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Abstract—Reversible computation is a heavily investigated
emerging technology due to its promising characteristics in
low-power design, its application in quantum computations,
and several further application areas. The currently established
functional synthesis flow for reversible circuits is composed of two
distinct steps. First, an embedding process is conducted which
makes non-unique output patterns distinguishable by adding
further variables. Then, this function is passed to a synthesis
method which eventually yields a reversible circuit. However, the
separate consideration of the embedding and synthesis tasks leads
to significant drawbacks: In fact, embedding is not necessarily
conducted in a fashion which is suited for the following synthesis
process. In addition, embedding adds further variables to the
function to be synthesized which exponentially increases its
corresponding representation in the worst case.

In this work, we propose one-pass design of reversible cir-
cuits, which combines embedding and synthesis. This allows for
conducting synthesis with a high degree of freedom, since the
embedding that suits best is inherently chosen during synthesis.
We propose two solutions (an exact an a heuristic one) following
this scheme that improve the currently established synthesis flow
by magnitudes in terms of runtime – allowing to synthesize a
reversible circuit with a minimum number of lines for some of
the frequently considered benchmark functions for the first time.
Furthermore, a significant reduction of the costs of the resulting
circuits (up to several orders of magnitude) is achieved with this
new design flow.

I. INTRODUCTION

In contrast to conventional non-reversible logic, the re-
versible computation paradigm allows for computations not
only from the inputs to the outputs, but also from the outputs
to the inputs. This paradigm was originally considered in the
seminal work by Landauer and Bennett [12], [5], which states
that logical reversibility of computations could be one of the
keys to power-efficient circuits. Their claim that the infor-
mation loss caused by non-reversibility is directly related to
the power consumption of a circuit has recently been verified
experimentally in [6]. Besides that, reversible circuits are also
closely related to quantum circuits [19], which promises to
solve many tasks significantly faster than conventional logic.
Since quantum circuits are inherently reversible, large parts
of them can be modeled using classical reversible circuits (as
discussed e.g. in [4], [20]). Moreover, the scope of application
areas for reversible circuits has grown continuously in the
recent years – leading to further utilizations e.g. in the design
of encoders [42], on-chip interconnects [32], [35], adiabatic
computation [3], [22], or verification [1].

Accordingly, how to efficiently realize reversible circuits has
received significant interest. Here, the topology of reversible
circuits, which significantly differs from conventional circuitry,
poses a particular challenge. To ensure reversibility, these

circuits consist of a set of circuits lines which are passed
through a cascade of reversible gates. Since this prohibits
direct feedback and fan-out, conventional design solutions
cannot be utilized and an entirely new design flow is required.
In the past, two directions emerged to this end.

Structural Synthesis used (conventional) function and circuit
descriptions such as Binary Decision Diagrams (BDDs, [31]),
Exclusive-Or Sum-of-Products (ESoP, [9]), or even gate
netlists [38]. Here, each building block such as a BDD node,
a product/exclusive sum, or a primitive gate is mapped to a
functionally equivalent cascade of reversible gates. As all these
building blocks are non-reversible, the equivalent cascade of
reversible gates usually requires additional circuit signals (in
the domain usually referred to as circuit lines). Since numerous
such building blocks are mapped for larger functions, this
leads to a number of additionally required lines which may be
magnitudes larger than the actual minimum (as e.g. evaluated
in [34]). Although post-synthesis optimization (e.g. [36], [37])
and adjusted synthesis schemes (e.g. [25]) aimed for reducing
the number of circuit lines, the respectively obtained results are
still far away from the minimum. Because of this drawback,
structural synthesis is not further considered in this work.

As an alternative, Functional Synthesis has been proposed.
Here, a non-reversible function is embedded into a reversible
one prior to synthesis. This embedding step [13], [34], [29],
[40] adds further variables to the function in order to dis-
tinguish non-unique output patterns. Afterwards, the function
is passed to the actual synthesis method, which eventually
yields a reversible circuit. Corresponding synthesis approaches
for reversible circuits range from exact solutions [10] to
heuristic solutions e.g. based on truth-tables [24], [15], pos-
itive polarity Reed-Muller expansion [11], or Reed-Muller
spectra [14]. However, since all these approaches rely on
an exponential description of the underlying function, they
are limited to rather small functions. In order to improve
this limited scalability, alternative synthesis approaches have
recently been proposed that explicitly exploit efficient data-
structures such as decision diagrams [28] or are based on
Boolean satisfiability [26].

While these recent improvements lead to impressive
progress in the design of reversible circuits with respect to
efficiency and scalability, the currently established design flow
still suffers from the need to conduct embedding and actual
synthesis separately. Because of this, a huge degree of freedom
is not exploited since embedding is not necessarily conducted
in a fashion which suits the following synthesis step. Further-
more, the embedding step introduces new variables which, in
turn, lead to an exponential increase of the size of the function
descriptions in the worst case. Later in this paper, Section III
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provides a detailed review of these two steps followed by a
more detailed discussion of these drawbacks in Section IV.

In this work, we propose an alternative synthesis scheme
which addresses these drawbacks. Instead of considering em-
bedding and actual synthesis separately, we introduce the
concept of one-pass design of reversible circuits in which
both tasks are considered at once – yielding a solution which
fully exploits the degree of freedom and avoids the increase in
the complexity of the function representation. The proposed
one-pass design scheme is applicable to many functional
synthesis approaches discussed above. As a representative,
we describe and demonstrate the concept by means of the
so-called QMDD-based synthesis originally introduced in [28]
and recently improved in [39].

An experimental evaluation clearly shows the benefits of
combining embedding and synthesis. In fact, for QMDD-based
synthesis a significant reduction of the cost of the resulting
circuits (up to several orders of magnitude) could be observed.
Moreover, even compared to the best currently available syn-
thesis implementation (namely [29] for embedding and [26]
for synthesis, both available in RevKit [27]), improvements
of 81% on average by means of circuit costs can be achieved.
Besides that, a speedup of several magnitudes can be observed
– allowing us to synthesize some of the frequently considered
benchmarks with a minimum number of circuit lines for the
first time.

The remainder of this work is structured as follows: Sec-
tion II briefly reviews the applied representations for Boolean
functions and the basics of reversible circuits. Section III
recapitulates the currently established two-stage design flow.
Section IV discusses the drawback of the sole consideration of
these two steps and introduces the proposed one-pass design
of reversible circuits. Finally, the obtained experimental results
are summarized in Section V while the paper is concluded in
Section VI.

II. BACKGROUND

We briefly recapitulate the basics of Boolean functions and
their representation as well as reversible circuits in this section.

A. Boolean Functions and Their Representation

Boolean functions can be represented by truth tables (as
e.g. shown in Fig. 1a). For the synthesis schemes described in
this work, we also use function matrices to represent Boolean
functions.

Definition 1. Let f : Bn → Bm be a Boolean function.
Then, the function matrix M of f is a 2k × 2k matrix with
k = max(n,m) and elements mi,j , 0 ≤ i, j < 2k such that

mi,j =

{
1 if f(j) = i,

0 otherwise.

The columns (rows) of a function matrix represent the inputs
(outputs). If an input maps to an output, the corresponding
entry of the matrix is set to 1. All other entries in the
function matrix are set to 0. Consequently, each column of
a function matrix contains at most one 1-entry. In contrast, a
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Fig. 1: Representations for a Boolean function
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Fig. 2: Representations for a reversible function

row may contain multiple 1-entries, because more than one
input combination may map to the same output pattern.

Example 1. Fig. 1a shows the truth table of a Boolean
function f . The corresponding function matrix representation
is depicted in Fig. 1b. For example, the fourth column of the
function matrix represents the input 11 which, according to f ,
is supposed to map to the output 01. Hence, the fourth column
(representing input 11) contains its 1-entry in the second row
(representing output 01).

