
Improving Synthesis of Reversible Circuits:
Exploiting Redundancies in Paths and Nodes of QMDDs

Alwin Zulehner and Robert Wille

Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

Abstract. In recent years, reversible circuits have become an estab-
lished emerging technology through their variety of applications. Since
these circuits employ a completely different structure from conventional
circuitry, dedicated functional synthesis algorithms have been proposed.
Although scalability has been achieved by using approaches based on
decision diagrams, the resulting circuits employ a significant complexity
measured in terms of quantum cost. In this paper, we aim for a reduc-
tion of this complexity. To this end, we review QMDD-based synthesis.
Based on that, we propose optimizations that allow for a substantial re-
duction of the quantum costs by jointly considering paths and nodes in
the decision diagram that employ a certain redundancy. In fact, in our
experimental evaluation, we observe substantial improvements of up to
three orders of magnitudes in terms of runtime and up to six orders of
magnitudes (a factor of one million) in terms of quantum cost.

1 Introduction

In the recent years, reversible circuits – circuits that additionally allow to com-
pute the inputs from the outputs – have become an established field in research
due to their characteristics regarding low power design (based on the seminal
work of Landauer [5] and Bennett [3]) and their application in quantum compu-
tations [10] – a new computation paradigm that allows for solving certain tasks
substantially faster. Most recently, reversible circuits also found their application
in the design of on-chip interconnects [18, 20], encoders [21], and verification [1].

Reversible circuits employ a completely different structure compared to con-
ventional circuits, because not only the outputs are determined by the inputs,
but also vice versa. This leads to a structure where circuits consist of a set of
circuit lines that are passed through a cascade of reversible gates and, hence, dis-
allow direct feedback and fanout. Consequently, dedicated synthesis approaches
that establish the desired unique mapping from inputs to outputs are required.
Although a variety of synthesis approaches exist, functional synthesis approaches
are of special interest, since they result in a circuit where the number of circuit
lines is minimal. Over the years, several such synthesis approaches have been
proposed, ranging from exact ones (i.e. the number of gates is minimal) [4] to
heuristic ones based on truth tables [12, 6]. However, since their underlying data
structure is exponential they suffer from limited scalability. Therefore, methods

based on a more compact representation of the function to be synthesized such
as decision diagrams [16, 15] or Boolean satisfiability [13] have been proposed.
They, in contrast, yield rather costly circuits.

In this paper, we focus on QMDD-based synthesis [16], one of the scalable
synthesis approaches listed above. This synthesis approach is based on Quantum
Multiple-Valued Decision Diagrams (QMDDs [7, 11]), a decision diagram intro-
duced for the compact representation of reversible and quantum computations.
The main premise of QMDD-based synthesis is to employ reversible gates which
transform each QMDD node to the identity. By doing that for all nodes of a
QMDD (representing the function to be synthesized) in a breadth first fashion,
a circuit realizing the given function results. However, during this process often
equal cases are considered iteratively; for each, the same cascade of gates are
applied – leading to a large number of redundant steps and, hence, gates.

In this work, we introduce a new QMDD-based synthesis approach which
aims to consider those redundant cases only once. To this end, a scheme is
employed which considers all paths to the currently considered node together
and performs logic minimization to reduce their number. Furthermore, nodes
which can be transformed to the identity with the same cascade of gates are
considered jointly. This allows for a substantial reduction of gates. Experimental
evaluations show that the proposed scheme improves the current state of the art
QMDD-based synthesis by several orders of magnitudes in terms of runtime as
well as in terms of quantum cost (an abstract measure of the complexity of the
resulting circuit).

This paper is structured as follows. In Section 2, we briefly review reversible
functions and their representation as well as reversible circuits. Based on that, we
review QMDD-based synthesis in Section 3 and discuss the proposed optimiza-
tions in Section 4. In Section 5, we discuss the improvement that can be achieved
by the proposed optimization, whereas Section 6 experimentally confirms these
improvements. Section 7 concludes the paper.

2 Background

In this section we briefly recapitulate reversible functions including their efficient
representation as well as reversible circuits.

2.1 Reversible Functions

A Boolean function is reversible if the mapping from inputs to outputs establishes
a bijection, i.e. the inputs can also be computed from the outputs.

Definition 1. A Boolean function f : Bm → Bn is reversible iff n = m and
there exists a unique mapping from inputs to outputs and vice versa.

Besides truth tables, reversible functions can also be represented by means
of a permutation matrix.

Definition 2. Consider a reversible Boolean function f : Bn → Bn. Then, the
permutation matrix of f is a 2n×2n matrix with entries mi,j, 0 ≤ i, j < 2n such
that

mi,j =

{
1 if f(j) = i

0 otherwise.

A 1-entry in the permutation matrix means that an input (column) is mapped
to an output (row) by f . All other entries of the permutation matrix are zero.
Since a permutation represents a unique mapping (i.e. a reversible function), it
contains exactly one 1-entry in each column and in each row.

