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ABSTRACT
UML/OCL models are used to describe system models in early

stages of the design process. In order to detect design flaws in

these models as soon as possible (ideally before the implementation

phase starts), various methods for the validation and verification

of UML/OCL models have been proposed. In particular, automatic

solutions (so-called model finders) are of interest here. They pro-

vide designers with quick feedback, e. g., on the consistency of

their models in a push-button fashion. But thus far, all proposed

approaches support a (small) subset of UML/OCL only or employ

substantial restrictions. In fact, there are only few solutions that

support the extended type system including the irregular values

null and invalid – although these values play an important role

for covering exceptional cases. Moreover, these solutions either

heavily rely on manual interaction or significantly restrict the sup-

ported UML/OCL description means. In this work, we propose a

generic formal representation of UML/OCL which can be used for

the validation and verification of corresponding models and, at the

same time, addresses these shortcomings.

The resulting representation can be used by various reasoning

engines and, hence, eventually allows for the validation and verifi-

cation of UML/OCL models with irregular values.

1 INTRODUCTION
During the last decades, system design has become more and more

complex as systems themselves became increasingly large. To han-

dle this immense degree of complexity, several abstraction levels

were introduced to lead the designer from a specification in natural

language to the desired system by refining the design. Modeling

languages such as the Unified Modeling Language [13, 20] with

its additional Object Constraint Language [11] (UML/OCL) or the
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Systems Modeling Language [12] (SysML) assist the designer par-

ticularly in the early steps of this process. They allow to formally

describe the system to be realized while, at the same time, remain

on a rather abstract level.

However, even in these early stages, errors can easily occur and

corresponding models may result which, e. g., do not describe the

system as intended or include contradictory descriptions. As a con-

sequence, researchers and engineers developed several (automatic)

methods for the validation and verification of UML/OCL models

(often referred to as model finders or solutions for model finding).
This includes approaches such as USE+ASSL [5–7], USE Model Val-

idator [10], EMFtoCSP [9], OCL2MSFOL [4], HOL-OCL [2] based

on the theorem prover Isabelle as well as model finding based on

satisfiability (SAT/SMT) solvers [15, 22, 23].

At the same time, UML/OCL—as almost all languages—is sub-

ject to frequent changes.One of the changes that probably most

seriously affects the entire structure of UML/OCL is related to the

type system. Originally, UML/OCL supported only one irregular

value, namely null which extended the data types with similar

semantics as null pointers in programming languages like Java. By

this, instead of a two-valued Boolean logic, a three-valued logic

was implemented. In the meantime, another irregular value, namely

invalid, was added in order to represent exceptions that may oc-

cur when evaluating OCL constraints—making UML/OCL closer

to established programming languages such as Java and yielding a

four-valued logic in the current UML/OCL version.

While already the first irregular value null has not properly been
supported by the proposed validation and verification approaches,

so far there are only two approaches that can support irregular

values, namely HOL/OCL [2] and OCL2MSFOL [4]. However, the

first approach requires a high manual effort and expert knowledge

from the designer while the second approach, which is indeed a

push-button approach, severely restricts the supported modeling

constructs.

In this work, we aim for overcoming these shortcomings and

propose a solutionwhich provides native support of irregular values

in the automatic validation and verification of UML/OCL models.

To this end, we briefly review the overall flow of existing meth-

ods, whose main step is the translation of the considered UML/OCL

description into a symbolic formulation—representing the model as

well as the respective verification objective. Based on this as well

as a formal interpretation of UML/OCL models and the used type

https://doi.org/10.1145/3127041.3127053


Element
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Figure 1: Main flow of automatic methods for the validation and verification of UML/OCL models

system, we present how the translations have to be conducted in

order to also support irregular values. These findings are eventually

applied to SMT-based model finding which we considered as a rep-

resentative validation and verification method to exemplarily apply

the results of this work. Overall, this provides and demonstrates a

solution which supports irregular values and can easily be adapted

to many other model finding methods based on reasoning engines.

The remainder of this paper is structured as follows: Section 2 re-

views the overall flow of existing methods for automatic validation

and verification of UML/OCL models based on reasoning engines.

Afterwards, the contribution of this work is provided and demon-

strated by means of three sections: Section 3 describes a formal

interpretation of UML/OCL models as well as the considered type

system. Based on that, a translation from UML/OCL models into a

generic formal representation is proposed in Section 4 – providing

the main solution how to support irregular values in UML/OCL

models for validation and verification methods based on reasoning

engines. Section 5 briefly demonstrates the application of the solu-

tion for SMT-based model finding. Finally, the work is concluded

in Section 6.

2 VALIDATION AND VERIFICATION
OF UML/OCL MODELS

In the recent past, several approaches for the automatic valida-

tion and verification of UML/OCL models have been proposed (see,

e. g., [3, 9, 15, 23]). Although they rely on different reasoning en-

gines such as SAT solvers, SMT solvers, CSP solvers, etc., they all

essentially follow the overall flow as sketched in Fig. 1.

More precisely, all approaches take as input a UML model de-

scription (class diagram) enriched by OCL constraints together

with a verification task which is to be performed on the model.

Possible verification tasks comprise, e. g., checking for consistency,

deadlocks, the executability of operations, reachability of particular

system states, etc. (see, e. g., [15]). Since UML/OCL models allow, in

principle, for an infinite number of object instances (which would

make the considered verification task undecidable), proper prob-

lem bounds are additionally provided which restrict the number of

objects per class to some finite value or to be within a given range.

Then, the resulting validation/verification problem is translated

into a symbolic formulation which consists of variables and con-

straints over these variables (details are provided later) in an appro-

priate format for the respectively applied reasoning engine (solver).