Reversible functions are a subset of Boolean functions,
defined as follows.

Definition 2. A Boolean function f : Bn → Bm is reversible,
if n = m and the function is a bijection.

For reversible functions, each column and each row of the
function matrix contains exactly one 1-entry, because there
is a unique mapping from inputs to outputs and vice versa.
Consequently, the function matrix of a reversible function is
a permutation matrix.

Example 1 (continued). Fig. 1b shows the function matrix of
a non-reversible function. The non-reversibility can be seen in
the second row (output 01) of the matrix: two 1-entries in a
single row. These entries are in the second and fourth columns
and, therefore, represent input combination 01 and 11, respec-
tively. Additionally, there are only 0-entries in the last row of
the function matrix, which also is a violation of reversibility,
because no input combination is mapped to output 11.

In contrast, in the truth table shown in Fig. 2a each output
pattern occurs exactly once. Since the number of inputs is
also equal to the number of outputs, this truth table describes
a reversible function. Fig. 2b shows the corresponding permu-
tation matrix, which contains exactly one 1-entry in each row
and in each column.
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Fig. 3: QMDD representation of the function matrix of Fig. 1b

B. Quantum Multiple-Valued Decision Diagrams (QMDDs)

In this section, we review how to efficiently represent
function matrices for large functions. To this end, we re-
capitulate so-called Quantum Multiple-Valued Decision Di-
agrams (QMDDs) introduced in [16], [21]. QMDDs allow
for the efficient representation and manipulation of quantum
computations – a future way of doing computations which
relies on quantum-mechanical characteristics such as dedicated
quantum bits, superposition, entanglement, etc. (see [19] for
details). Since quantum operations are represented by square
(unitary) matrices of dimension 2n× 2n, this type of decision
diagram is also suited for representing function matrices
as considered in this work. For simplicity, we neglect the
quantum-related issues since they are not necessary for the
tasks considered in this paper.

To efficiently represent a function matrix M , QMDDs pro-
vide a decision diagram structure where each node partitions
the matrix according to a variable xi (n ≥ i ≥ 1). More
precisely, let’s assume xn is the most significant variable
of M . Then, the matrix can be decomposed into four sub-
matrices, where each of them represents one of the four
possible mappings of xn, i.e.
• from 0 to 0 (left upper sub-matrix; denoted M0�0),
• from 1 to 0 (right upper sub-matrix; denoted M1�0),
• from 0 to 1 (left lower sub-matrix; denoted M0�1), and
• from 1 to 1 (right lower sub-matrix; denoted M1�1).
Each of these sub-matrices is again represented in terms

of a node in the decision diagram. By recursively continuing
this partition, smaller sub-matrices result until a single value
(i.e. a terminal) is reached. Since the resulting sub-matrices
often include a significant amount of redundancy or are
even identical, sharing is possible (similar to other decision
diagrams such as BDDs [7]). Moreover, zero sub-matrices
(i.e. matrices which are solely composed of 0’s) frequently
occur which, independently of their dimension, can simply be
represented by a 0-stub. This eventually allows for a rather
compact representation.

Example 2. Fig. 3 shows the resulting QMDD representation
of the matrix shown in Fig. 1b. Note that the successors of a
node, i.e. the first, second, third, and fourth edge, represent
M0�0, M1�0, M0�1, and M1�1, respectively.

As an example, the bold path to the 1-terminal1 denotes
that the mapping of the variables x2 and x1 from 1 and 1
to 0 and 1, respectively, is a valid input/output mapping of
the function represented by the QMDD. On the other side,

1For brevity, paths to the 1-terminal are called 1-paths in the following.
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Fig. 4: Reversible circuit

no mapping e.g. of the variable x2 from 0 to 1 exists (as
represented by M0�1 terminating in a 0-stub).

Using QMDDs as introduced above allows for the compact
representation of function matrices.

C. Reversible Circuits

Circuits realized in reversible logic are structurally different
from conventional ones. They do not directly allow feedback
and fan-out and, hence, need to be described by n circuit
lines which are passed through a cascade of gates [8], [23].
Moreover, in order to ensure reversibility, each gate must
realize a reversible function. In the domain of reversible logic,
the Toffoli gate is one of the most established gate types as it
is reversible and universal, i.e. every reversible function can
be realized with Toffoli gates only.

Definition 3. Let X = {xn, . . . , x2, x1} be a set of
circuit lines. Then, a reversible circuit is a cascade
G = g1g2g3 . . . gh of h reversible gates gi. A reversible
gate (here: Toffoli gate) gi = TOF (Ci, ti) consists of a
set Ci ⊆ {xj | xj ∈ X} ∪ {xj | xj ∈ X} of positive (xj) and
negative (xj) control lines and a target line t ∈ X with
{ti, ti} ∩ Ci = ∅. A circuit line cannot be used as positive
and negative control at the same time. The value of the target
line ti is inverted iff the values of all positive control lines
xj ∈ Ci evaluate to 1 and all negative control lines xj ∈ Ci

evaluate to 0. All lines other than the target lines pass through
the gate unchanged.

In the following, positive control lines, negative control
lines, and the target line of a Toffoli gate are depicted using
symbols , , and ⊕, respectively.

Example 3. Fig. 4 shows a reversible circuit composed of
three circuit lines and three Toffoli gates. Furthermore, the
circuit is labeled with the values on the circuit lines for input
x3x2x1 = 001. The first gate g1 = TOF ({x1}, x3) inverts the
value of the target line x3 since the positive control line x1 is
assigned 1. For the same reason (control lines are accordingly
assigned), the second gate g2 = TOF ({x3, x2}, x1) inverts
the value of the target line x1. In contrast, the third gate
g3 = TOF ({x1}, x2) does not invert the value of the target
line x2, because the positive control line x1 evaluates to 0.

The complexity of reversible circuits are usually measured
in terms of quantum costs, i.e. the cost of the reversible
circuits when transformed into a quantum circuit. The quantum
cost of a reversible gate depends on the number of control
lines as well as on the on the library of quantum gates, the
reversible circuit is mapped to. A commonly used library is
the NCV library, where the quantum cost is determined by
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the number of resulting quantum gates [4], [17]. Recently,
also the Clifford+T library has gained importance. Using this
library, the quantum cost is determined by the number of
T-gates that have to be processed sequentially (and, therefore,
denoted T-depth) [2]. The quantum cost of reversible circuits
constantly changes, because better mappings to the respective
gate library are determined continuously. Therefore, we use
the most recent cost function provided in RevKit [27] which
determines the costs of a reversible circuit in terms of T-depth.

III. FUNCTIONAL REVERSIBLE CIRCUIT SYNTHESIS

In this section, we review functional synthesis of reversible
circuits. As discussed in Section I, this process is composed
of two steps. First, the function to be synthesized has to be
embedded into a reversible one. Then, a synthesis approach is
used to realize the reversible function as a reversible circuit. In
Section III-A, we discuss the embedding process in detail. In
Section III-B, we review the synthesis process (using a solu-
tion based on QMDDs, which was originally proposed in [28]
and recently improved in [39], as a representative). Throughout
the whole section, we use the Boolean, non-reversible function
shown in Fig. 1a as running example.

A. The Embedding Process

We consider Boolean functions f : Bn → Bm with n
primary inputs and m primary outputs. If f is non-reversible,
multiple input combinations might be mapped to the same
output pattern. Furthermore, it might be the case that there
exist no input combination that maps to a certain output
pattern. Since reversibility requires a unique mapping from
inputs to outputs, non-unique output patterns must be made
distinguishable. To this end, additional outputs – so called
garbage outputs – are added to the primary outputs. Assum-
ing that the most frequent output pattern occurs µ times,
k = dlog2 µe additional outputs are required to distinguish
all occurrences of this pattern [13], [34], [29], [40].