Example 1. Consider the reversible function depicted in Fig. 1a. The function
is reversible because the number of inputs is equal to the number of outputs
and each output pattern occurs exactly once. Consequently, the input can be
uniquely determined having the output only. The permutation matrix of this
reversible function is shown in Fig. 1b. Here, reversibility can easily be seen
since each column as well as each row contains exactly one 1-entry.

x1 x2 x3 x′1 x′2 x′3
0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 1 0 0
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 1 1 1 1

(a) Truth table

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 0 0 0 0 0 0 1 0

001 0 0 0 1 0 0 0 0

010 1 0 0 0 0 0 0 0

011 0 1 0 0 0 0 0 0

100 0 0 1 0 0 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 1 0 0 0

111 0 0 0 0 0 0 0 1

x1
x2
x3

Inputs

O
u
tp

u
ts

(b) Permutation matrix

Fig. 1. Representation of reversible functions

2.2 Quantum Multiple-Valued Decision Diagrams (QMDDs)

The description means for reversible functions discussed in the previous section
is rather limited. Since the size of truth tables as well as the size of permuta-
tion matrices grows exponentially with the number of variables, a more scalable
representation is desirable in order to represent large functions. However, permu-
tation matrices can be represented more compactly – and with non-exponential
space in many relevant cases – using so called Quantum Multiple-Valued Decision
Diagrams (QMDDs [7, 11]). QMDDs were initially introduced to represent the

unitary matrices of quantum computations. Since quantum computations are
reversible and the matrices are also of dimension 2n× 2n, QMDDs are perfectly
suited for representing permutation matrices. For simplicity, we discuss only
those aspects of QMDDs that are relevant for this paper and omit all quantum
related issues.

The main idea of QMDDs is a recursive decomposition of a permutation
matrix M over its variables. A variable xi represents a mapping from the ith

input to the ith output of the function. There exist four possible mappings of a
variable, since an input may be mapped from 0 to 0, from 0 to 1, from 1 to 0,
or from 1 to 1. Considering the most significant variable x1 of the permutation
matrix, these four different mappings exactly describe the four quadrants of the
matrix, which we denote M0�0, M1�0, M0�1, and M1�1. This decomposition
can be represented by a decision diagram node labeled x1 with four outgoing
edges, describing exactly those quadrants M0�0, M1�0, M0�1, and M1�1 from
left to right.

This decomposition is recursively applied until a single entry is reached.
Such an entry is then represented by a terminal. The compactness of QMDDs
results – as for other types of decision diagrams – from sharing equal nodes
(and thus representing equal sub-matrices). For simpler graphical visualization,
we represent 0-matrices (i.e. matrices containing 0-entries only) with a 0-stub,
independent of their dimension.

Example 2. Consider again the permutation matrix depicted in Fig. 1b. The
decomposition over its variables x1, x2, and x3 yields the QMDD shown in
Fig. 2. Note that the path highlighted in bold traverses the third edge of the
node labeled x1, the second edge of the node labeled x2 and the first edge of
the node labeled x3. Consequently, this path describes a mapping of variable x1

from 0 to 1, a mapping of variable x2 from 1 to 0, and a mapping of variable x3

from 0 to 0, i.e. a mapping from input x1x2x3 = 010 to output x1x2x3 = 100.

x1

x2 x2 x2

x3 x3 x3

1

0 0 0 00 0

00 000000

Fig. 2. QMDD of the permutation matrix shown in Fig. 1b

For a formal definition of QMDDs, as well as manipulation algorithms such
as matrix multiplication we refer to [11].

2.3 Reversible Circuits

The structure of reversible circuits is completely different to classical circuitry,
because fanout and feedback are not directly allowed. A reversible circuit rather
consists of a set of circuit lines (one for each variable of the realized reversible
function) which are passed through a cascade of reversible gates. The values of
the circuit lines may be changed in a reversible fashion by these gate or passed
through unaltered. In this paper, we focus on Toffoli gates – a reversible gate
that has been proven to be universal (i.e. all reversible functions can be realized
using Toffoli gates only).

Definition 3. Consider a set X = {x1, x2, . . . , xn} of n circuit lines and a
sequence G = g1, g2, . . . , gk of k reversible gates. Then, the pair C = (X,G)
describes a reversible circuit. A Toffoli gate gi = TOF (Ci, ti) consists of a set
Ci ⊆ {x−i |xi ∈ X} ∪ {x+

i |xi ∈ X} of negative and positive control lines, and
a target line ti. The Boolean value of the target line is inverted iff the Boolean
value of all positive and negative control lines is 1 and 0, respectively. All circuit
lines except the target line are passed unaltered through the gate.

Toffoli gates as defined above are self-inverse, i.e. applying a Toffoli gate
twice results in the identity. For graphical visualization we use the symbols , ,
and ⊕ to represent a positive control line, a negative control line, and a target
line, respectively.

Example 3. Consider the reversible circuit shown in Fig. 3. The circuit is com-
posed of three Toffoli gates and is labeled with the intermediate values re-
sulting when the input lines are assigned x1x2x3 = 010. The first gate g1 =
TOF ({x−1 , x

+
2 }, x3) inverts the value of target line x3, because the negative con-

trol line x1 is assigned 0 and the positive control line x2 is assigned 1. Similarly,
the second gate g2 = TOF ({x+

3 }, x1) is activated, because the value of circuit
line x3 is now 1. Consequently, the value of target line x1 is changed to 1. The
last gate g3 = TOF ({x+

2 , x
−
3 }, x1) does not change the value of target line x1,

because the negative control line x3 is assigned 1. Therefore, all three circuit
lines are passed through the gate unaltered in this case. Eventually, the circuit
maps input x1x2x3 = 010 to output x′1x

′
2x
′
3 = 111.

x1 x′1
x2 x′2
x3 x′3

0

1

0

g1

0

1

1

g2

1

1

1

g3

1

1

1

Fig. 3. Reversible circuit

The complexity of reversible circuits is usually measured in terms of quantum
cost. These cost result from mapping the circuit to specific libraries of quantum
gates. Two commonly used libraries for determining the quantum cost of a re-
versible circuit are the NCV library [8] and the Clifford+T library [2]. Here,
the quantum cost are determined by the overall number of gates (NCV-cost) or
the length of the sequence of T-gates (and, therefore, denoted T-depth), respec-
tively. As shown in Table 1, the NCV-cost as well as the T-depth of a Toffoli
gate depends on the number of control lines. The quantum costs listed in Table 1
were determined using RevKit [14].