Although, for this purpose, a direct translation from UML/OCL to

a solver-specific formulation is possible, we consider a two-stage

approach here: First, all instances of the given UML/OCL model

(which are possible within the bounds) are symbolically described

by means of a generic symbolic respresentation. Afterwards, this
description is mapped to a solver-specific formulation which, then,

can automatically be solved by the respective reasoning engine (see

boxes 2 and 3 in Fig. 1). The first translation represents the actual

translation, while the second step is basically a syntactical mapping.

Following this two-stage scheme allows to describe the symbolic

formulation in a generic fashion which, afterwards, can easily be

applied to a broad variety of reasoning engines.

Eventually, the resulting formulation is passed to the respective

reasoning engine which is supposed to determine an assignment

to all variables of the symbolic formulation. If such an assignment

exists, it can directly be translated to an actual instance of the

UML/OCL model which either serves as witness or counterexample

for the particular verification task. If the reasoning engine proves

that no such assignment exists, respective conclusions can be drawn

(e. g., that the model is inconsistent since it does not allow for an

instance satisfying all constraints).

However, as discussed above, all solutions presented thus far

and following this overall flow do not support irregular values, but

are restricted to a simplified type system without irregular values.

Moreover, supporting irregular values is not accomplished by slight

modifications of the symbolic formulation, but requires major mod-

ifications. In the following, we propose a translation scheme which

addresses this issue. To this end, we first provide a solid basis by

providing a precise, formal definition of the considered (sub-)set of

UML/OCL models in the next section. Based on that, Section 4 pro-

vides detailed rules for the translation of UML/OCL models into a

generic symbolic formulation. The resulting scheme can afterwards

be applied to all methods reviewed above by simply mapping the

resulting symbolic formulation into the syntax supported by the

reasoning engine. In Section 5 we exemplarily demonstrate that by

means of SMT solvers.

3 FORMAL BASIS: TYPE SYSTEM, UML, OCL
In order to apply formal methods for UML/OCL models, a formal

definition of them is needed. In this section, we provide this basis

as needed for the purposes of this work. This includes a brief defi-

nition of the assumed type system (including irregular values), the

considered modeling concepts of UML, as well as additional OCL

constraints.



3.1 Type System
UML offers several predefined basic data types (such as Boolean,
Integer, String) as well as collections (Set, Bag, OrderedSet,
Sequence) of these types (e. g., Sequence(Boolean)). Note that

these collections can be nested to an arbitrary depth (e. g., Bag(Set(
Set(Bag(Sequence(Boolean)))). Besides this, the designer may

specify own basic types like enum-data types with a finite domain

as well as classes which are compound structures composed of

attributes of arbitrary type and operations (a precise definition of a

class is given in Definition 3.5 later in this section).

The OCL type system inherits all these types, but also provides

further types not present in the UML, for instance OclVoid and

OclInvalid.1 As a consequence, besides the regular2 values of a
data type (e. g., given by the set B = {true, false} for Booleans
and by Z = {. . . ,−1, 0, 1, 2, . . .} for integers), the OCL type system

also allows for two additional irregular values, namely

• null (symbol: ε, from OCL type OclVoid) and
• invalid (symbol: ⊥, from OCL type OclInvalid).

Example 3.1. The ε value has a similar semantic as null pointers

in classical programming languages and would, e. g., be returned

by the OCL query OrderedSet{ε}->at(1) which asks for the first

member of an ordered set (which is ε in this case). In contrast,

⊥ is, used to indicate exceptions that may occur when evaluating

OCL constraints, e. g., trying to access to the second element of

an ordered set with just one element as in OrderedSet{ε}->at(2).
This is comparable to an OutOfBoundsException, e. g., in Java.

Especially, the ⊥ value only arises in this context and is, unlike the

ε value, not a valid assignment for class attributes.

More precisely, ε and⊥ are included in the universe, i. e., the set of
all possible values of each type t—including classes and collections.

In order to consider the corresponding type/universe without ε

and/or ⊥, we use the notation t ̸ε, ̸⊥ (universe of regular values) and

t ̸ε or t ̸⊥, respectively.

Example 3.2. For the type Boolean, true and false are the only
regular values in the universe. Together with the two irregular val-

ues ε and⊥, the universe of Boolean is complete and we essentially

obtain what is commonly called a four-valued logic in the modeling

community—even if there is no named counterpart in literature as,

e. g., the Belnap logic.

Special care has to be taken for collections: the collection

Collection(t) may not contain the element ⊥ (invalid), even

though ⊥ is an element of the (complete) universe of the type t.

However, ⊥ as well as ε themselves are considered valid collections

of any type—and are different from the empty collection.

Example 3.3. The complete universe of Set(Boolean)
is given by: Set{} (empty set), Set{true}, Set{false},
Set{true, false}, Set{ε}, Set{true, ε}, Set{false, ε},
Set{true, false, ε}, ε, and ⊥.

In this paper, we do not consider the full OCL type system, but

restrict to the following subset T that is sufficient for UML/OCL

class diagrams:

1
For more details about on the full OCL type system, interested readers are referred

to the OCL specification [11, p. 211ff.].

2
We are using the terms regular as well as irregular values for differentiating purposes.

They are not used within the UML/OCL standards.

• all primitive types (Boolean, Integer, Real,
UnlimitedNatural, String) are contained in T,

• all enum-data and class types are contained in T, and

• with t ∈ T also t ̸ε, t ̸⊥, t ̸ε, ̸⊥ andCollection(t ̸⊥) are contained
in T where

Collection ∈ {Set, Bag, OrderedSet, Sequence}.