Example 4. Consider the non-reversible function depicted in
Fig. 1a. Since 01 is the most frequent output pattern and occurs
twice, at least k = dlog2 2e = 1 garbage output is required to
embed the function.

The addition of garbage outputs results in extra columns in
the truth table. Since we are not interested in the value of the
garbage outputs, they can arbitrarily be assigned. However,
there are dependencies when assigning the garbage outputs:
they have to be chosen in such a way, that they are assigned
differently for all occurrences of an output pattern. In the
following, this dependency is represented by an asterisk (*).

Example 4 (continued). The value of the garbage outputs of
input patterns 01 and 11 depend on each other, because these
inputs map to the same output. As soon as the garbage output
for one of the input patterns is fixed to 1 (0), the garbage
output for the other input pattern must be fixed to 0 (1) to
ensure reversibility.

In addition to a unique mapping from inputs to outputs,
reversibility requires that the number of inputs and outputs has

TABLE I: Embedding of a non-reversible function

(a) Degree of freedom

x2 x1 a x′2 x′1 g
0 0 0 0 0 *
0 0 1 · · ·
0 1 0 0 1 *
0 1 1 · · ·
1 0 0 1 0 *
1 0 1 · · ·
1 1 0 0 1 *
1 1 1 · · ·

(b) One possible embedding

x2 x1 a x′2 x′1 g
0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 1
1 0 1 0 0 1
1 1 0 0 1 1
1 1 1 1 0 0

to be equal. Therefore, if n is larger than m+ k, n− (m+ k)
further garbage outputs are added and marked with *. In the
opposite case, m+ k − n additional inputs (so called ancillary
inputs) have to be added to the function – resulting in a
function with max(n,m+ k) inputs and outputs in both cases.
Each additional input doubles the number of rows in the truth
table. If all ancillary inputs are assigned 0, the reversible
function evaluates to the originally specified output. For all
other assignments to the ancillary inputs, again arbitrary output
values can be applied – even for the primary outputs. Note that
also here dependencies have to be considered. In fact, while
all outputs are don’t care in these cases, each truth table line
must still be unique in order to ensure reversibility. In the
following, this is represented by a dot (·).

Example 4 (continued). One ancillary input is needed to
ensure that the number of inputs is equal to the number
of outputs. This yields an extended truth table as shown in
Table Ia. If the additional input a is set to 0, the intended
function can be obtained from the outputs x′2 and x′1. The
values of the additional garbage output g as well as for the
remaining input assignments (i.e. for a 6= 0) can arbitrarily
be chosen (represented by * and ·, respectively) as long as the
dependencies discussed above are considered.

Finally, the embedding process is completed by assigning
precise values to all entries represented by * and · while
considering the discussed dependencies.

Example 4 (continued). Assigning the *- and ·-entries in the
truth table shown in Table Ia so that a reversible function
results can be conducted in various fashions. More precisely,
the *-entry in each of the first, the third, and the fifth row
of the truth table can be assigned in two ways (either 0
or 1). In contrast, there is no choice for assigning a value
to the *-entry of the seventh row, since its value has to be
the negation of the value we assigned to the *-entry in the
third row. Hence, there are 2 · 2 · 2 · 1 = 8 possibilities
for assigning precise values to the ∗-entries. The remaining
four output combinations (including primary outputs as well
as garbage outputs) can then be assigned to the truth table
rows consisting of ·-entries in 4! = 24 different fashions.
Consequently, 8 · 24 = 192 possibilities exist for assigning
* and · with precise values – a quite large degree of freedom.
One of the 192 possibilities is shown in Table Ib.
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B. QMDD-based Reversible Circuit Synthesis

The embedding process described above yields a reversible
function which can be represented in terms of a permu-
tation matrix M . Then, the synthesis task is to determine
a reversible circuit G = g1g2g3 . . . gh (as reviewed in Sec-
tion II-C) which realizes M . This can be conducted by
applying reversible gates gi to M so that, eventually, the
identity matrix I results. Let’s assume a cascade of reversible
gates G−1 = ghgh−1 . . . g2g1 applied to M transforms M
into I . Then, due to the reversibility (M ◦ M−1 = I), the
inverse cascade G = g1g2g3 . . . gh realizes M .

This leaves the question how to efficiently determine the
gates needed in order to transform M to I . As discussed in
Section II-B, permutation matrices can be represented effi-
ciently by QMDDs. Since the identity matrix I only represents
mappings from 0 to 0 and from 1 to 1, each node in the QMDD
has to be transformed such that its second edge and third edge
point to a 0-stub (as illustrated in Fig. 5 for a node labeled xi).
Hence, for a given QMDD M , the task remains how to apply
reversible gates so that eventually this structure results.

This task is addressed by successively transforming the
QMDD towards the identity. To this end, the nodes of the
QMDD are considered in a breadth-first traversal from the
top to the bottom. In each step, the currently considered
node (representing the partition according to variable xi) is
transformed into the desired structure. This is accomplished by
applying Toffoli gates which move all 1-paths of the second
and third edge to the first and fourth edge – eventually leading
to nodes as illustrated in Fig. 5.

The main principle is to use Toffoli gates to swap
QMDD-paths. More precisely, applying e.g. a gate
TOF (C, xi) to a given QMDD inverts the input of the
mapping of variable xi for all paths represented by C. This
way Toffoli gates may be used to swap e.g. a mapping from
0 to 1 to a mapping from 1 to 1 and, by this, moving 1-paths
from the third edge to the fourth edge – bringing it closer to
the identity structure. Again, an example illustrates the idea.

Example 5. The gate TOF (∅, x2) inverts the value of the
input of variable x2 for all paths and, therefore, simply
exchanges the first (third) and the second (fourth) edge of
the root node of the QMDD shown in Fig. 6a. The resulting
QMDD is depicted in Fig. 6b. The gate TOF ({x1}, x2) inverts
the input of variable x2, but only for paths where variable x1
maps from 1 to anything. This already yields the identity
structure for the root node of the QMDD as shown in Fig. 6c.

In addition, we have to make sure that applying Toffoli
gates does not affect previously traversed nodes. This can
be accomplished by adding control lines to each Toffoli gate
which specify the path to the currently considered node.

x2

x1 x1 x1 x1

1

0 0 0 0 0 0 0 0 0 0 0 0

x2

x1 x1 x1 x1

1

0 0 0 0 0 0 0 0 0 0 0 0

x2

x1 x1

1

0 0

0 0 0 0

x2 x′2
x1 x′1

x2 x′2
x1 x′1

(a) (b) (c)

Fig. 6: Effects of applying Toffoli gates to QMDDs

Example 6. Consider the QMDD shown in Fig. 6c and assume
that the rightmost QMDD node with label x1 is currently
processed. Each gate applied for processing this node has to
include a positive control line x2. As a result, only paths with
x2 = 1 are swapped, i.e. paths which run through the fourth
edge of the top node (representing a mapping from 1 to 1).

