e ∈ E connecting a source node u ∈ V to a
target node v ∈ V is either a regular or a complement
edge i.e. e = {(u, (v × p))|u, v ∈ V, u 6∈ VY , v 6∈ VX}
with p denoting whether the edge is a regular edge
(p = 1) or a complement edge (p = 0).

The size of an AIG is measured in terms of the total number
of AND nodes.

Example 2: Consider the function f = (x′
0 ∧ x′

1) ∨ (x1 ∧
x′
2)∨ (x0 ∧ x′

3). Using DeMorgan’s theorem, the function can
be written as f = ((x′

0 ∧ x′
1)

′ ∧ (x1 ∧ x′
2)

′ ∧ (x0 ∧ x′
3)

′)′. The
corresponding AIG is shown in Fig. 6, in which, an edge with
a solid dot denotes a complement edge.

B. OR-Inverter Graph

An OR-Inverter Graph (OIG) is a directed acyclic graph
H = (V,E) which is structurally identical to an AIG. How-
ever, both differ with respect to the logic primitive. Instead of
the AND operation, an OR operation is employed in the non-
terminal nodes of an OIG. More formally, an OIG is defined
as follows:

Definition 4: An OR-Inverter graph (OIG) over the pri-
mary input variables X = {x1, x2, · · · , xn} and with the
primary output variables Y = {y1, y2, · · · , ym} is a directed
acyclic graph H = (V,E) with

• a finite set of nodes V = VX ∪ Vh ∪ VY , where
Vx = {vx1

, vx2
, · · · , vxn

} are primary input nodes,
Vh = {vh1

, vh2
, · · · , vhk

} are non-terminal nodes rep-
resenting the logical OR operations in the graph,
and Vy = {vy1

, vy2
, · · · , vym

} are terminal nodes
representing primary outputs.

• an edge e ∈ E between a source node u ∈ V and a
target node v ∈ V is either a regular or a complement
edge i.e. e = {(u, (v × p))|u, v ∈ V, u 6∈ VY , v 6∈ VX}
where, p denotes whether the edge is a regular edge
(p = 1) or a complement edge (p = 0).

The size of an OIG is measured in terms of the total number
of OR nodes.
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Example 3: Re-consider the function f used in Example 2.
The function is expressed in terms of OR operators as ((x′

0 ∨
x3)

′ ∨ (x0 ∨ x1)
′ ∨ (x′

1 ∨ x2)
′). This can be represented as an

OIG as shown in Fig. 7.

C. Transformation of AIG into OIG

Here, we show that an AIG representing an arbitrary
Boolean function can easily be translated into a functionally
equivalent OIG. This builds the basis of our proposed synthesis
flow.

Given an AIG, G = (V,E), an OIG, H = (V,E)
is obtained by substituting each 2-input AND node with a
functionally equivalent 2-input OR node applying DeMorgan’s
theorem. To this end, a total of eight substitutions (forming a
substitution set S) have to be considered:

S



(f ′
i ∧ f ′

j) ≡ (fi ∨ fj)
′

(f ′
i ∧ f ′

j)
′ ≡ (fi ∨ fj)

(f ′
i ∧ fj) ≡ (fi ∨ f ′

j)
′

(f ′
i ∧ fj)

′ ≡ (fi ∨ f ′
j)

(fi ∧ f ′
j) ≡ (f ′

i ∨ fj)
′

(fi ∧ f ′
j)

′ ≡ (f ′
i ∨ fj)

(fi ∧ fj) ≡ (f ′
i ∨ f ′

j)
′

(fi ∧ fj)
′ ≡ (f ′

i ∨ f ′
j)

Theorem 1: For any AIG, the substitution set S is com-
plete.

Proof: By definition, any AND node in an AIG has
two incoming edges i.e. takes 2-inputs fi and fj . This
means, any single node can realize the logical conjunction
(AND) of one input combination out of 4 combinations
{f ′

if
′
j , f

′
ifj , fif

′
j , fifj}. In other words, all AND nodes realize

at most 4 logical conjunctions. Further, the complement edge
out of any AND node realizes the inversion of the respective
logical conjunction. Therefore, in total, there are 8 possible
node combinations in any AIG. Hence, the proof.