As class attributes may not assume the value ⊥, we additionally

consider the derived type system T ̸⊥ which contains all types from

T whose universe does not contain ⊥.

On top of these type systems, variables can be defined: A vari-

able is a tuple (v, t) consisting of an identifier/name v of type

String̸∅, ̸ε, ̸⊥, i. e., neither empty nor ε nor ⊥, and a type t and is

usually denoted as v : t. It can be seen as an actual instance of a

type t which represents a precise assignment of any value from the

(complete) universe of t to v .

Example 3.4. p : Integer defines the variable p of the type

Integer and with p ← 17 an explicit assignment is given.

The set of all variables of a type t ∈ T is denoted byVt . Moreover,

the short-hand VT =
⋃
t∈TVt is used to denote the set of all

variables whose type is in T (likewise for T ̸⊥). Having the notion

of variables, we can now precisely define class types:

Definition 3.5 (Class). A class c = (n : String̸∅, ̸ε, ̸⊥,A,O) is a
3-tuple composed of a name n and finite sets of attributes A ⊂ VT ̸⊥
(i. e., attributes may never be assigned the irregular value ⊥) as

well as operations O .3 The identifiers of the attributes are unique
which means that for a1 = (v1 : t1), a2 = (v2 : t2) ∈ A we have

(v1 = v2) ⇒ (a1 = a2).

The universe of a class type is given by the set of corresponding

objects which can be defined as follows.

Definition 3.6 (Class Instance/Object). An instance of a class

c = (n : String̸∅, ̸ε, ̸⊥,A,O) is given by a precise assignment of val-

ues to n (object name) as well as to all attributes of the class c . In
the following, it will be called object or object instance. The universe
of objects of a class c is written as ϒc .

Remark. For the sake of brevity, we omit some minor aspects
like inheritance between classes as well as tuple types. These do not
have a significant impact on the resulting formulations and it is
straightforward to extend the presented concepts accordingly in order
to cover them explicitly.

Based on the type system given so far, now the modeling struc-

tures can be defined.

3.2 UML Class Diagrams
This subsection provides the formalization of UML class diagrams

using the previously defined type system and variables. Besides

classes, the main component of UML class diagrams are associations

which denote relations between the classes.

Definition 3.7 (Association). An n-ary association r (also

called relation) is formally defined as an n-tuple of pairs

r =
(
(role1 : c1, ranдe1), . . . , (rolen : cn , ranдen )

)
where the ci are

3
Operations and behavioral aspects of UML/OCL models are not explicitly covered

here due to page limitations, but the concepts presented in the following can easily be

extended accordingly.



class types from T (not necessarily different) and the ranдei are
unions of finitely many intervals from N ∪ {∞}. The individual
elements of r are called association ends and the identifiers rolei role
names. As it is possible in OCL to navigate to another association

end using its role name, the i-th association end (rolei : ci , ranдei )
is said to be navigable from all classes c j , 1 ≤ i, j ≤ n, i , j. The
ranдei represent multiplicities between the classes.

For the sake of simplicity, the work at hand is rest*/9ricted

to binary associations and single intervals of multiplicities

[a,a + 1, . . . ,b] only (where 0 ≤ a ≤ b ≤ ∞). However, this does
not restrict the expressiveness as shown in [8].

Instantiations of associations are called links and are defined as

follows:

Definition 3.8 (Links). Let r =
(
(role1 : c1, ranдe1), (role2 : c2,

ranдe2)
)
be a binary association. Then, an instance of r is a so-

called link between two object instances υc1 ∈ ϒc1 and υc2 ∈ ϒc2
(derived from the classes c1 and c2, respectively). More precisely,

it is a tuple λ = (υc1 ,υc2 , role1, role2) from the Cartesian product

ϒc1 × ϒc2 × {role1} × {role2}. In case that c1 = c2, the respective
roles are implicitly given by the ordering of the association ends

in r .

Having this notation, we are able to provide a formal description

of UML class diagrams (simply denoted by model in the following):

Definition 3.9 (Model). Letm = (C,R) be a tuple of finitely many

classes C and relations R between classes from C . For a class c ∈ C ,
let Ac denote its set of attributes and Rolesc denote the set of all

navigable association ends of c in R. Then,m is called a model if,
and only if, for each class c ∈ C

• there is no class c ′ ∈ C , c , c ′ with the same name (class

names are unique),

• there are no two different navigable association ends

e1 = (role1 : c1, ranдe1), e2 = (role2 : c2, ranдe2) from
Rolesc with the same identifier, i. e.,

(role1 = role2) ⇒ (e1 = e2),

and each navigable association end can be associated with

a unique relation r ∈ R, i. e., for r , r ′ ∈ R we have(
e1 is an association end of r

∧ e2 is an association end of r ′

)
⇒ (r = r ′)

(navigable role names are unique),

• for each e = (role : c ′, ranдe) ∈ Rolesc there is no attribute
in Ac with the same identifier role (meaning that attribute

identifiers and navigable role names are disjoint).

Example 3.10. Figure 2 illustrates a simple Integer typed linked
list model. It consists of one class Element with an attribute to save

the entry value and an association to connect elements with each

other. Additionally, an invariant sortedmakes sure that the values

of the elements of such list are in ascending order.

Now, we consider instances of a given model (called system state)

which consists of instances of classes as well as relations (also called

objects and links, respectively).

Definition 3.11 (System State). Letm = (C,R) be a given model.