Table 1. Quantum cost of Toffoli gates

Control lines NCV-cost T-depth

1 1 0
2 5 3
3 20 12
4 40 24
5 60 36

Example 3 (continued). The NCV-cost and the T-depth of the circuit shown in
Fig. 3 are 11 and 6, respectively.

3 QMDD-based Synthesis

In this section, we review QMDD-based synthesis (originally proposed in [16]).
As discussed in Section 1, QMDD-based synthesis is a functional synthesis ap-
proach which yields a circuit with the minimal number of circuit lines. The main
idea behind the algorithm is described as follows.

Assume the function to be synthesized is described by a permutation ma-
trix M . Then, due to reversibility its inverse M−1 exists, and their product
M ◦ M−1 = I is the identity matrix. Consequently, if we find a cascade of
reversible gates G that transforms M to the identity, we implicitly found a re-
versible circuit for M−1. Reversing G yields a reversible circuit that realizes M
(because the Toffoli gates are self-inverse). Therefore, an algorithm is required
that transforms the QMDD representing M to the identity. Since the identity
matrix only maps input 0 to output 0 and input 1 to output 1, the identity
QMDD imposes the structure depicted in Fig. 4.

To obtain the desired identity QMDD, we traverse the QMDD in breadth-first
manner and transform each node we encounter to the identity structure shown in
Fig. 5 by applying Toffoli gates. To this end, the paths to the 1-terminal (called
1-paths in the following) through the second and third edge of the currently
considered node have to be moved to the first and fourth edge, respectively. These
1-paths refer to the input of the encountered variables and therefore contain a

x1

x2

xn

1

00

00

00

00

Fig. 4. Identity QMDD with n variables

xi

xi+1 xi+1

00

Fig. 5. Identity structure

negative literal xj (positive literal xj) whenever the first or third (second or
fourth) edge of a node labeled xj is traversed.

In the following, we denote the sets of 1-paths through the first, second,
third and fourth edge of the currently considered node by P1, P2, P3, and P4,
respectively. Similarly, we refer to the sets of 0-paths (i.e. paths that terminate in
a 0-stub) with P 1, P 2, P 3, and P 4. Since the QMDD represents a permutation
matrix, each column and each row of the matrix contains exactly one 1-entry.
Therefore, the number of 0-paths in P 1 (P 4) is equal to the number of 1-paths
in P2 (P3), i.e.

∣∣P 1

∣∣ = |P2|. Moreover, P 1 = P3 and P 4 = P2.

Example 4. Consider the QMDD shown in Fig. 2 and assume that the root node
is currently considered. The sets of 1-paths are P1 = P4 = {x2x3, x2x3, x2x3}
and P2 = P3 = {x2x3}.

To obtain the identity structure for the currently considered node labeled xi,
we swap the 1-paths in P2 with the 0-paths in P 1. This inherently swaps the
1-paths in P3 with the 0-paths in P 4. Swapping paths can be accomplished by
applying Toffoli gates, since applying a Toffoli gate TOF (C, xi) inverts the input
of variable xi for all paths that are represented by C.

Example 4 (continued). The path p = x2x3 is contained in the set P2 of 1-paths
through the second edge as well as in the set P 1 of 0-paths through the first edge.
These two paths can be swapped by applying the Toffoli gate TOF ({x+

2 , x
−
3 }, x1).

This automatically swaps the 1-path in P3 with the 0-path in P 4. The resulting
QMDD is depicted in Fig. 6.

x1

x2 x2

x3 x3 x3

1

00

0 0

00 000000

Fig. 6. QMDD resulting from transformation of the root node of the QMDD in Fig. 2

For a more formal description of how the currently considered node can be
transformed to the desired identity structure we refer to [16], because under-
standing the main idea of QMDD-based synthesis (the breadth-first traversal of
the nodes) is sufficient for the purpose of this paper.

If the currently considered node is not the root node of the QMDD, we have
to ensure that no other node is affected by the applied gates. To this end, we
add further control lines that describe the path to the currently considered node
to each Toffoli gate that is applied. More precisely, if the path to the currently
considered node traverses the first edge of another node (representing a mapping
from 0 to 0), we add a negative control line for the corresponding variable.
Analogously, we add a positive control line for the corresponding variable if the
path traverses the fourth edge of that node1. If there exist k such paths to the
currently considered node, we have to replicate each Toffoli gate for each of those
k paths in order to eventually transform the currently considered node to the
identity structure.

Example 5. Consider the QMDD depicted in Fig. 7 and assume that the node
highlighted in blue is currently considered. This node can be transformed to the
desired identity structure by applying a Toffoli gate with target line x3. Since
there exist two paths to this node, namely x1x2 and x1x2, we have to apply
two gates TOF ({x−1 x

+
2 }, x3) and TOF ({x+

1 x
−
2 }, x3) to eventually transform this

node to the desired identity structure. The resulting circuit is shown in Fig. 8a.