Lemma 1: Let f be a Boolean function defined over {∧,′ }.
This function can always be converted into an expression
composed of {∨,′ } by applying S in a recursive manner.

Proof: Without the loss of generality, assume that the
Boolean function f is expressed as follows:

f = (fi ∧ fj)

If fi and fj are two primary inputs e.g. xi and xj , then
we can substitute them by applying S as follows:

f = (xi ∧ xj)

= (x′
i ∨ x′

j)
′

∧
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Fig. 8: Transformation of AIG into OIG

If at least one input e.g. fi, represents a logical conjunction
i.e. fi = (fip ∧ fiq ), then we can substitute them by applying
S as follows:

f = (fi ∧ fj)

= (f ′
i ∨ f ′

j)
′ [applying substitution S]

= ((fip ∧ fiq )
′ ∨ f ′

j)
′

= ((f ′
ip ∨ f ′

iq ) ∨ f ′
j)

′ [applying substitution S]

This shows that applying rules from S in a recursive
manner, an expression composed of {∧,′ } transforms into an
expression composed of {∨,′ }. Hence, the proof.

Theorem 2: Any AIG, G = (V,E) can be transformed
into an OIG, H = (V,E) using the substitution set S.

Proof: The proof follows from Lemma 1.

Example 4: Consider the AIG shown in Fig. 6 to be
translated into a functionally equivalent OIG. The translation
begins with traversing the AIG in a breadth-first manner and
applying the substitution rules S. For the first level, this results
in OR nodes as shown in the same level in Fig. 8(a). In the
next step, the substitution rules S are further applied on the
AND nodes at level 2 – leading to the graph as depicted in
Fig. 8(b). In a similar fashion, the AND node at level 3 is
handled – leading to the structure shown in Fig. 8(c). As a
result of these transformations, an OIG is generated which is
depicted in Fig. 7.

D. Proposed Synthesis Flow

Based on the discussions above, a synthesis flow for the
efficient realization of optical circuits can be formulated, which
is composed of three major steps: (1) the generation of an AIG,
(2) the transformation of the AIG into an OIG, and (3) the
mapping of the OIG into an optical circuit. In order to generate
the AIG, existing methods as e.g. employed in tools such as
ABC [19] can be applied. How to transform the AIG to an
OIG has been covered in the previous sub-section. Therefore,
the mapping to an optical circuit remains left to be described.

To this end, we consider the functional behavior of all
relevant node configurations which may occur in an OIG
and for which a corresponding sub-circuits is required. This
includes all OIG nodes representing an OR operation or a PI
and have
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• one or more outgoing regular edges,

• one or more outgoing complement edges, or

• both, one or more regular and complement edges.

Fig. 9 shows the corresponding circuits realizing all the
cases. In general, every non-terminal node is mapped to a
combiner and a complement edge is realized using an MZI
gate for the NOT operation. Whenever a node has multiple
outgoing edges i.e. multiple successors, a splitter is added to
the respective building blocks.

Eventually, this leads to a synthesis flow as follows:

1) Generate an OIG H = (V,E) representing a func-
tion f to be synthesized.

2) Traverse H in a depth-first manner.
3) For each node, apply the corresponding sub-circuit as

shown in Fig. 9.
4) Connect the inputs of the sub-circuit accordingly to

the corresponding outputs of the sub-circuit repre-
senting the previously traversed nodes of H .

Example 5: Consider the OIG representing the function f
as shown in Fig. 7. The mapping scheme traverses the OIG
in a depth-first manner. Applying the substitutions shown in
Fig. 9 to each node of the OIG, the optical circuit depicted in
Fig. 10 results.