Then, σ = (ϒ,Λ) is called a system state ofm, if

Element
value: Integer

succ 0..1

pred

0..1

context Element
inv sorted: (self.succ <> null) implies

(self.value <= self.succ.value)

Figure 2: A simple list model

E1: Element
value = 42

E2: Element
value = 1764

pred succ

(a) A system state where the invariant sorted evaluates to true

E1: Element
value = 1764

E2: Element
value = 42

pred succ

(b) A system state where the invariant sorted evaluates to false

E1: Element
value = 42

E2: Element
value = ε

pred succ

(c) A system state where the invariant sorted evaluates to ⊥

Figure 3: System states for the linked list model

• both elements, ϒ and Λ, are finite sets and each object

from ϒ (link from Λ) is an instance of a class from C (asso-

ciation from R),
• the object names for the objects in ϒ are unique, and

• all objects used anywhere in any attribute of any object

from ϒ or in any link from Λ are contained in ϒ.

The set of all possible system states form is denoted by Σm .

Note that the above definition does not enforce the multiplicity

constraints given by an association. However, in order to be a valid

system state according to the model description, these constraints

need to be satisfied. This is expressed by the following definition.

Definition 3.12 (Validity of an Association in a System State).
Let σ = (ϒ,Λ) be a system state of a model m = (C,R). Then,
the relations in R are valid (or satisfied) in the system state σ if, and

only if,

∀ r = (
(role1 : c1, ranдe1), (role2 : c2, ranдe2)

)
∈ R :(∀υ ∈ ϒc1 : ��{(υ,υ ′, role1, role2) ∈ Λ}�� ∈ ranдe1)

∧
(∀υ ∈ ϒc2 : ��{(υ ′,υ, role1, role2) ∈ Λ}�� ∈ ranдe2)

Example 3.13. Figure 3 shows three example system states of the

linked list model, all of which satisfy all associations of the model

as each element has at most one predecessor and successor.

3.3 Class Diagrams with OCL Constraints
So far, we have considered pure UML class diagrams without textual

OCL constraints. In the following, we discuss how OCL constraints

can additionally be taken into account.

The Object Constraint Language (OCL) is a declarative language
which mainly consists of



• navigation expressions to access attributes and association

ends of a particular object (self) or related objects that

can be reached using navigable association ends,

• arithmetic operations (i. e., addition, subtraction, multipli-

cation, division etc.),

• collection operations (i. e., intersection, union, element con-

tainment, etc.), and

• logic operations (i. e., conjunction, disjunction, negation,

etc.) as well as quantifiers (universal and existential).
4

For the remainder of this work, it is sufficient to know that

OCL constraints can be annotated to classes (in terms of so-called

invariants) in order to express constraints that shall be satisfied by

any object instance of that class.
5
In order to refer to the particular

object on which an OCL expression is evaluated, the keyword self
is employed.

Example 3.14. The running example from Fig. 2 has one invari-

ant sorted which can evaluate to true, false, or ⊥ (but not ε). More

precisely, in the system state shown in Fig. 3(a) the invariant eval-

uates to true (if evaluated on E1 as well as E2) as all elements are

sorted. In contrast, in the system state shown in Fig. 3(b), the in-

variant is violated due to an incorrect ordering and, thus, evaluates

to false (on E1). Finally, in the system state shown in Fig. 3(c), one

value is undefined which leads to an error in the comparison of

the values (indicated by ⊥). This error is propagated upwards in

the invariant expression and, finally, the whole invariant evaluates

to ⊥. Overall, the invariant is satisfied if, and only if, all values of

all linked elements are defined (not equal to ε) and in ascending

order.

The above description leads to the following definition of

UML/OCL models:

Definition 3.15 (UML/OCL model). A 3-tuple m = (C,R, I ) is
called UML/OCL model if, and only if, (C,R) is a model and

I =
∐

c ∈C (Ic ) is the disjoint union of sets of invariants Ic for each
class c ∈ C . All these sets are finite, possibly empty sets of OCL

expressions.

System states of UML/OCL models are simply the system states

of the underlying UML models. However, the notion of validity is

extended as follows:

Definition 3.16 (Valid System State). Let m = (C,R, I ) be a

UML/OCL model and σ = (ϒ,Λ) be a system state of the model

(C,R). Moreover, let Ic denote the set of invariants from I that are
associated with a class c ∈ C .

Then, σ is called a valid system state if, and only if,

• the relations in R are satisfied in σ (cf. Definition 3.12) and

• for each class c ∈ C and each object υ of this class that is

instantiated in σ (i.e. υ ∈ ϒc ∩ ϒ), all invariants from Ic
evaluate to true when self is referring to υ.

The set of all valid system states ofm is denoted by Σ✓
m .

4
A comprehensive overview on all OCL expressions and as keywords as well as a

precise semantic definition can be obtained from [11].

5
In general, OCL constraints can also be annotated to (class) operations in terms of

so-called pre- and postconditions, but the translation of the corresponding expressions

is essentially identical to invariants.

Example 3.17. Among the system states in Fig. 3 only the first

one is a valid system state of the list model as all relations are

satisfied and all invariants evaluate to true on any of the elements.

4 GENERIC REPRESENTATION
Given the formal interpretation of UML/OCL models from the

previous section, we are now able to describe the transformation

rules to obtain a generic representation of the model (box 2 of Fig. 1).

This generic symbolic representation represents the following set

of system states:

Definition 4.1 (Unassigned system state). Letm = (C,R, I ) be a
UML/OCL model. For each class c ∈ C , let PBc ⊂ N, |PBc | < ∞
denote the allowed range of possible instantiations of c . Then, the
set

S = {(ϒ,Λ) ∈ Σ✓
m | ∀ c ∈ C : |ϒc ∩ ϒ| ∈ Bc }

is called unassigned system state ofm with respect to the problem
bounds PB = {PBc | c ∈ C}.