4 Improving QMDD-based Synthesis

In the synthesis scheme originally proposed in [16] and reviewed above, the
overall number of paths to the nodes of a certain variable grows exponentially
with the number of variables above. This leads to a substantial number of gates
with (partially) redundant sets of control lines. This poses a significant drawback
to QMDD-based synthesis since

1 A path to the currently considered node can only traverse the first or the fourth
edge of other nodes, because they already establish the identity structure.

x1

x2 x2

x3 x3

1

x1 00
x1

00
x2 x2 00

00 0 0

Fig. 7. Paths to the currently considered node

x1 x′1
x2 x′2
x3 x′3

g1 g2

(a) Without optimization

x1 x′1
x2 x′2
x3 x′3

g1 g2

(b) ESoP-minimized

Fig. 8. Gates required to transform the currently considered node from Fig. 7

– a significant number of gates is applied to transform each single node of the
considered QMDD to the identity structure and

– the applied gates usually include rather large sets of control lines.

More precisely, the number of gates is heavily influenced by the number of
paths to the currently considered node, because each gate that is required to
transform the currently considered node to the identity has to be replicated for
each path. Furthermore, the number of control lines of these Toffoli gates de-
pend on the number of literals of the path from the root node to the currently
considered node (because these literals are added to the Toffoli gates in form of
control lines to ensure that no other node is affected). Since the overall costs of a
reversible circuit depend on both, the total number of gates as well as the respec-
tive number of control lines, this makes circuits generated using QMDD-based
synthesis rather expensive.

In order to address the problem, we propose two optimization techniques to
reduce the cost of the circuits generated by QMDD-based synthesis, namely

1. a straightforward solution which performs logic minimization on the paths
to the currently considered node to reduce the number of paths as well as
the number of their literals and

2. a more elaborate approach which considers nodes that require the same
sequence of Toffoli gates in order to get transformed to the identity structure
jointly.

The straight forward solution utilizes logic minimization techniques to reduce
the overall number of paths to the currently considered node as well as to reduce
the overall number of literals in the paths. To this end, each path to the currently
considered node is described as a product (conjunction) of its literals. Then, the
exclusive sum (exclusive disjunction) of all these products is formed. The sum
has to be exclusive, because applying a Toffoli gate an even times does not have
any effect (since a Toffoli gate is self-inverse). The resulting Exclusive Sum of
Products (ESoP) can be minimized using techniques such as proposed in [9].
Such a minimization reduces the overall number of products (and, hence, the
number of paths and gate replications) as well as the number of literals in these
products (and, hence, the number of control lines that have to be added to each
gate).

Example 6. Consider again the QMDD depicted in Fig. 7 and assume that the
node highlighted in blue is currently considered. There exist two paths to the
currently considered node, namely x1x2 and x1x2. The ESoP of the two paths
is then x1x2 ⊕ x1x2. Minimizing this ESoP yields x1x2 ⊕ x1x2 = x1 ⊕ x2. Con-
sequently, also the two paths x1 and x2 can be used to describe all paths to the
currently considered node. The resulting gates are shown in Fig. 8b. Although
the number of paths (and therefore the number of gates) did not change, the
NCV-cost and T-depth are reduced from 10 to 2 and from 6 to 0, respectively.

The more elaborated optimization approach aims to further reduce the cost
of the circuits considering more than one node simultaneously. The general idea
is based on the key observation that sometimes different QMDD nodes require
the same sequence of Toffoli gates in order to get transformed to the identity.
As described in Section 3, this sequence of Toffoli gates depends on the set P1

of 1-paths through the first edge and the set P2 of 1-paths through the second
edge only. From these two sets, the other sets of 1-paths (P3 = P 1, P4 = P 2)
as well as the set of 0-paths can uniquely be determined. Cases frequently occur
where nodes in the QMDD have equal sets of 1-paths P1 and P2, even though
they are structurally different.

Example 7. Consider the QMDD depicted in Fig. 9. The root node already es-
tablishes the desired identity structure and the two nodes labeled x2 (high-
lighted in blue) are structurally different. However, their sets of 1-paths are
equal, i.e. P1 = {x3} and P2 = {x3} for both nodes. Consequently, both nodes
can be transformed to the identity structure with the same sequence of Toffoli
gates. One possible sequence is TOF ({x+

2 }, x3), TOF ({x+
3 }, x2).

Without applying this scheme, the sequence of Toffoli gates has to be repli-
cated twice – once for each node (including control line x−1 for the left node
and control line x+

1 for the right node). This resulting in the circuit shown in
Fig. 10a. The gates g1 and g2 thereby transform the left node to the identity,
whereas the gates g3 and g4 transform the right node to the identity.

Since QMDD nodes that employ an equal characteristic regarding their sets
of 1-paths P1 and P2 can be transformed to the identity structure with the same

x1

x2 x2

x3 x3 x3 x3

1

x1
00 x1

00000 0 0 00000

Fig. 9. QMDD nodes with equal sets P1 and P2

x1 x′1
x2 x′2
x3 x′3

g1 g2 g3 g4

x+
1x−1

(a) Without joint consideration

x1 x′1
x2 x′2
x3 x′3

g1 g2

(b) With joint consideration

Fig. 10. Gates required to transform the nodes labeled x2

sequence of Toffoli gates, they can considered jointly for synthesis purposes and
thus processed together. To this end, we form the ESoP of the paths to all nodes
with equal sets P1 and P2 and apply the logic minimization as described in the
straight forward approach.