V. EXPERIMENTAL EVALUATION

In this section, we summarize the results obtained by the
proposed method. To this end, the synthesis flow described
in Section IV has been implemented in C++. First, an AIG
of the function to be synthesized is created using the tool
ABC [19]. Then, we convert this data-structure to an OIG
and apply the mapping method as described above. In order
to compare the obtained results, we additionally synthesized
circuits using the BDD-based approach proposed in [14]1 as

1We would like to thank the authors of [14] for making us their tool
available.
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well as SoP-, ESoP-, and AIG-based approaches following the
concepts discussed in Section III. As benchmarks, functions
from the LGSynth library have been applied. All experiments
have been carried out on a Linux machine with a 2.8 GHz Intel
Core i7 processor and 8 GB memory. All circuits have been
obtained in negligible run-time (i.e. not more than one CPU
minute) which is why we omit a detailed run-time discussion
in the following.

Table I shows the obtained results. The first column pro-
vides the details of the considered benchmark, i.e. their names
as well as number of primary inputs (PI) and primary outputs
(PO). The next three columns report the number of MZI gates
(MZI), the number of combiners (Combiner), as well as the
number of splitters (Splitter) for the resulting circuits obtained
by the SoP-, ESoP-, BDD-, AIG-, and OIG-based synthesis
approaches. Note that the AIG-based approach always yields
circuits with a total of zero combiners which is why we omit a
dedicated column in this case. The fourth column (

∑
) reports

the sum of all elements, i.e. MZI gates, combiners and splitters
for the respective approaches. In the final column, we have
reported the percentage reduction in number of MZI gates
compared to existing function representations.

The results confirm that, for the synthesis of optical cir-
cuits, OIGs are indeed more suitable than alternative function
representations and methods. In fact, OIG-based synthesis
clearly outperforms all other synthesis approaches with respect
to the number of gates – sometimes circuits with orders of
magnitudes less gate result. On average, improvements of
98%, 89%, 54%, 56% with respect to the MZI gate count can
be achieved compared to the SoP-, ESoP-, BDD-, and AIG-
based approaches, respectively.

As mentioned in Section II, the number of MZI gates
is most important metric as MZIs contribute most to the
chip size, while combiners/splitters are negligible. However
to evaluate their impact on overall circuit size, the numbers
of MZI gates, combiners and splitters are summed up in
columns denoted by

∑
. The results demonstrate that, even

under this consideration, the average circuit size obtained
from OIGs is still 96%, 80%, and 26% smaller compared to
SoP-, ESoP-, and BDD-based approaches. Only with respect
to the AIG-based approach, roughly the same circuit size
results. But note that this is basically only because of the fact
that AIGs need significantly fewer combiners. However, since
combiners are easier to realize than MZI gates (from which
AIGs still require significantly more), OIG-based synthesis
clearly positions itself as a more promising design solution
for the realization of efficient and compact optical circuits.

Only in one aspect (namely the number of splitters) one
synthesis approach (namely SoP-based synthesis) performs
better than the proposed OIG-based solution (except for a
few cases). This certainly helps to avoid splitting optical
signals and keeping the signal strength. But signals applied to
circuits obtained by SoP-based synthesis have to pass through
a tremendous amount of MZI gates – which also harms their



TABLE I: Experimental Evaluation
Function MZI Combiner Splitter

∑
% Reduc. in MZI w.r.t.