In other words, an unassigned system state represents all valid

system states of a model for which the number of instantiated

objects of each class is within a given range (e. g., an interval or a

fixed number). To this end, the generic symbolic representation of

S consists of

a) unassigned variables for each possibly instantiated object

(for its name, attributes as well as navigable association

ends) that may be assigned any value from the correspond-

ing universe, and

b) constraints that enforce the validity of the system state,

i. e., ensure that all multiplicity constraints of the relations

as well as all OCL invariants hold.

Note that any valid assignment to these variables determines a

unique system state σ = (ϒσ ,Λσ ) ∈ S for which we do not exactly

know in advance how many and which objects of a class c ∈ C
are instantiated in σ . Nonetheless, we need to refer to the objects

from ϒσ within the symbolic formulation, e. g., to formulate that

class type attributes and association ends may only refer to objects

that are actually instantiated. To this end, we consider a generic

set ϒσ that contains max PBc possibly instantiated objects for each

c ∈ C and defines the respectively applied problem bounds.

In the following, we provide precise transformation rules for gen-

erating the symbolic representation from a given UML/OCL model

that comprehensively takes into account irregular values. First, the

concept of how to distinguish between regular and irregular values

is outlined in Section 4.1. Afterwards, the transformation of at-

tributes as basic elements is introduced in Section 4.2—followed by

the transformation of associations (including their multiplicity con-

straints) in Section 4.3. Finally, the translation of OCL constraints

is described in Section 4.4.

4.1 Distinction Between Regular and Irregular
Values

In Section 3.1, the considered type system has been introduced. As

mentioned there, the universes of possible values for all types can

be separated in two groups: regular values and irregular values.

In order to represent this, for each transformed variable v : t inm,

we create a pair of variables: (αv : t ̸ε, ̸⊥,δ
v
: {✓, ε,⊥}). The αv -part



E1: Element
value← ?

E2: Element
value← ?

E2: Element
value← ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

pred - succ?

Figure 4: An un-assigned system state

represents regular values of v and the δ -part the definedness status
of the pair whereby ✓ means that the value of v is neither null
nor invalid, but a regular value.

Note that, in order to reduce the search space, it can be helpful to

define a regular default value 0t for each type t ∈ T and to enforce

this as the value for αv in case that δv , ✓.

4.2 Transforming Attributes
To symbolically represent all possible attribute assignments of the

unassigned system state S for each attribute of each possibly in-

stantiated object, a corresponding variable is created.

Transformation Rule 4.2 (Attributes). For each c = (n,A,O)
in C , each attribute (va : t ̸⊥) ∈ A, and for each possibly instantiated
object υ ∈ (ϒc ∩ ϒσ ), a pair of variables (α

va
υ : t ̸ε, ̸⊥,δ

va
υ : {✓, ε,⊥})

is created. Additionally, it is enforced that δvaυ , ⊥. Moreover,
• for class types, i. e., t = c ′, a constraint is added stating that

only possibly instantiated objects or ε may be assigned to va ,
i. e., (va ← x) ⇒ (x ∈ ϒσ ∨ x = ε).

• if t = Set(t′
̸⊥
), a variable αvaυ : t′

̸⊥
→ B is created, where

αvaυ (x) denotes for the element x ∈ t′
̸⊥
whether it is contained

in the set or not.
• if t = Bag(t′

̸⊥
) or t = OrderedSet(t′

̸⊥
), a variable

αvaυ : t′
̸⊥
→ N is created, where αvaυ (x) denotes how often

an element x ∈ t′
̸⊥
is contained in the bag or the index of x

in the ordered set, respectively. In both cases, αvaυ (x) = 0

indicates that x is not contained in the bag/ordered set.
• if t = Sequence(t′

̸⊥
), a variable αvaυ : t′

̸⊥
→ P(N \ {0}) ∪

{{0}} is created, where αvaυ (x) denotes at which indices/
positions in the sequence the element x ∈ t′

̸⊥
appears and

αvaυ (x) = {0} means that the element is not contained at all.
Furthermore, for an OrderedSet as well as a Sequence, constraints
are added such that the UML/OCL collection type definition is re-
spected. One constraint ensures that there is at most one object at
position i ∈ N≥1 and another one that if there is an object at posi-
tion i (with i > 1), then there is also an object at position i − 1.

Example 4.3. Let’s assume the modelm is the simple list model

as depicted in Fig. 2 (box 1a in Fig. 1). Further, let’s assume the

problem bound PBElement = {3} (box 1b in Fig. 1) yielding to the

un-assigned system state (box 2) sketched in Fig. 4.

In a next step, the currently introduced transformation rules

for attributes are applied to derive variables which are needed to

Variables:
αE1
value : Z, δE1

value : {✓, ε, ⊥}, αE2
value : Z, δE2

value : {✓, ε, ⊥},

αE3
value : Z, δE3

value : {✓, ε, ⊥}

Constraints:
δE1
value , ⊥, δ

E2
value , ⊥, δ

E3
value , ⊥

Figure 5: List of variables and constraints for the attributes

T1 :MyClassT
{B1, B2} 7→ B

T2 :MyClassT
{B1, B2} 7→ B

T3 :MyClassT
{B1, B2} 7→ B

T4 :MyClassT
{B1, B2} 7→ B

B1 :MyClassB
{T 1, T 2, T 3, T 4} 7→ B

B2 :MyClassB
{T 1, T 2, T 3, T 4} 7→ B

T1 T2 T3 T4 T1 T2 T3 T4

B1 B2 B1 B2 B1 B2 B1 B2

Figure 6: Idea of links in the symbolic representation

represent all possible system states from the un-assigned system

state in a symbolic fashion. Figure 5 shows a list of all variables

created for the attributes in Fig. 4.