Example 7 (continued). Since both nodes labeled x2 have equal sets of 1-paths
P1 and P2, they can be considered jointly and processed together. The mini-
mized ESoP of all paths to these nodes is x1 ⊕ x1 = 1, a sum consisting of a
single product without any literals. Therefore no additional control lines are re-
quired (all nodes labeled x2 can be considered jointly). The resulting circuit that
transforms all nodes labeled x2 to the identity structure is shown in Fig. 10b.
Compared to the gate sequence depicted in Fig. 10a we observe a reduction of
the NCV-cost from 20 to 2 and a reduction of the T-depth from 12 to 0.

5 Discussion

In this section, we briefly analyze the potential of the optimization scheme de-
scribed above, i.e. we discuss how many nodes might be considered together in
the best case. To this end, we assume that the nodes of n variables are left to
be processed, i.e. the currently considered nodes are sub-QMDDs with height n,
and that the sequence of Toffoli gates that transforms these nodes to the identity
structure is uniquely determined by the set of 1-paths P1 and P2.

First, we determine how many different sequences of Toffoli gates exist. Since
we assume that the sequence of Toffoli gates is uniquely determined by P1 and
P2, we analyze how many combinations of sets P1 and P2 exist: The QMDD of
the currently considered node represents a 2n×2n permutation matrix (since all
nodes above already employ the identity structure). Consequently, there must
be exactly one 1-entry in each of the 2n rows and in each of the 2n columns. This
means, that there must be exactly 2n−1 1-entries in the upper half of the matrix,
i.e. |P1|+ |P2| = 2n−1. These 2n−1 1-entries (1-paths) are arbitrarily distributed

in the 2n columns (in the sets P1 and P2). Consequently, there exist
(

2n

2n−1

)
possibilities in which rows the 1-entries are located, i.e. possible different pairs

of sets (P1, P2). If we assume n = 2, there exist
(

22

22−1

)
= 6 different sequences

that transform a currently considered node to the identity. These sequences as
well as their corresponding sets P1 and P2 are depicted in Fig. 11.

x1 x′1
x2 x′2

(a) P1 = {x1, x1}, P2 = ∅

x1 x′1
x2 x′2

(b) P1 = {x1}, P2 = {x1}

x1 x′1
x2 x′2

(c) P1 = {x1}, P2 = {x1}

x1 x′1
x2 x′2

(d) P1 = {x1}, P2 = {x1}

x1 x′1
x2 x′2

(e) P1 = {x1}, P2 = {x1}

x1 x′1
x2 x′2

(f) P1 = ∅, P2 = {x1, x1}

Fig. 11. Sequences of Toffoli gates for n = 2

As a second step, we analyze how many different sub-QMDDs with n vari-
ables exist. Recall, that a QMDD composed of n variables represents a permu-
tation matrix of dimension 2n × 2n, i.e. a matrix that represents a permutation
of 2n elements. Since 2n elements can be permuted in 2n! ways, there exist 2n!
structurally different QMDDs with n variables. Considering again that n = 2,
there exist 22! = 4! = 24 structurally different QMDDs.

Having an arithmetic expression for the number of sequences as well as for
the number of QMDDs allows one to analyze the potential of the proposed opti-
mization. The resulting numbers for several values of n are provided in Table 2.
As one can easily see, there are many more different QMDDs than sequences,
because

(
2n

2n−1

)
� 2n!. Consider the case that the n = 3 variables of the QMDD

are not yet processed. In the worst case, the QMDD has 40 320 nodes labeled
with the currently considered variable. For each of those nodes, a sequence of
Toffoli gates has to be determined. If we apply the proposed optimization (i.e. if
we jointly consider nodes with equal sets of 1-paths), the number of nodes that
have to be processed drops to 70 – reducing the computational effort by a factor
of 576. Furthermore, the logic minimization used to reduce the paths to the cur-

rently considered nodes is applied to a larger set of paths, which makes it more
likely to obtain a more compact ESoP.

Table 2. Potential of the proposed optimization

n No. sequences
(

2n

2n−1

)
No. QMDDs 2n!

2 6 24
3 70 40 320
4 12 870 2 · 1013

5 6 · 108 2.6 · 1035

Obviously, it is more likely that many nodes can be processed together if their
currently considered variable is the label for a large number of nodes. Therefore,
this optimization has a higher impact on large QMDDs than on small ones. Since
we observed that large QMDDs tend to yield circuits with rather high quantum
cost, we expect higher improvements for these cases.

6 Experimental Results

In this section, we evaluate the reduction of the quantum cost we achieve by
applying the proposed optimizations to the QMDD-based synthesis algorithm.
To this end, we have reimplemented the QMDD-based synthesis as originally
proposed in [16] (including some minor optimizations regarding performance)
in C++ using the QMDD package provided in [11] and the BDD package
CUDD [17]. This implementation represents the current state-of-the-art and
serves as baseline. Based on that, we have implemented the optimizations dis-
cussed in Section 4. In the following, Scheme A denotes the optimization where
the paths to the currently node are reduced using logic minimization2 and
Scheme B denotes the case if we additionally process nodes with equal sets
of 1-paths jointly. As benchmarks served the reversible circuits provided at
RevLib [19]. All experiments were conducted on a 4 GHz processor with 32
GB of memory running Linux 4.4.