name PI/PO SoP ESoP BDD AIG OIG SoP ESoP BDD OIG SoP ESoP BDD AIG OIG SoP ESoP BDD AIG OIG SoP ESoP BDD AIG
apex5 117/88 5879 8171 3410 1443 723 80 1142 1740 826 112 2396 243 220 220 6071 11709 5393 1663 1769 87.7% 91.2% 78.8% 49.9%
cps 24/108 6502 7610 3122 2101 950 66 552 1638 1243 23 1127 171 319 319 6591 9289 4931 2420 2512 85.4% 87.5% 69.6% 54.8%
ex4 128/28 3784 4996 1192 768 378 14 606 638 403 84 1296 210 16 16 3882 6898 2040 784 797 90.0% 92.4% 68.3% 50.8%
soar 83/94 2881 3792 1928 860 405 66 435 1031 508 78 948 219 696 696 3025 5175 3178 1556 1609 85.9% 89.3% 79.0% 52.9%
apex1 45/45 1533 3653 3008 3565 1563 37 1060 1562 2002 214 2334 340 392 392 1784 7047 4910 3957 3957 -2.0% 57.2% 48.0% 56.2%
mish 94/43 73 248 262 148 117 26 57 144 87 27 141 38 14 14 126 446 444 162 218 -60.3% 52.8% 55.3% 20.9%
seq 41/35 16364 19213 3642 3214 1467 33 1424 1905 1777 41 2889 380 367 367 16438 23526 5927 3581 3611 91.0% 92.4% 59.7% 54.4%
ti 47/72 1955 3771 1980 1520 704 58 908 1054 866 235 2051 209 255 255 2248 6730 3243 1775 1825 64.0% 81.3% 64.4% 53.7%
x2dn 82/56 346 499 512 333 158 29 73 283 173 74 220 89 54 54 449 792 884 387 385 54.3% 68.3% 69.1% 52.6%
x7dn 66/15 4398 5612 1354 762 359 15 607 699 390 66 1280 238 82 82 4479 7499 2291 844 831 91.8% 93.6% 73.5% 52.9%
xparc 41/73 10605 24254 4750 5352 2259 67 6824 2451 3142 580 14228 354 686 686 11252 45306 7555 6038 6087 78.7% 90.7% 52.4% 57.8%
apex2 39/3 13418 35725 1108 536 246 3 1746 493 283 78 3622 260 90 90 13499 41093 1861 626 619 98.2% 99.3% 77.8% 54.1%
cordic 23/2 17163 12939 103 114 47 2 1544 28 60 23 3881 43 20 20 17188 18364 174 134 127 99.7% 99.6% 54.4% 58.8%
pdc 16/40 30613 4196 1099 1431 605 40 744 575 859 2403 1704 245 229 229 33056 6644 1919 1660 1693 98.0% 85.6% 44.9% 57.7%
spla 16/46 32651 4362 1050 1378 524 44 768 568 896 2289 1760 198 253 253 34984 6890 1816 1631 1673 98.4% 88.0% 50.1% 62.0%
0410184 14/14 212979 1354 184 195 93 14 257 57 103 16383 589 63 43 43 229376 2200 304 238 239 100.0% 93.1% 49.5% 52.3%
4mod5 4/1 13 11 8 17 11 1 3 2 7 4 10 5 0 0 18 24 15 17 18 15.4% 0.0% -37.5% 35.3%
4mod7 4/3 39 31 29 39 19 3 10 8 19 10 27 17 9 9 52 68 54 48 47 51.3% 38.7% 34.5% 51.3%
5xp1 7/10 221 185 68 188 89 9 50 22 100 7 126 35 29 29 237 361 125 217 218 59.7% 51.9% -30.9% 52.7%
add6 12/7 1841 936 140 96 50 7 201 47 43 12 460 52 15 15 1860 1597 239 111 108 97.3% 94.7% 64.3% 47.9%
adr4 8/5 265 175 38 60 32 5 46 13 27 8 112 27 9 9 278 333 78 69 68 87.9% 81.7% 15.8% 46.7%
alu 5/1 65 15 12 20 11 1 3 4 9 5 9 9 2 2 71 27 25 22 22 83.1% 26.7% 8.3% 45.0%
alu1 12/8 22 55 34 59 28 7 11 12 30 12 35 12 11 11 41 101 58 70 69 -27.3% 49.1% 17.6% 52.5%
alu2 10/6 1745 507 451 765 338 5 75 131 428 10 170 194 78 78 1760 752 776 843 844 80.6% 33.3% 25.1% 55.8%
alu3 10/8 213 320 197 129 60 7 60 66 69 12 144 68 24 24 232 524 331 153 153 71.8% 81.3% 69.5% 53.5%
alu4 14/8 6847 4484 1823 2049 921 8 508 639 1122 14 1094 251 215 215 6869 6086 2713 2264 2258 86.5% 79.5% 49.5% 55.1%
bw 5/28 176 583 353 256 101 26 266 90 150 40 559 111 45 45 242 1408 554 301 296 42.6% 82.7% 71.4% 60.5%
decod24-enable 3/4 8 14 8 10 7 0 5 4 8 3 16 5 5 5 11 35 17 15 20 12.5% 50.0% 12.5% 30.0%