4.3 Transforming Associations
To symbolically represent all possible links within a system state

σ = (ϒ,Λ), variables are created for each association and the re-

spective object instances of each association end. Before giving the

formal transformation rule, the general idea is explained.

Let (rolec1 : c1, ranдe1) and (rolec2 : c2, ranдe2) be the two asso-

ciation ends of an association and let us ignore the multiplicities

for a moment. Then, each object instance of c1 can be linked with

any arbitrary object instance of c2. Thus, a function mapping each

object instance of c2 to one of the Boolean values (true means

linked and false not linked) works as a representation for all pos-

sible combinations of links. Adding variables for those functions

for all objects of c1 to represent all possible links would already

be sufficient. However, for the sake of convenience it is also done

for the objects of class c2. More precisely, for each object of c2,
a function mapping the object instances of c1 to B is also added.

Furthermore, constraints ensuring the symmetry of associations

and the multiplicity constraints must be added.

Example 4.4. In Figure 6, a piece of the symbolic formulation for

links between two object instances of a class MyClassB and four of

a class MyClassT is sketched. Since a general symbolic formulation

should represent all links between the object instances of the two

classes, the symbolic representation must allow all possible links.

Thus, applying the ideas explained before, one function mapping

the four objects of MyClassT ϒMyClassT = {T1, T2, T3, T4} to B is

added to the instance B1 and another to B2. Similarly, functions

from {B1,B2} to B are added to all four instances of MyClassT. The
symmetry constraints are drawn with gray lines in Fig. 6 between

possibly linked object instances (indicated by gray dots with a

matching name), they represent the equality of two evaluations.

Transformation Rule 4.5 (Associations). Let r =
(
(role1 : c1,

ranдe1), (role2 : c2, ranдe2)
)
∈ R be an association, consider the asso-

ciation end (rolei : ci , ranдei ) and let c j denote the type of the other
association end. Then, we essentially treat rolei : ci as if it was a



collection typed attribute rolei : Set(ci ) ̸⊥ of c j . That is, for each pos-
sibly instantiated object υj of class c j , we add a pair of variables
(λroleiυj : ci, ̸⊥ → B,δ roleiυj : {✓, ε,⊥}) and, in order to respect the
multiplicity constraints, we enforce

(δ roleiυj = ✓) ⇒
∑

υ′∈ϒci

λroleiυj (υ ′) ∈ ranдei , (1)

where we identify f alse with 0 and true with 1 in order to construct
the given sum. Then, there are two cases:6

• If max(ranдei ) > 1, the association end may not be ε, i. e.,
we enforce δ roleiυj , ε.

• If max(ranдei ) = 1, the association end can be equal to ε.
More precisely, this is the case if, and only if,min(ranдei ) = 0

and there is no corresponding link for vj . However, as the
multiplicity constraints would also permit the empty set in
that particular case, we additionally enforce

(δ roleiυj = ✓) ⇒ (λroleiυj , ∅).

Finally, since a link is symmetric, the following constraints must be
added:

∀υ ∈ ϒc1 : ∀υ ′ ∈ ϒc2 : λυrolec
2

(υ ′) = λυ
′

rolec
1

(υ) (2)

4.4 Transforming OCL Constraints
After introducing all the different variables, the symbolic formula-

tion represents all possible system states with respect to the given

problem bounds—including invalid ones. The reason for this is that

all previously introduced constraints only ensure that an assign-

ment respects the defined variable types and that all associations

are valid (all multiplicity constraints hold). However, the validity of

the OCL constraints (invariants) have not been taken into account

so far.

Consequently, the OCL constraints have to be transformed into

equivalent logic constraints over the variables from the symbolic

formulation. If these constraints are then added to the formulation,

any variable assignment finally determined by a reasoning engine

will represent a valid system state that satisfies all OCL constraints.

The main idea to this transformation is to consider the Ab-
stract Syntax Tree (AST) of the respective OCL expressions and

to transform the AST node by node from bottom to top using a

depth-first search (DFS) and to add a corresponding pair of variables

(ρexp : t,δexp : {✓, ε,⊥}) for each node.

Example 4.6. Figure 7 shows the AST of the invariant sorted
of the list model. The root is an OperationCallExp. In OCL,

OperationCall expressions have an attribute providing the op-

eration name (here: implies). Each operation is called on a source

object, also called calling object, and has a list of parameters, also

called arguments. For binary comparisons and logical operations,

the calling object is on the left-hand side and the object given by

the (single) argument is on the right-hand side. In this example, the

implies operation is called on the result of an OperationCallExp
(<>) which itself is called on the result of a PropertyCallExp using
the role name succ and is compared with the argument ε. This

6
The differentiation for max > 1 and max = 1 is caused by a technical detail in the

UML and OCL standards which is spread at several positions. It basically says that

there is a difference between Set and ε for this two cases.

OperationCallExp

implies

inv sorted: (self.succ <> null) implies (self.value <= self.succ.value)

OperationCallExp
<>

OperationCallExp
<=

PropertyCallExp

value

VariableExp

self

PropertyCallExp

value

PropertyCallExp
succ

VariableExp

self

PropertyCallExp
succ

VariableExp

self

NullLiteralExp

null

left-hand side/callee right-hand side/parameter

source source argument

Figure 7: The AST of the invariant sorted

means that the left-hand side of the implication is true if, and only

if, the current element (self) has a link to a successor. Similarly,

the right-hand side compares the element’s with the successor’s

value.