Table 3 summarizes the experimental results. The first two columns list the
name of the benchmark and the number of circuit lines n. Then, for each synthe-
sis scheme, the runtime, the NCV-cost as well as the T-depth is listed. Finally,
we list the reduction of the quantum cost for Scheme A with respect to the
baseline and for Scheme B with respect to Scheme A. Since the improvement
rates observed for NCV-cost and for T-depth are almost identical for each of
the benchmarks (they deviate in a fraction of a percent only), we only list the
improvement regarding T-depth in the last two columns of Table 3.

The obtained results clearly show a significant improvement in terms of run-
time. While the original approach requires a significant amount of runtime for

2 We utilized the methods available at RevKit [14] for logic minimization.

some benchmarks (e.g. more than 1000 seconds for benchmarks sym9, rd84,
and cycle10), the optimizations proposed in this paper allowed to synthesize
all benchmarks within a few seconds (Schemes A and B). Only one benchmark
(cordic) required slightly more than a minute.

Furthermore, a substantial improvement in terms of quantum cost can be
observed for the benchmarks. For all benchmarks that result in a circuit with
a T-depth of more than half a million using the original approach, substantial
improvements of several orders of magnitudes were determined. Consider for ex-
ample the benchmarks plus127mod8192 and plus63mod8192. Performing logic
optimizations on the paths to the currently considered node (i.e. Scheme A) al-
ready result in a reduction of the quantum cost by a factor of 145.21. If we addi-
tionally transform nodes together that have equal sets of 1-paths (i.e. Scheme B),
we get another improvement by a factor of 8029.35 and, hence, an overall im-
provement of six orders of magnitudes. On average, we observe an improvement
by a factor of 4.22 for Scheme A with respect to the original approach and an
improvement by a factor of 5.35 of Scheme B with respect to Scheme A. This
results in an overall improvement by a factor of 22.57.

7 Conclusion

In this paper, we reviewed the QMDD-based synthesis algorithm (proposed
in [16]) for reversible circuits. Based on that review, we discovered cases that
result in the same sequence of Toffoli gates, but are considered iteratively –
leading to a substantial overhead in the number of gates. To reduce the costs of
the resulting circuits, we proposed optimizations that consider such redundant
cases jointly during synthesis. Experimental evaluations show that substantial
improvements to the current state-of-the-art can be achieved. More precisely,
improvements of up to three orders of magnitudes were observed for the runtime
and improvements up to six orders of magnitudes were observed regarding the
quantum cost of the resulting circuits.

Acknowledgements

This work has partially been supported by the European Union through the
COST Action IC1405.

References

1. L. G. Amarù, P. Gaillardon, R. Wille, and G. D. Micheli. Exploiting inherent
characteristics of reversible circuits for faster combinational equivalence checking.
In Design, Automation and Test in Europe, pages 175–180, 2016.

2. M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(6):818–830, 2013.

T
a
b
le

3
.