Following the main principle outlined above and assuming
that, without loss of generality, the currently considered node
is labeled with variable xi (n ≥ i ≥ 1) as well as the fact
that all previously traversed nodes (i.e. all nodes labeled with
variable xl, where n ≥ l > i) already establish the identity
structure, the currently considered node can be transformed to
the identity structure as follows:

Apply Toffoli gates such that all 1-paths are moved from
the second to the first edge while, at the same time, all 1-paths
are moved from the third edge to the fourth edge. To this end,
determine the sets of 1-paths for each edge of the currently
considered node (denoted by P1, P2, P3, and P4, respectively)
as well as the corresponding sets of 0-paths of the currently
considered node (i.e. paths that terminate in a 0-stub; denoted
by P 1, P 2, P 3, and P 4, respectively). A path represents an
input and, hence, contains a literal for each variable xj with
1 ≤ j < i which either occurs in positive phase (xj) or
negative phase (xj). Variable xi is neglected, because it is
inherently known (xi for paths in P1 and P3, as well as xi
for paths in P2 and P4). Since the QMDD node describes
a reversible function, the sets P1 and P3 are disjoint (both
represent a mapping with input xi = 0), i.e. P1 ∩ P3 = ∅.
Moreover, the set P 1 of 0-paths through the first edge is equal
to the set P3 of 1-paths through the third edge. Finally, due
to reversibility, the cardinalities of the sets P2 and P 1 = P3

can be assumed to be equal.

Example 7. Consider again the running example of Sec-
tion III-A, i.e. the non-reversible function shown in Fig. 1a
and one of its possible reversible embeddings as shown in
Table Ib. The permutation matrix of this embedded function
as well as the corresponding QMDD are both shown in Fig. 7.
Consider the top node of this QMDD. The sets of 1-paths are
P1 = {x2x1, x2x1}, P2 = {x2x1, x2x1}, P3 = {x2x1, x2x1},
and P4 = {x2x1, x2x1}. Note that P1 ∩ P3 = P2 ∩ P4 = ∅
and that P 1 = {x2x1, x2x1} = P3 are the 0-paths through
the first edge.

Because of the relation between 1-paths and 0-paths dis-
cussed above, each 1-path of the second edge can be swapped
with a 0-path of the first edge. To keep the number of required
Toffoli gates as small as possible, we swap a 1-path p ∈ P2
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Fig. 7: Representations for the embedded function (Table. Ib)
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Fig. 8: QMDD after processing the top node

with its most similar 0-path p′ ∈ P 1. In fact, if there exist
corresponding paths p and p′ which are identical (p = p′),
only a Toffoli gate with target line xi and a set of control lines
that represent p is required.2 If p 6= p′, p has to be adjusted to
match p′ before the paths can be swapped as described above.
To this end, a Toffoli gate with target line xj is added for each
variable xj that occurs in p and p′ in different phases. Note that
all these Toffoli gates contain a positive control line xi, since
only the paths in the second and fourth edge shall be changed.
Swapping all 1-paths of the second edge with the 0-paths of
the first edge inherently swaps the 1-paths of the third edge
with the 0-paths of the fourth edge and, hence, transforms the
currently considered node to the identity structure.

Example 7 (continued). Consider again the top node of the
QMDD depicted in Fig. 7b. As can be seen, there exists a
1-path p ∈ P2 which is identical to a 0-path p′ ∈ P 1,
namely p = x2x1 = p′. To swap the 1-path with the
0-path, a gate TOF ({x2, x1}, x3) is applied. The remaining
1-path q = x2x1 of P2 has to be adjusted to match the
0-path q′ = x2x1. This requires a gate TOF ({x3, x2}, x1).
Since afterwards q = q′, the paths can be swapped using
a gate TOF ({x2, x1}, x3) – resulting in the QMDD shown
in Fig. 8 where the currently considered node assumes the
identity structure. Continuing these steps for all remaining
nodes eventually yields the circuit shown in Fig. 9 realizing
the function represented by the QMDD in Fig. 7b (and, hence,
the function described in Fig. 1a in reversible logic).

2As discussed above, the set of control lines is additionally enriched with
literals that specify the path to the currently considered node.

x3 x′3
x2 x′2
x1 x′1

Fig. 9: Circuit obtained by the established design flow

IV. ONE-PASS DESIGN OF REVERSIBLE CIRCUITS

The established design flow reviewed in Section III requires
two separate tasks to be addressed, namely embedding and
synthesis. While, in recent years, impressive progress has been
made for both steps with respect to efficiency and scalability
(see e.g. [29], [40] for the embedding step and [28], [26] for
the synthesis step), this approach still suffers from the need
to conduct these steps separately. More precisely, this leads to
the following main drawbacks:
• An embedding function is defined rather arbitrarily and

without considering the following synthesis step. As
an example, there are 192 possibilities how to assign
precise values for the ∗- and the ·-entries of the function
considered in Example 4. But eventually the embedding
process just picks a single solution without considering
which embedding might be particularly suited for the
synthesis steps to be conducted afterwards. This way, a
huge degree of freedom is not exploited (since all 16
don’t cares are already assigned prior to synthesis).

• An embedding function almost always requires garbage
outputs and, hence, constant inputs which, in turn, lead to
an exponential increase in the truth table and/or function
matrix description. As a consequence, the actual synthesis
is performed on a function representation which is usu-
ally much more complex than the representation of the
originally intended target function. This poses a threat to
the efficiency and scalability of the synthesis process.

An alternative to address these drawbacks is proposed in
this work. To this end, we introduce the concept of one-pass
design of reversible circuits which, instead of considering
embedding and the actual synthesis separately, conducts both
tasks at once. In the following, this new design concept is
introduced as follows: We first discuss the importance of
the embedding process, i.e. we analyze why problems arise
when functional synthesis approaches are applied without a
prior embedding process3. Afterwards, two complementary
solutions overcoming these problems and, hence, realizing
one-pass design of reversible circuits are proposed: The first
one (introduced in Section IV-B) guarantees the minimum with
respect to the number of required circuit lines, but addresses
only the first drawback (exploiting the full degree of freedom).
The second one (introduced in Section IV-C) also addresses the
second drawback (keeping the function representation small),
but may require a slightly larger (but still bounded) number
of additional circuit lines. Both solutions can be incorporated
to various synthesis schemes proposed in the past such as
e.g. [28], [26]. In the following, we are using the solution
proposed in [28] and reviewed in Section III-B (and recently
improved in [39]) as a representative. Experimental evaluations

3A preliminary study on that has recently been conducted in [41].
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(summarized later in Section V) clearly show that the proposed
one-pass design of reversible circuits clearly addresses the
drawbacks discussed above.

A. Importance of the Embedding Process

In this section, we analyze why problems arise when
functional synthesis approaches are applied without a prior
embedding process. The corresponding findings are afterwards
utilized to re-develop reversible circuit synthesis towards the
proposed one-pass design flow.

Recall the synthesis approach reviewed in Section III-B
as a representative. The main idea is to swap the 1-paths
of the second and third edge with the 0-paths of the first
and fourth edge, respectively. This only works if

∣∣P 1 ≥ P2

∣∣
and

∣∣P 4 ≥ P3

∣∣ for the currently considered node, i.e. there
must be at least as many 0-paths through the first edge as
1-path through the second edge. This is always the case if the
function to be synthesized is reversible, because each output
pattern occurs exactly once. However, in case the function to
be synthesized is non-reversible (because the embedding step
has been skipped), QMDD nodes will occur for which the set
of 0-paths through the first edge P 1 contains fewer paths than
the set of 1-paths through the second edge P2, i.e.

∣∣P 1

∣∣ < |P2|.
Then, not all 1-paths of the second edge can be moved to the
first edge, i.e. the identity structure cannot be established for
the node. Consequently, the synthesis approach fails4.

Example 8. Consider the top node of the QMDD shown in
Fig. 3 representing the function matrix of the non-reversible
function shown in Fig. 1a. The respective set of paths are
P1 = {x1, x1}, P2 = {x1}, P3 = ∅, and P4 = {x1}. Since
P 1 = ∅ does not contain any 0-paths that can be swapped
with the path of P2, the synthesis approach described in
Section III-B cannot be applied. Consequently, there is no
chance to transform the currently considered node to the
identity structure and, hence, the synthesis algorithm fails.