For invariants, the OCL standard requires that the type

of ρroot of the root node is Boolean, such that we finally enforce

ρroot = true and δroot = ✓. Note that this can easily be adapted

accordingly in case that one is interested in invalid system states

that show exceptional cases (indicated by ⊥) rather than valid sys-

tem states only.

While variable and property call (i. e., navigation) expressions

are only used to determine the corresponding variables (ρ, δ ) within
the symbolic formulation, operation calls (e. g., realizing logic op-

erations or comparisons) are the most important expression type

for the support of irregular values and the precise transformation

rules for these expressions will be outlined in the remainder of this

section.

Remark. The following rules are based on our interpretation of
the OCL specification which we gained by a thorough study of [11].
However, we found that some corner cases are not properly covered
there and, thus, had to derive our own interpretation. Nevertheless,
the following transformation rules provide a general basis, while the
precise definition for a specific operation in the OCL standard might
change or might be clarified in the future. In this case, the obtained
transformation rules can easily be adapted accordingly.

Transformation Rule 4.7 (OperationCallExp – on Boolean

expressions). OCL offers several binary logic operations on Boolean
expressions like and, or, xor, implies, =, and <> which evaluate to
a new Boolean expression representing the result of the respective
operation. However, all those operations must deal with the four-
valued OCL logic including the irregular values ε and ⊥. The OCL
specification describes those issues in [11, Sect. 7.4.13 on pp. 16f.,
Sect. 11.3.2 on pp. 154f., Sect. 11.3.3. on pp. 155f., and Sect. 11.5.4 on
p. 162]. Only a short part of the definitions from these sections is
considered here to give an idea how the corresponding transformation
rules have been derived, namely:

• True OR-ed with anything is True
• False AND-ed with anything is False
• False IMPLIES anything is True
• anything IMPLIES True is True



Table 1: Truth table for logic operations

a b a or b a and b a implies b a = b

false false false false true true
false true true false true false
false ε ε false true false
false ⊥ ⊥ false true ⊥

true false true false false false
true true true true true true
true ε true ε ε false
true ⊥ true ⊥ ⊥ ⊥

ε false ε false ε false
ε true true ε true false
ε ε ε ε ε true
ε ⊥ ⊥ ⊥ ⊥ ⊥

⊥ false ⊥ false ⊥ ⊥

⊥ true true ⊥ true ⊥

⊥ ε ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

With “anything” one of the four-logic values is meant, i. e., integers
or other completely different types are not allowed and should be
recognized by the chosen OCL parser beforehand.

For the transformation of and, or, =, and implies, the truth table
in Table 1 is used. While the first three columns have been derived
from [11, Table A.2 on p. 214], the last one has been derived from
several positions of the OCL specification.

Here, we only provide the transformation for implies, since the
transformations for or, and, and = are very similar and do not provide
much additional insight:

implies Transformation
Input: (ρlhs ,δlhs ) and (ρrhs ,δrhs )
1: if (δlhs = ✓ ∧ ρlhs = false) ∨ (ρrhs = true) then
2: (true,✓)
3: else
4: if δlhs = ⊥ ∨ δrhs = ⊥ then
5: (false,⊥)
6: else
7: if δlhs = ε ∨ δrhs = ε then
8: (false, ε)
9: else
10: (false,✓)

Other operators like arithmetic expressions, operations on collec-

tions etc. have also been covered. However, in the following we will

only deal with comparisons of integers. All remaining operation

are omitted due to limited space.

Transformation Rule 4.8 (OperationCallExp – comparison

of integers). While the comparison of two regular integer expres-
sions results in a regular Boolean expression where the comparison is
the naturally given one, it is not clear how to deal with cases where at
least one of the two integer expressions is not regular at a first glance.
However, with the following citations from the OCL specification [11,
Sect. 11.2.3 and Sect. 11.2.4 on p. 152] it is clear that:

• Any operation call applied on ε is ⊥
• Any operation call applied on ⊥ is ⊥

For the operations = and <> exceptions of interest here are formulated
as follows:

• = applied on ε is true
• = applied on ⊥ is ⊥
• <> applied on ε is false
• <> applied on ⊥ is ⊥

Having this textual specification, the transformation rules are
straightforward:
= with two integers Transformation
Input: (ρlhs ,δlhs ) and (ρrhs ,δrhs )
1: if δlhs = ⊥ ∨ δrhs = ⊥ then
2: (false,⊥)
3: else
4: if δlhs = ε ∧ δrhs = ε then
5: (true,✓)
6: else
7: if δlhs = ✓ ∧ δrhs = ✓ then
8: (ρlhs = ρrhs ,✓)
9: else
10: (false,✓)

The transformation rules for <, <=, >, and >= can be summarized.
In the last line of the transformation OP obviously has to be replaced
by its natural counterpart:
<, <=, >, => with two integer Transformation
Input: (ρlhs ,δlhs ) and (ρrhs ,δrhs )
1: if δlhs = ⊥ ∨ δrhs = ⊥ ∨ δlhs = ε ∨ δrhs = ε then
2: (false,⊥)
3: else
4: (ρlhs OP ρrhs ,✓)

5 APPLICATION FOR
SMT-BASED MODEL FINDING

In this section, we demonstrate how the generic representation

obtained using the transformation proposed in the previous section

can be utilized for a solver-specific formulation. To this end, we

consider SMT-based model finding (proposed in [23]) as a represen-

tative. Here, the respective representation has to be mapped to a

corresponding SMT-LIB syntax [1]—in this case, to a description in

the theory of quantifier-free bit vectors (QF_BV).