T
-d

ep
th

im
p
ro

v
em

en
ts

co
m

p
a
re

d
to

th
e

st
a
te

-o
f-

th
e-

a
rt

B
a
se

li
n
e

(o
ri

g
in

a
l

Q
M

D
D

-b
a
se

d
sy

n
th

.)
S
ch

em
e
A

S
ch

em
e
B

Im
p
ro

v
em

en
t

B
en

ch
m

a
rk

n
t

N
C

V
T

-d
ep

th
t

N
C

V
T

-d
ep

th
t

N
C

V
T

-d
ep

th
B

a
se

/
A

A
/
B

a
lu

1
2
0

0
.0

2
3
1
9

1
8
0

0
.0

3
3
1
9

1
8
0

0
.0

4
3
1
9

1
8
0

1
.0

0
1
.0

0
cm

b
2
0

0
.0

0
1

4
6
2

8
6
4

0
.0

1
1

4
6
2

8
6
4

0
.0

0
1

4
6
2

8
6
4

1
.0

0
1
.0

0
cy

cl
e1

7
3

2
0

0
.0

0
5
0

2
7
0

3
0

1
0
5

0
.0

1
5
0

2
7
0

3
0

1
0
5

0
.0

1
4
6

5
1
3

2
7

8
5
2

1
.0

0
1
.0

8
ex

1
0
1
0

2
0

1
.9

1
1
3
9

5
5
8

8
3

7
2
4

1
.7

6
1
4
0

2
8
2

8
4

1
5
6

1
.6

4
1
3
6

0
9
8

8
1

6
4
8

0
.9

9
1
.0

3
C

7
5
5
2

2
1

0
.0

1
9
6
3

5
7
6

0
.0

0
9
6
3

5
7
6

0
.0

1
9
6
3

5
7
6

1
.0

0
1
.0

0
d
ec

o
d

2
1

0
.0

0
9
6
3

5
7
6

0
.0

0
9
6
3

5
7
6

0
.0

1
9
6
3

5
7
6

1
.0

0
1
.0

0
d
k
1
7

2
1

0
.0

1
2

3
0
8

1
3
7
1

0
.0

0
2

3
0
8

1
3
7
1

0
.0

1
2

3
0
8

1
3
7
1

1
.0

0
1
.0

0
h
a
m

7
2
1

0
.0

6
2

5
2
8

0
0
8

1
5
1
6

8
0
0

0
.0

3
1
6
5

2
5
4

9
9

1
4
7

0
.0

3
1

1
6
9

6
9
6

1
5
.3

0
1
4
2
.4

5
p

cl
er

8
2
1

0
.0

0
5
0
9

3
0
0

0
.0

0
5
0
9

3
0
0

0
.0

0
5
0
9

3
0
0

1
.0

0
1
.0

0
a
lu

4
2
2

6
.6

6
1
9
3

5
4
6

1
1
6

1
0
9

1
.8

9
2
0
4

9
4
5

1
2
2

9
4
6

1
.9

5
1
9
6

7
6
5

1
1
8

0
3
8

0
.9

4
1
.0

4
a
p
la

2
2

0
.0

2
4

4
4
2

2
6
5
2

0
.0

2
4

4
4
2

2
6
5
2

0
.0

3
4

4
4
2

2
6
5
2

1
.0

0
1
.0

0
cm

1
5
0
a

2
2

0
.1

9
1

3
0
2

7
6
8

0
.1

9
1

3
0
2

7
6
8

0
.1

9
1

3
0
2

7
6
8

1
.0

0
1
.0

0
f5

1
m

2
2

1
.4

8
6
1

0
6
6

3
6

6
3
0

1
.4

6
6
1

0
6
6

3
6

6
3
0

1
.4

9
6
1

0
6
6

3
6

6
3
0

1
.0

0
1
.0

0
m

u
x

2
2

0
.1

9
1

2
8
4

7
6
8

0
.1

9
1

2
8
4

7
6
8

0
.1

8
1

2
8
4

7
6
8

1
.0

0
1
.0

0
ti

a
l

2
2

1
.2

6
1
0
7

8
0
6

6
4

6
6
5

1
.2

1
1
0
7

8
0
6

6
4

6
6
5

1
.3

0
9
8

6
4
6

5
9

1
6
9

1
.0

0
1
.0

9
p
lu

s6
3
m

o
d
4
0
9
6

2
3

5
.7

1
1
7
4

9
2
6

0
9
0

1
0
4

9
5
5

6
4
8

0
.5

9
1

8
2
2

5
1
0

1
0
9
3

5
0
0

0
.3

2
4
6
5

2
7
6

9
5
.9

8
3
9
6
1
.9

6
a
d
d
8

2
5

7
.9

2
7
5
3

6
3
8

4
5
2

1
7
5

3
.9

0
2
5
2

5
3
8

1
5
1

5
1
2

4
.0

0
2
5
2

5
3
8

1
5
1

5
1
2

2
.9

8
1
.0

0
co

rd
ic

2
5

7
6
.9

1
7
4
7

0
2
6

4
4
8

0
8
0

7
2
.4

3
7
4
7

0
2
6

4
4
8

0
8
0

7
3
.4

2
7
4
7

0
2
6

4
4
8

0
8
0

1
.0

0
1
.0

0
cu

2
5

0
.0

1
1

5
3
5

9
1
5

0
.0

2
1

5
3
5

9
1
5

0
.0

1
1

5
3
5

9
1
5

1
.0

0
1
.0

0
p
lu

s1
2
7
m

o
d
8
1
9
2

2
5

2
1
.8

3
5
8
8

7
8
7

8
5
0

3
5
3

2
7
2

7
0
4

1
.7

8
4

0
5
4

8
3
0

2
4
3
2

8
9
2

1
.2

4
5
1
0

3
0
3

1
4
5
.2

1
8
0
2
9
.3

5
p
lu

s6
3
m

o
d
8
1
9
2

2
5

2
1
.9

1
5
8
8

7
8
7

8
5
0

3
5
3

2
7
2

7
0
4

1
.8

5
4

0
5
4

8
3
0

2
4
3
2

8
9
2

1
.2

3
5
1
0

3
0
3

1
4
5
.2

1
8
0
2
9
.3

5
rd

7
3

2
5

3
9
.6

1
1

0
4
7

1
6
9

9
2
8

6
2
8

3
0
1

9
5
2

0
.6

5
1

1
8
4

7
9
8

7
1
0

8
6
8

0
.1

2
1
3

8
9
9

8
3
3
4

8
8
3
.8

5
8
5
.3

0
in

0
2
6

0
.4

4
2
5

1
1
7

1
5

0
5
7

0
.4

6
2
5

1
1
7

1
5

0
5
7

0
.4

4
2
5

1
1
7

1
5

0
5
7

1
.0

0
1
.0

0
sy

m
9

2
7

1
5
7
2
.0

9
4
2

8
5
9

9
9
3

6
0
8

2
5

7
1
5

9
9
6

1
6
0

2
.7

5
6

3
5
3

0
7
9

3
8
1
1

8
3
9

1
.1

3
5
3
1

0
3
3

3
1
8

6
1
5

6
7
4
6
.3

5
1
1
.9

6
a
p

ex
4

2
8

2
.2

5
9
7

7
7
7

5
8

6
4
1

2
.1

2
9
7

7
7
7

5
8

6
4
1

2
.2

2
9
6

7
1
7

5
8

0
0
5

1
.0

0
1
.0

1
cm

1
5
1
a

2
8

0
.0

3
1

2
4
6

7
4
4

0
.0

4
1

2
4
6

7
4
4

0
.0

6
1

2
4
6

7
4
4

1
.0

0
1
.0

0
h
w

b
5

2
8

8
8
.6

2
1

7
6
1

6
3
6

3
4
4

1
0
5
6

9
8
1

7
9
2

2
.4

1
2

8
9
5

0
7
8

1
7
3
7

0
3
3

1
.9

1
1
9

2
9
8

1
1

5
5
6

6
0
8
.5

0
1
5
0
.3

1
m

is
ex

3
2
8

2
.2

2
1
5
5

0
0
5

9
2

9
9
1

2
.2

4
1
5
5

0
0
5

9
2

9
9
1