In the following sections, we describe how to overcome this
problem. The approach proposed in Section IV-B solves this
problem by inserting additional 0-paths into the QMDD. To
this end, the minimum number of additionally required circuits
lines is determined first (allowing for the proper insertion
of the new paths and, eventually, leading to an embedding).
Since the number of required circuit lines is guaranteed to
be the minimum here, we denote this the exact solution. The
approach proposed in Section IV-C modifies the function to be
synthesized such that synthesis can continue without running
into the problems discussed above. In order to later restore
the modifications on the function, additional circuit lines are
employed which buffer any changes to the function. This may
require more circuit lines than the minimum number (although
still bounded), which is why we denote this the heuristic
solution. Both (complementary) schemes conduct embedding
during the synthesis rather than prior to synthesis – leading to
the desired one-pass design of reversible circuits.

4Note that similar problems arise when other synthesis approaches such as
e.g. [26] are applied without embedding.

gk′

g2

g1

1

0 0 0

0 0 0

0 0 0

0 0 0

Fig. 10: QMDD representing the garbage variables

x2

x1 x1 x1

1

0

0 0 0 0 0 0 0 0

g1

1

0 0 0

x2

x1 x1 x1

g1

1

0

0 0 0 0 0 0 0 0

0 0 0

M

G

Fig. 11: Extending the function matrix

B. Exact Solution

To overcome the problem with the mismatching cardinali-
ties of P 1 and P2 discussed above, we propose to increase
the overall number of 0-paths in the QMDD M without
increasing the number of 1-paths. To this end, we add
k′ = (m+ k)−max(n,m) garbage variables to the QMDD
prior to synthesis (if k′ is not negative; otherwise no further
variables have to be added)5. These garbage variables build up
a QMDD G as illustrated in Fig. 10, which has a single 1-path,
namely p = ak′ . . . a2a1. The garbage variables are added
to M, by replacing its terminal node with the root node of G
(i.e. forming the Kronecker product M ⊗ G). Consequently,
the original function can be obtained if all ancillary inputs are
set to 0 (similarly as discussed in Section III-A). For all other
combinations of the ancillary inputs, the output is don’t care.
These don’t cares are represented by 0-paths, since they do
not have to be considered during synthesis.

Example 9. The left-hand side of Fig. 11 shows the QMDD
M representing the function matrix of the non-reversible
function provided in Fig. 1b. Since n = m = 2 and
k = 1, k′ = 2 + 1− 2 = 1 additional variable – named g1
– is added to the QMDD. The extended QMDD is shown on
the right-hand side of Fig. 11.

Adding variables to the QMDD leads to an incompletely
specified function, for which a synthesis scheme similar to

5Note that k can be determined efficiently as described in [29] and [40].



8

the one reviewed in Section III-B can be applied6. However,
the QMDD contains 2k

′
times fewer 1-paths (and, hence,

contains more 0-paths), i.e. less paths have to be considered
in order to accomplish the identity structure compared to
the established two-stage design flow. Additionally, since the
number of 0-paths p′ ∈ P 1 is larger than the number of
1-paths p ∈ P2 for most nodes (i.e.

∣∣P 1

∣∣ > |P2|) some
degree of freedom is introduced. In fact, this is the same
degree of freedom which is available when conducting the
embedding as described in Section III-A. However, in contrast
to the established design flow, this degree of freedom can
now be exploited during synthesis, because the embedding that
suits best (in order to reduce the complexity of the circuit) is
implicitly chosen.

More precisely, the degree of freedom allows for choosing
the subset of P 1 containing the 0-paths that require the
fewest number of Toffoli gates when swapped with the 1-paths
of P2. Note that we have to consider the 1-paths through the
third edge separately, because swapping all 1-paths through
the second edge with 0-paths through the first edge does
not necessarily swap all 1-paths through the third edge with
0-paths through the fourth edge. In the case that

∣∣P 1

∣∣ = |P2|
for the currently considered node, synthesis is conducted as
described in Section III-B.

Once the second and third edge are transformed to 0-stubs,
the currently considered QMDD node does not necessarily
have the desired identity structure – the first or the fourth
edge may be a 0-stub as well. In this case, we insert an edge
to accomplish the identity structure (exploiting the degree of
freedom that some one-to-one mappings can arbitrarily be
defined). In other words, inserting an edge is nothing but
adding missing 1-paths in a way that best suits deriving the
desired identity structure.

Example 10. Consider the top node of the QMDD shown in
Fig. 11 (representing the incomplete function resulting from
extending the QMDD with one additional variable), which
contains only four 1-paths. The respective set of paths are
P1 = {x1g1, x1g1}, P2 = {x1g1}, P3 = ∅, and P4 = {x1g1}.
The degree of freedom allows for arbitrarily choosing 0-paths
from P 1 = {x1g1, x1g1} that should be swapped with the
1-paths p ∈ P2. There is only one path p = x1g ∈ P2. Unfor-
tunately, this path is not contained in P 1. Therefore, we chose
the most similar path p′ ∈ P 1, which is p′ = x1g1. To adjust
the paths, we apply gate TOF ({x2, x1}, g1), and eventually
gate TOF ({x1, g1}, x2) to swap them. The resulting QMDD
is shown on the left-hand side of Fig. 12.

Now, this QMDD already realizes the desired identity
structure for almost all nodes labeled with x2 and x1. Only
the fourth edge of the right node labeled x1 is a 0-stub
(although we require a 1-path here). However, this can be
addressed without the need to add any further gates. In
fact, the degree of freedom allows us to simply add a new

6Note that there exist approaches for synthesis of incompletely specified
functions (see e.g. [18], [10]) – although applicable for rather small functions
only. Besides that, the assumption is applied there that the respectively given
function can be made reversible by properly assigning the don’t cares only.
The methodology proposed in this work is applicable for arbitrary functions
and does not rely on such an assumption.

x2

x1 x1

g1 g1

1

0 0

0 0 0 0 0

0 0 0 0 0

x2

x1 x1

g1 g1

1

0 0

0 0 0 0

0 0 0 0 0

add 1-path

Fig. 12: Incompletely specified

x2 x′2
x1 x′1

g1 = 0 g′1

Fig. 13: Circuit obtained by the exact one-pass design

1-path through this edge as shown at the right-hand side of
Fig. 12. Note that, if embedding would have been conducted
prior to synthesis, 1-paths would have been set very likely
in a fashion which require additional gates. In contrast, the
one-pass scheme proposed here allows to set these 1-paths
appropriately without leading to further costs.

The synthesis scheme outlined above only needs to be
conducted for QMDD nodes representing primary variables.
Any additional variables (e.g. g1 in the example) can be
mapped arbitrarily as long as the dependencies discussed
in Section III-A are considered. This, however, is implicitly
the case since only reversible gates are applied thus far –
eventually realizing a fully reversible function. Again, this
fully exploits the degree of freedom as a prior embedding
step may have realized a mapping of additional variables such
as g1 which would require further gates.

Example 10 (continued). Considering the current QMDD
as shown at the right-hand side of Fig. 12, it can be seen
that all nodes labeled by primary variables already realize
the desired identity structure. In contrast, the mapping of the
additional variable g1 can arbitrarily be realized (reversibility
is guaranteed by the fact that only reversible gates have been
employed thus far). Hence, we can terminate the synthesis
process and obtain the resulting circuit as shown in Fig. 13.