Variables for attributes are mapped as follows:

SMT-LIB Realization of Transformation Rule 4.2.
The variables for Boolean attributes αvaυ : B are mapped to the SMT-
LIB type Bool. They are formally denoted by αvaυ : B1 and the corre-
sponding SMT-LIB declaration is

1 (declare -fun αvaυ () Bool)

The variables for integer attributes αvaυ : Z are mapped to bit vector
variables of a fixed length l , i. e., formally αvaυ : Bl ; the SMT-LIB
declaration is

1 (declare -fun αvaυ () (_ BitVec l ))

The precision l can be chosen arbitrarily by the designer (but has to
be the same for all integer attributes).



Collections are mapped in a similar fashion. A detailed description
of this has been presented in [21]. Here, we only show the realization
of associations: The variables λrole2υ : c

2, ̸⊥ → B and λrole1υ′ : c
1, ̸⊥ →

B created for the general symbolic formulation of an association
r = {(rolei : ci , ranдei ) | i = 1, 2} and corresponding objects υ,υ ′

both represent maps that return either true or false.
Hence, a corresponding bit vector of length max PBc2 or max PBc1 ,

respectively, is created.
To map the symmetry constraints from Eq. (2), an or-

dering is applied on the possibly instantiated objects, i. e.,
ϒc1 = {υ1,υ2, . . . ,υmax PBc

1

} and ϒc2 = {υ
′

1
,υ
′

2
, . . . ,υ

′

max PBc
1

}, and

the evaluation of the functions λrole2υ and λrole1υ′ are realized by ex-
tracting individual bits from the bit vectors:

1 (and (= ((_ extract 0 0) λ
rolec

2

υ1 )

2 ((_ extract 0 0) λ
rolec

1

υ′
1

))

3 (= ((_ extract 1 1) λ
rolec

2

υ1 )

4 ((_ extract 0 0) λ
rolec

1

υ′
2

))

5 . . .

The multiplicity constraints from Eq. (1) are mapped to so-called
cardinality constraints as also used, e. g., in [19].

The δ -variables that represent definedness are mapped to bit vector
variables of length 2 where one of the four possible values is blocked.
More precisely, we identify the bit-vectors #b00, #b01, and #b10 with
✓, ε, and ⊥, respectively. Moreover, to reduce the search space, a
default value (here: a zero string of adequate length) is enforced for
the corresponding α-variable in case that δ = ε:

1 ; d e c l a r a t i o n

2 (declare -fun δυa () (_ BitVec 2))

3 ; g e n e r a l b l o c k i ng o f 4 th va lue

4 (not (= δυa #b11))

5 ; b l o c k i ng ⊥ ( f o r a t t r i b u t e s on ly )

6 (not (= δυa #b10))

7 ; e n f o r c i n g d e f a u l t v a l u e i f n u l l

8 (=> (or (= δυa #b01)

9 (= αυa false/#b0 . . . 0))

Now, having an SMT-LIB equivalent of the variables and con-

straints for attributes and associations, we consider OCL operations.

SMT-LIB Realization of Transformation Rule 4.7.
The transformation of the implies operation is mapped to tbe SMT-
LIB format as follows:

1 (let ( (ρimplies (ite (or (not ρlhs )

2 ρrhs )

3 true

4 false))

5 (δimplies (ite (or (not ρlhs )

6 ρrhs
7 (and (isRegular δlhs )

8 (isRegular δrhs )))

9 ✓

10 (ite (or (isInvalid δlhs )

11 (isInvalid δrhs ))

12 ⊥

13 ε)))

14 )

15 transformed OclExpression above

16 using ρimplies and δimplies
17 )

Other OCL operations can be mapped to the SMT-LIB format in

a similar fashion as it has just been shown for implies. The main

idea is to map every node of the AST to a let block such that the

local variables ρop and δop can be used in the node above. By this,

the corresponding constraints for OCL invariants can successively

be mapped to SMT-LIB.

Following this scheme, the complete UML/OCL model and all

according constraints and validation/verification tasks can be com-

bined to finally form one SMT-LIB instance. As reviewed in Sec-

tion 2, passing the resulting instance to an SMT solver either yields

a system state (representing a witness or counterexample) or proves

that no such system state exist. But in contrast to existing solutions

as proposed in [5–7, 9, 10, 14–18, 22, 23], the translation and map-

ping scheme proposed here additionally supports irregular values

and, thus, the complete expressiveness of UML/OCL analysis. Ex-

isting approaches for UML/OCL verification and validation such

as [15, 22, 23] can easily adapted to be used with the presented

translation and mapping scheme—only the translations and map-

pings have to be adjusted accordingly. Moreover, the presented

translation and mapping can easily be adapted to use a different

solving engine such as CSP or ASP. In order to do so, only the

mappings from the generic description to the solver input language

have to be adjusted. The presented mapping for SMT-LIB works

can be used as a standard pattern for those mappings.

6 CONCLUSIONS
In this paper, we presented a translation of UML/OCL models to a

generic symbolic formulation that provides a native support for the

irregular values null and invalid. While previously there were

only solutions that require a high manual effort or apply severe

restrictions to the supported modeling concepts, the proposed so-

lution supports irregular values in a very comprehensive manner

and, in principle, does not apply any nameable restrictions to the

considered models. Moreover, as we have demonstrated for the

case of SMT solvers, the generic symbolic formulation can easily be

translated to a solver-specific formulation which allows for the use

of powerful reasoning engines. As a consequence, the presented

solution, for the first time, enables designers to conduct automatic

validation and verification of UML/OCL models including a proper

treatment of exceptional cases as they are indicated by OCL’s irreg-

ular values.
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