2
.2

9
1
5
4

9
0
5

9
2

9
3
1

1
.0

0
1
.0

0
m

is
ex

3
c

2
8

2
.2

6
1
5
5

0
0
6

9
2

9
9
1

2
.2

7
1
5
5

0
0
6

9
2

9
9
1

2
.3

2
1
5
4

9
0
6

9
2

9
3
1

1
.0

0
1
.0

0
ta

b
le

3
2
8

2
.2

2
9
8

5
3
5

5
9

1
1
2

2
.1

6
9
8

5
3
5

5
9

1
1
2

2
.1

5
9
8

7
5
5

5
9

2
4
4

1
.0

0
1
.0

0
cm

1
6
3
a

2
9

0
.0

2
1

1
4
4

6
7
8

0
.0

1
1

1
4
4

6
7
8

0
.0

2
1

1
4
4

6
7
8

1
.0

0
1
.0

0
in

2
2
9

0
.1

5
3
2

1
7
7

1
9

2
9
6

0
.1

6
3
2

2
5
7

1
9

3
4
4

0
.1

5
3
2

1
7
7

1
9

2
9
6

1
.0

0
1
.0

0
fr

g
1

3
1

2
.5

0
2
5

3
8
4

1
5

2
1
9

2
.6

2
2
5

3
8
4

1
5

2
1
9

3
.0

6
2
5

3
8
4

1
5

2
1
9

1
.0

0
1
.0

0
m

o
d
5
a
d
d
er

3
2

4
4
6
.5

3
1
0

2
3
6

8
6
0

0
2
0

6
1
4
2

1
1
6

0
0
0

1
.7

2
1

7
4
6

1
8
1

1
0
4
7

6
9
6

1
.3

0
2
0

7
8
9

1
2

4
5
3

5
8
6
2
.5

0
8
4
.1

3
rd

8
4

3
4

M
O

–
–

1
.2

5
1

6
9
9

1
1
1

1
0
1
9

4
5
1

0
.9

2
2
8

0
3
9

1
6

7
9
4

–
6
0
.7

0
cy

cl
e1

0
3
9

M
O

–
–

6
.2

4
1
1

3
3
8

9
8
6

6
8
0
3

3
7
9

5
.7

1
2

5
2
0

1
5
0
0

–
4
5
3
5
.5

9

3. C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev, 17(6):525–
532, 1973.

4. D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. on CAD, 28(5):703–715,
2009.

5. R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5(3):183–191, 1961.

6. D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for
reversible logic synthesis. In Design Automation Conf., pages 318–323, 2003.

7. D. M. Miller and M. A. Thornton. QMDD: A decision diagram structure for
reversible and quantum circuits. In Int’l Symp. on Multi-Valued Logic, page 6,
2006.

8. D. M. Miller, R. Wille, and Z. Sasanian. Elementary quantum gate realizations
for multiple-control Toffolli gates. In Int’l Symp. on Multi-Valued Logic, pages
288–293, 2011.

9. A. Mishchenko and M. Perkowski. Fast heuristic minimization of exclusive-sums-
of-products. In Int’l Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, pages 242–250, 2001.

10. M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

11. P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler. QMDDs:
Efficient quantum function representation and manipulation. IEEE Trans. on
CAD, 35(1):86–99, 2016.

12. V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic circuit
synthesis. In Int’l Conf. on CAD, pages 353–360, 2002.

13. M. Soeken, G. W. Dueck, and D. M. Miller. A fast symbolic transformation based
algorithm for reversible logic synthesis. In Reversible Computation - 8th Int’l Conf.,
pages 307–321, 2016.

14. M. Soeken, S. Frehse, R. Wille, and R. Drechsler. RevKit: A toolkit for reversible
circuit design. In Workshop on Reversible Computation, pages 69–72, 2010. RevKit
is available at http://www.revkit.org.

15. M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler. Ancilla-free synthesis of large
reversible functions using binary decision diagrams. J. Symb. Comput., 73:1–26,
2016.

16. M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler. Synthesis of re-
versible circuits with minimal lines for large functions. In ASP Design Automation
Conf., pages 85–92, 2012.

17. F. Somenzi. CUDD: CU decision diagram package release 3.0. 0. 2015.
18. R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz. Automatic design of low-

power encoders using reversible circuit synthesis. In Design, Automation and Test
in Europe, pages 1036–1041, 2012.

19. R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-
Valued Logic, pages 220–225, 2008. RevLib is available at http://www.revlib.org.

20. R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. G. Ortiz. Synthesis of
approximate coders for on-chip interconnects using reversible logic. In Design,
Automation and Test in Europe, 2016.

21. A. Zulehner and R. Wille. Taking one-to-one mappings for granted: Advanced
logic design of encoder circuits. In Design, Automation and Test in Europe, 2017.