C. Heuristic Solution

The exact solution proposed in the previous section yields
circuits with the minimum number of circuit lines. Even
though experimental results (summarized later in Section V)
demonstrate the scalability of this approach, one of the draw-
backs remains: the QMDD has to be extended by additionally
required variables prior to synthesis – causing an exponential
overhead in the worst case (as discussed above). In order to
overcome this drawback, an alternative solution is proposed in
this section that may require more (although still a bounded
number of) additional circuit lines, but instead does not lead
to an increase of the function representation.

The main idea is to stay with the originally given func-
tion representation (i.e. a QMDD representing a function
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matrix without additional variables) and to modify this
(non-reversible) function to be synthesized whenever a QMDD
node is encountered for which the second edge has more
1-paths than the first edge has 0-paths (the problem discussed
in Section IV-A). Since this obviously leads to a circuit
that realizes a function different to the desired one, these
modifications are stored on so-called buffer lines and reverted
after synthesis terminated.

More precisely, a QMDD node with
∣∣P 1

∣∣ ≥ |P2| and∣∣P 4

∣∣ ≥ |P3| is transformed to the identity structure as
described above7. In case the second edge has more 1-paths
than the first edge has 0-paths (i.e.

∣∣P 1

∣∣ < |P2|) not all
1-paths through the second edge can be moved to the first
edge. Then, we swap as many 1-paths through the second edge
with 0-paths through the first edge and apply the respective
gates. Afterwards, we swap the remaining 1-paths p ∈ P2 with
0-paths p′ ∈ P 4 to establish the identity structure. This can be
conducted by flipping the output of the currently considered
variable xi for these paths (since P2 ⊆ P 4). Obviously, this
changes the function to be synthesized because we flip bit i
in the output pattern for some inputs. To remember these bit
flips on bit i, we add a so-called buffer-line bi – initialized
with zero – onto which we store all input combinations which
are affected by this flip. These input combinations can be
derived from the respectively considered path, i.e. we apply a
Toffoli gate TOF ({p}, bi) for each 1-path p ∈ P2 (the set of
control lines is enriched by literals that represent the path to
the currently considered node as well as with literal xi). An
example illustrates the idea:

Example 11. Consider the top node of the QMDD shown
in Fig. 3 representing the (non-reversible) function matrix
from Fig. 1b. The respective set of paths are P1 = {x1, x1},
P2 = {x1}, P3 = ∅, and P4 = {x1}. Since P 1 = ∅ does not
contain any 0-path that can be swapped with a path from P2,
the synthesis approach described in Section III-B cannot be
applied. Therefore, we have to modify the function to swap
the 1-path of P2 with the 0-path of P 4 to obtain the desired
identity structure. To this end, we have to flip the output x2
for the path x2x1, resulting in the identity QMDD. Since this
modification has to be restored after synthesis is completed, we
store it on a buffer-line bx2 (initialized with zero) by applying
Toffoli gate TOF ({x2, x1}, bx2

) (the first gate in Fig. 14).

After synthesis has terminated, the buffer lines can be used
to reverted the made modifications. To this end, for each buffer
line bi a single gate TOF ({bxi

}, xi) is applied, which flips
the output back to its intended value.

Example 11 (continued). Since the modification of the func-
tion described above already yields the identity QMDD, syn-
thesis completes without adding further gates. Finally, the
modification made on output x2 has to be restored by applying
gate TOF ({bx2}, x2), eventually resulting in the circuit shown
in Fig. 14.

7If the number of outputs is larger than the number of inputs, the function
matrix describes an incompletely specified function, since it contains column
consisting of 0-entries only.

x2 x′2
x1 x′1

bx2 = 0 b′x2

Fig. 14: Circuit obtained by the heuristic one-pass design

TABLE II: Characteristics of design flows

Established Proposed (One-pass)
(Two-stage) exact heur.

Exploits full
7 3 3degree of freedom?

No. variables for
max(n,m+ k) max(n,m+ k) max(n,m)function representation

Yields circuit
3 3 7with min. lines?

Although additional circuit lines have to be added dynam-
ically during synthesis, their number is bounded by m, since
in worst case each of the m output bits has to be flipped for
at least one input combination. Therefore, at most m buffer
lines (one for each output bit) are required – yielding a circuits
with n+m lines at maximum. Moreover, if the function to be
synthesized is reversible, no additional lines are added during
synthesis, because the cardinalities of the set of 1-paths and
0-paths always match.

Overall, both approaches presented above realize the pro-
posed one-pass design flow and conduct both, the embedding
step and the synthesis step, at the same time. By this, they
fully exploit the degree of freedom as corresponding paths are
set so that they perfectly suit the synthesis (ideally, the paths
are set so that the desired identity structure is realized with no
or significantly fewer gates). Moreover, the heuristic scheme
does not even require additional variables for the respective
function description and, by this, simplifies synthesis further
(at the expense of not guaranteeing a circuit with the minimum
number of lines). Table II summarizes the characteristics of
the established design flow, as well of the proposed solutions
for one-pass design of reversible circuits. As can be seen,
the drawbacks of the established design flow discussed in
the beginning of this section are addressed by the proposed
solutions. Experimental evaluations summarized in the next
section confirm the benefits of the new design flow.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed one-pass design flow, we
implemented both, the exact solution as well as the heuristic
solution in C++ on top of the QMDD package [21], the
BDD package CUDD [30], and RevKit [27]. As benchmarks,
we used the Boolean functions available at RevLib [33]. In
the following, the results of two series of evaluations are
summarized: First, we compare the results obtained by the
one-pass design to the best known synthesis approaches. Af-
terwards, a direct comparison between the existing two-stage
design flow and the one-pass design flow is conducted using
the same synthesis approach (namely QMDD-based synthesis
reviewed in Section III-B) as basis. This allows for a more
detailed evaluation of the improvements achieved by the newly
proposed design flow (independently from the actually applied
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synthesis approach). All evaluations have been conducted on
a machine with 32 GB of memory running Linux 4.4.

A. Comparison to Previous Approaches

In a first evaluation, we aim for comparing the proposed
one-pass design flow to the best available synthesis approaches
for reversible circuits. To this end, we first consider the
two-stage design flow employed by the embedding solution
from [29] and the synthesis solution from [26]. They rep-
resent the best known functional synthesis solutions and are
both publicly available in RevKit [27] (executable using the
command embed -b; tbs -b), a toolkit that contains various
methods for synthesis and optimization of reversible circuits
and, hence, became a commonly used tool for the design of
reversible circuits.

Table III provides the obtained results. The first four
columns list the name of the benchmark, the number of
inputs (n) and outputs (m), as well as the minimum number
of required circuit lines (denoted by min.). The remaining
columns list the runtime (in CPU seconds; denoted by t) as
well as the costs (in terms of T-depth) of the circuits obtained
by the two-stage approach (i.e. the RevKit implementations
of [29], [26]) as well as by the exact and heuristic one-
pass solutions proposed in Section IV-B and Section IV-C,
respectively. The established two-stage design flow (composed
of [29] and [26]) as well as the proposed exact one-pass
solution yield circuits where the number of circuit lines is
the minimum. Since this is not necessarily the case for the
heuristic approach, Table III lists the obtained number of
circuit lines for this scheme as well (denoted by l).

As can be clearly seen, the proposed one-pass scheme (in its
exact realization) is faster in terms of runtime by magnitudes
than the currently best known approach using a two-stage
design flow. For all benchmarks, the minimum number of
circuit lines could be determined within a fraction of a second.
For all benchmarks that could be synthesized using the two-
stage design flow (composed of [29] and [26]), the exact solu-
tion proposed in this paper requires significantly less runtime.
Furthermore, in 21 out of the 26 benchmarks, for which the
two-stage approach ran into a timeout of 10 000 seconds, the
exact solution was able to generate a circuit (within a few
seconds in most cases). For example, benchmarks cm150a and
mux could be synthesized in less than three seconds, whereas
the previously proposed method already required hundreds of
seconds alone for embedding (and running into a timeout in
the synthesis step). Furthermore, benchmark frg1 could be
synthesized in roughly 30 seconds, whereas the two-stage
approach (composed of [29] and [26]) already timed out in
the embedding phase.