ex5p 8/63 1793 1891 430 845 325 48 792 214 519 264 1656 80 143 143 2105 4339 724 988 987 81.9% 82.8% 24.4% 61.5%
ham15 15/15 458738 246 147 361 165 15 108 57 181 32767 247 100 54 54 491520 601 304 415 400 100.0% 32.9% -12.2% 54.3%
ham3 3/3 14 13 15 26 13 3 6 4 12 7 17 4 5 5 24 36 23 31 30 7.1% 0.0% 13.3% 50.0%
hwb4 4/4 45 40 42 56 24 4 14 11 28 15 38 22 12 12 64 92 75 68 64 46.7% 40.0% 42.9% 57.1%
hwb5 5/5 124 124 99 149 65 5 44 31 79 31 110 14 22 22 160 278 144 171 166 47.6% 47.6% 34.3% 56.4%
hwb6 6/6 315 297 181 348 155 6 104 58 187 63 246 32 46 46 384 647 271 394 388 50.8% 47.8% 14.4% 55.5%
hwb8 8/8 1785 2022 512 1548 677 8 631 156 863 255 1434 79 202 202 2048 4087 747 1750 1742 62.1% 66.5% -32.2% 56.3%
mod5d2 5/5 125 29 24 39 24 5 11 6 19 31 30 13 8 8 161 70 43 47 51 80.8% 17.2% 0.0% 38.5%
One-two-three 3/3 14 21 16 21 10 2 7 4 10 3 21 9 4 4 19 49 29 25 24 28.6% 52.4% 37.5% 52.4%
plus127mod8192 13/13 98293 132 51 212 79 13 23 19 125 8191 65 36 53 53 106497 220 106 265 257 99.9% 40.2% -54.9% 62.7%
plus63mod4096 12/12 45046 119 48 185 75 12 23 17 103 4095 64 33 41 41 49153 206 98 226 219 99.8% 37.0% -56.3% 59.5%
plus63mod8192 13/13 98293 137 53 199 73 13 24 18 116 8191 66 36 51 51 106497 227 107 250 240 99.9% 46.7% -37.7% 63.3%
rd53 5/3 112 61 46 88 41 3 16 12 44 5 41 24 17 17 120 118 82 105 102 63.4% 32.8% 10.9% 53.4%
rd73 7/3 699 219 80 214 97 3 55 26 116 7 135 29 34 34 709 409 135 248 247 86.1% 55.7% -21.3% 54.7%
rd84 8/4 1785 352 107 301 136 3 69 37 165 156 156 37 57 57 1944 577 181 358 358 92.4% 61.4% -27.1% 54.8%
urf1 9/9 4088 4857 2171 3864 1622 9 1351 621 2233 511 3071 441 438 438 4608 9279 3233 4302 4293 60.3% 66.6% 25.3% 58.0%
urf2 8/8 1785 1881 1154 1780 757 8 559 325 1015 255 1283 323 206 206 2048 3723 1802 1986 1978 57.6% 59.8% 34.4% 57.5%
urf5 9/9 4088 1002 949 1730 729 9 256 281 993 511 593 365 224 224 4608 1851 1595 1954 1946 82.2% 27.2% 23.2% 57.9%

*
∑

provides sum of numbers of MZI, combiner and splitter
** AIG always generates zero combiners

strength. In contrast, signals have to pass significantly less
gates in total when the circuit is derived from OIG-based
synthesis. Additionally considering issues such as circuit size
(which also is mainly affected by MZI gates), OIG-based
synthesis clearly positions itself as a promising design solution
for the realization of efficient and compact optical circuits.

VI. CONCLUSION

In this work, we presented a synthesis approach for optical
circuits based on OR-Inverter graphs. In contrast to conven-
tional function descriptions such as SoPs, ESoPs, BDDs, or
AIGs, this explicitly considers how optical circuits actually
conduct computations: with combiners realizing OR operations
and (larger) MZI gates whose number can be kept moderate
by using them for NOT operations only. Experimental results
validated the potential of OIGs in optical logic synthesis and
yielded circuits which are reduced by half or even significantly
more than that with respect to gate count compared to previ-
ously proposed methods.
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