The heuristic approach even allows to further improve with
respect to runtime. In fact, using the heuristic one-pass synthe-
sis, we were able to synthesize all benchmarks in reasonable
time (including the ones which timed-out before). Although
the number of circuit lines of the resulting circuits is not
necessarily the minimum, the experiments show that a circuit
with the minimum number of lines was generated in 40 out of
69 cases (highlighted bold in column l of Table III). Only

in 29 cases, a slightly larger number of additional circuit
lines is needed – however, never more than four more lines
are needed. In contrast, the heuristic approach exploited the
reduced complexity and generated all results in significantly
less run-time. For the benchmarks cordic, cps, apex2, and
e64 a circuit with the minimum number of lines could be
determined within 50 seconds, whereas the exact approach
timed out. As discussed above, this was possible because the
heuristic solution does not increase the function representation
by additional variables.

Besides these runtime improvements, also a significant
improvement in terms of T-depth can be observed compared
to the previously proposed method. More precisely, improve-
ments of 31% and 81% are reported on average for the
solutions following the new one-pass design flow and proposed
in Section IV-B and Section IV-C, respectively. However, also
some cases exist where the costs increase (e.g. 0410184 and
ex5p). This can be explained by the fact that both flows still
rely on different synthesis schemes ([26] employs a so-called
transformation-based synthesis, while the solutions proposed
in Section IV-B and Section IV-C follows QMDD-based
synthesis). Hence, a direct comparison between the existing
two-stage design flow and the one-pass design flow using the
same synthesis approach as basis is desirable (and is covered
in the next section).

Before that, however, we briefly discuss how the obtained
results stand to structural synthesis approaches [9], [38], [31],
[25]. Such methods yield circuits with significantly more
lines than the minimum (e.g. magnitudes above the minimum
for [25] and 2n +m for [9]). This is disadvantageous, since
each line has to be represented physically in the underlying
system (e.g. by a qubit in quantum computation). As already
mentioned in Section I, this is why we focused on synthesis
approaches in this work, which keep the number of lines
as close as possible to the minimum. Since additionally the
huge differences in the number of lines between functional ap-
proaches as considered in this work and structural approaches
as considered e.g. in [9], [38], [31], [25] also affects the
resulting costs of the circuits (as already evaluated in [37]), a
numerical comparison would be misleading.

B. Comparison of the Design Flows

In this section, we compare the proposed one-pass design
flow to the established design flow using the same underlying
synthesis approach. To this end, we again followed the estab-
lished two-stage design flow, but now used the QMDD-based
synthesis approach (originally introduced in [28] and recently
improved in [39]) reviewed in Section III-B instead of the
synthesis approach proposed in [26]. This allows to evaluate
the benefits of the proposed one-pass design methodology
compared to the established two-stage approach without any
side-effects caused by the utilization of different synthesis
approaches as it was the case in the evaluations summarized
in the previous section. More precisely, we again utilize
the embedding provided by RevKit8 and pass the resulting
function to the QMDD-based synthesis approach. Afterwards,

8Obtained from the circuits resulting from the approach discussed above.
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TABLE III: Comparison to the best functional approach of RevKit

Best known Proposed one-pass design
(two-stage) solution ([29], [26]) Exact solution (Sec. IV-B) Heuristic solution (Sec. IV-C)

Benchmark n m min. temb tsynth T-depth tk tsynth T-depth tsynth l T-depth
sqrt8 8 4 9 0.01 0.48 34 704 0.00 0.02 7 410 0.01 12 3 720
rd84 8 4 11 0.01 0.88 39 756 0.00 0.03 54 150 0.01 11 16 551
adr4 8 5 9 0.00 0.16 23 781 0.00 0.02 57 870 0.01 9 4 452
radd 8 5 9 0.00 0.66 35 067 0.00 0.02 44 088 0.02 9 15 036
dist 8 5 10 0.00 0.70 37 449 0.00 0.02 70 329 0.03 13 13 584
root 8 5 10 0.00 0.72 36 981 0.00 0.02 18 036 0.02 13 8 928
dc2 8 7 13 0.00 1.45 48 837 0.00 0.03 48 843 0.02 14 4 290
misex1 8 7 14 0.00 1.98 65 316 0.00 0.02 30 201 0.02 15 2 106
hwb8 8 8 8 0.01 0.49 31 416 0.00 0.03 62 610 0.07 8 60 774
urf2 8 8 8 0.01 0.38 31 257 0.00 0.05 52 803 0.10 8 51 207
mlp4 8 8 13 0.02 0.95 48 141 0.00 0.11 132 132 0.02 16 26 466
ex5p 8 63 68 0.07 153.47 146 901 0.00 6.08 3 477 078 2.49 70 763 383
9symml 9 1 10 0.01 1.88 99 381 0.00 0.02 44 856 0.01 10 17 184
life 9 1 10 0.00 2.94 100 227 0.00 0.01 44 520 0.02 10 11 196
max46 9 1 10 0.01 3.01 98 289 0.00 0.01 29 304 0.02 10 10 248
sym9 9 1 10 0.00 2.17 999 381 0.00 0.02 44 856 0.02 10 17 184
clip 9 5 11 0.02 3.59 102 489 0.00 0.08 153 597 0.04 14 57 108
hwb9 9 9 9 0.02 2.27 88 452 0.00 0.06 184 998 0.21 9 180 426
urf1 9 9 9 0.01 1.65 81 399 0.01 0.10 146 208 0.14 9 144 132
urf5 9 9 9 0.02 0.46 38 898 0.00 0.04 50 259 0.05 9 49 659
dk27 9 9 15 0.01 6.59 123 276 0.00 0.04 118 404 0.04 18 3 333
apex4 9 19 26 0.07 43.33 170 100 0.00 1.28 1 618 155 2.48 28 608 064
sym10 10 1 11 0.02 9.46 238 674 0.00 0.03 75 936 0.02 11 28 656
sao2 10 4 14 0.01 26.26 296 841 0.00 0.12 334 245 0.02 14 28 200
alu2 10 6 14 0.03 20.22 308 214 0.00 0.16 492 450 0.07 16 60 231
example2 10 6 14 0.03 31.33 308 214 0.00 0.12 492 450 0.06 16 60 231
x2 10 7 16 0.01 43.14 391 404 0.00 0.09 217 707 0.03 17 10 218
alu3 10 8 14 0.02 25.17 337 281 0.00 0.12 399 315 5.42 18 64 728
urf3 10 10 10 0.04 7.03 207 186 0.01 0.20 326 532 0.37 10 321 684
ex1010 10 10 18 0.07 97.61 475 536 0.01 0.47 1 665 222 0.01 20 175 881
dk17 10 11 19 0.01 103.51 492 033 0.00 0.32 1 679 478 0.08 21 42 948
apla 10 12 22 0.02 202.47 604 542 0.00 0.52 1 643 904 0.15 22 61 599
cm152a 11 1 11 0.04 45.37 638 454 0.00 0.02 528 0.02 12 384
cm85a 11 3 13 0.01 55.49 674 883 0.00 0.03 69 360 0.04 14 15 972
urf4 11 11 11 0.11 65.39 637 539 0.02 0.74 1 231 530 1.87 11 1 201 722
add6 12 7 13 0.10 326.96 1 606 533 0.03 0.58 1 580 208 0.11 13 468 672
alu1 12 8 18 0.08 1206.68 2 389 212 0.00 0.35 1 308 360 0.05 20 90 051
Cycle10_2 12 12 12 0.14 0.01 1 926 0.00 0.06 2 979 0.11 12 2 979
plus63mod4096 12 12 12 0.11 0.69 47 694 0.00 0.08 2 526 0.06 12 918
plus127mod8192 13 13 13 0.25 3.40 115 833 0.00 0.15 3 246 0.12 13 1 098
plus63mod8192 13 13 13 0.26 1.08 70 698 0.00 0.15 3 246 0.12 13 1 146
co14 14 1 15 0.18 8844.44 9 399 120 0.00 0.01 26 520 0.02 15 16 260
alu4 14 8 19 0.43 >10000.00 0.01 13.78 18 523 833 0.01 22 3 057 696
f51m 14 8 19 0.97 >10000.00 0.00 6.48 12 171 363 5.35 22 5 354 592
tial 14 8 19 0.55 >10000.00 0.02 15.42 18 416 949 4.15 22 3 028 788
cu 14 11 25 0.24 >10000.00 0.00 1.29 5 084 367 0.10 25 36 513
0410184 14 14 14 0.42 0.06 11 256 0.00 0.30 122 748 0.30 14 122 748
misex3 14 14 28 1.24 >10000.00 0.01 44.16 57 810 417 1.69 28 1 212 048
misex3c 14 14 28 1.21 >10000.00 0.00 41.16 55 638 522 1.43 28 1 306 836
table3 14 14 28 0.67 >10000.00 0.00 66.86 60 134 850 0.52 28 342 591
In0 15 11 25 0.41 >10000.00 0.00 83.95 82 366 977 2.43 26 1 572 276
ham15 15 15 15 3.00 >10000.00 0.06 2.00 19 864 608 4.32 15 17 998 662
urf6 15 15 15 1.67 >10000.00 0.00 1.29 2 082 000 1.40 15 2 081 760
ryy6 16 1 17 1.21 >10000.00 0.00 0.19 465 300 0.02 17 20 532
t481 16 1 17 1.73 >10000.00 0.00 2.70 3 319 272 0.11 17 247 752
cmb 16 4 20 1.30 >10000.00 0.00 0.17 817 131 0.05 20 5 895
pcler8 16 5 21 1.25 >10000.00 0.01 0.65 1 941 297 0.06 21 17 451
cm163a 16 13 25 0.34 >10000.00 0.02 8.48 21 546 000 0.12 27 50 760
pdc 16 40 55 1.23 >10000.00 0.01 2343.61 457 221 879 11.93 56 2 836 584
spla 16 46 61 1.84 >10000.00 0.00 568.87 367 270 986 7.02 62 4 214 007
cm151a 19 9 27 5.81 >10000.00 0.00 3272.97 514 176 591 0.27 28 46 314
cm150a 21 1 22 682.41 >10000.00 0.00 2.62 252 978 0.72 22 1 200
mux 21 1 22 735.04 >10000.00 0.00 2.53 289 722 0.38 22 1 128
cordic 23 2 25 870.74 >10000.00 0.00 >10000.00 3.83 25 10 517 292
cps 24 109 132 500.94 >10000.00 0.02 >10000.00 20.99 132 6 253 920
frg1 28 3 30 >10000.00 >10000.00 0.00 30.35 26 147 451 0.27 31 118 095
apex2 39 3 42 >10000.00 >10000.00 0.32 >10000.00 5.41 42 2 404 404
seq 41 35 75 >10000.00 >10000.00 0.00 >10000.00 241.73 76 39 591 105
e64 65 65 129 >10000.00 >10000.00 0.01 >10000.00 46.42 129 24 515 583

n: primary inputs m: primary outputs min.: minimum number of required lines temb: time required for embedding
tsynth: time required for synthesis tk: time required to determine k l: number of lines of the resulting circuit



12

we compared the obtained results with the circuits generated
by the proposed one-pass design solutions (which rely on
QMDD-based synthesis as well). This way, a fair comparison
between both synthesis flows can be conducted.

The results are presented in Table IV. The first four columns
of the table again list the name of the benchmark, the number
of primary inputs (n) and primary outputs (m), as well as
the minimum number of required lines (min.). The remaining
columns list the time required for synthesis (columns labeled t)
and the T-depth of the resulting circuit for the two-stage design
flow as well as for the proposed one-pass solutions. For the
heuristic solution we also list the number of lines of the
resulting circuits (l). Again, the cases where this number of
lines is the actual minimum are highlighted in bold. Note that
we omitted benchmarks which already represented a reversible
function since, in these cases, all three approaches yield the
same circuit. Besides that, we only considered benchmarks
for which the two-stage design flow was able to derive an
embedding within the given timeout (that the proposed one-
pass design flow can handle many of these cases has already
been shown by means of Table III).

First, we compare the exact solution (proposed in Sec-
tion IV-B) to the conventional two-stage approach. For all
benchmarks, we observe a significant improvement in terms
of T-depth – leading to an improvement of 96% on average.
Since the underlying synthesis algorithm of both approaches
is equal (namely QMDD-based synthesis), this improvement
can completely be attributed to the fact that one-pass synthesis
and, hence, the discussed degree of freedom is exploited.

Next, we compare the heuristic solution to the exact so-
lution. The heuristic approach is much faster than the exact
one (as discussed above), since the QMDD is not enriched
by further variables prior to synthesis (in contrast to the two-
stage design flow and the exact design flow which are extended
to a total of max(n,m + k) variables, the heuristic solution
stays with the originally given max(n,m) variables). This
allows for a more compact representation of the function to be
synthesized. Hence, also the second benefit discussed above
can fully be exploited here. Besides that, this even yields
further improvements with respect to the T-depth, since the
more variables the function to be synthesized has, the more
likely it is that a gate has a larger number of control lines
(which causes higher costs). In fact, another reduction of 80%
(78% if we consider only those benchmarks for which the
resulting circuit has a minimum number of lines) compared to
the exact solution can be observed – resulting in an average
improvement by a factor of 185 compared to original the
two-stage design flow. We expect similar improvements when
applying the proposed one-pass design flow to other functional
synthesis approaches.

Overall, the experimental evaluation confirms the bene-
fits of the proposed one-pass design flow (which can be
also applied to many functional synthesis approaches) over
the conventional two-stage design flow. Besides substantial
speedups compared to the state of the art design flow (for some
benchmarks a reversible circuit with the minimum number
of lines has been synthesized for the first time), substantial
improvements in terms of T-depth were observed. In the direct

comparison using the same synthesis approach as basis, costs
could have been reduced by a factor of 185 on average. Hence,
one-pass design clearly outperforms the currently established
functional design flow for reversible circuits where embedding
and synthesis are conducted separately.

VI. CONCLUSION

In this work, we proposed a novel design flow for func-
tional synthesis of reversible circuits, which can be applied
to many functional synthesis approaches. In contrast to the
conventional two-stage design flow, which is composed of an
embedding and a synthesis step, the proposed one-pass design
flow combines both processes. This way, the full degree of
freedom is exploited during synthesis which, additionally, can
be conducted without a (worst case) exponential increase of
the function representation. In order to evaluate these benefits,
an exact as well as a heuristic solution of the one-pass
design scheme have been proposed and compared to the best
known solution for functional synthesis of reversible circuits.
The results showed significant improvements by orders of
magnitudes with respect to runtime as well as circuit costs.
For some benchmarks, a reversible circuit with the minimum
number of lines has been synthesized for the first time. Hence,
a completely new design scheme for reversible circuits has
been introduced which clearly outperforms the previously
established design flow. As an idea for future work, it would
be interesting to see, how the one-pass design flow proposed
in this work affects other synthesis approaches, which have
been proposed by the community in the past.
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