
Parallel Simulation of Electrophoretic Deposition
for Industrial Automotive Applications

Kevin Verma∗† Luis Ayuso∗ Robert Wille†
∗ESS Engineering Software Steyr GmbH, Austria

†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
Email: {kevin.verma, luis.ayuso}@essteyr.com robert.wille@jku.at

Abstract—Electrophoretic Deposition (EPD) coating is one of
the key applications in automotive manufacturing. In the recent
years, tools based on Computational Fluid Dynamics (CFD)
have been utilized to simulate corresponding coating processes.
However, the complex data used in this application frequently
brings standard CFD applications to its limits. For that purpose, a
CFD-based tool named ALSIM has been proposed, which employs
a unique volumetric decomposition method that addresses these
problems. However, certain characteristics of this methodology
yield drawbacks for the typical process used in this application
– resulting in large execution times. In this work, we present a
parallel scheme for this application which addresses these short-
comings. To this end, two layers of parallelism are introduced.
Both are implemented by employing OpenMP, allowing for the
execution on shared memory parallel architectures. Experimental
evaluations confirm the scalability and efficiency of the proposed
methods. The simulation time of a typical use case in the
automotive industry could be reduced from almost 6 days to
13 hours when employing 16 processing cores.

Index Terms—Electrophoretic Deposition; Computational Fluid
Dynamics; Volumetric Decomposition; Parallel Simulation

I. INTRODUCTION

The application of coating is one of the key processes in
automotive manufacturing. Those coatings are often applied
by Electrophoretic Deposition (EPD, [1], [2]), in which car
assemblies or entire car bodies (also known as Body in White
or BIW for short) are moved through a tank of liquid. Fig. 1
sketches this process. The object is dipped into the tank by
a certain kinematic, while the exact kinematic varies between
different manufacturers.

In EPD, it desired that the entire surface of the object
is covered by the coating to essentially prevent corrosion.
However, the emergence of air bubbles while dipping into
the liquid may prevent a complete coverage of the surface.
Moreover, entrapped liquid during dipping out may lead to
corrosion in the consecutive manufacturing process. For many
years, it was therefore practically suited to perform EPD on
prototypes. Based on these prototypes, manufacturers were
able to asses the problematic areas of the car body and modify
it accordingly, e.g. by adding an additional hole to allow
entrapped liquid to drain off.

However, prototypes can only be built at a very late de-
velopment stage – implying that every modification made in
this stage requires to roll back to early design stages. This
typically causes immense costs and may lead to huge delays

Fig. 1: A simplified Electrophoretic Deposition tank.

in the manufacturing process. Therefore, there is a demand
for an efficient and accurate simulation tool, which not only
drops the need for a costly prototype, but also allows to detect
problematic areas in an early development stage, e.g. during
design phase.

In the recent years, tools based on Computational Fluid
Dynamics (CFD, [3], [4], [5]) have been utilized to simulate
corresponding coating processes. CFD is a well established
methodology to simulate scenarios that involve fluid flows.
However, the complex data used in this application frequently
brings standard CFD methods to its limits – causing extremely
large simulation times even on dedicated computer clusters.

To address this problem, the ALSIM architecture
(from the German “Auslaufsimulation”, i.e. drainage
simulation) has been proposed [6], [7]. ALSIM is a
CFD-based tool, which uses a geometric kernel that employs
a unique volumetric decomposition method. This volumetric
decomposition allows to use triangular surface meshes, as
against CFD, where typically volume meshes are required.
In this method, the object gets decomposed into so-called
flow volumes based on critical vertices of the input mesh.
As a result, a so-called reeb graph accurately represents the
topology of the object (this is reviewed in more detail in
Section II).

However, this volumetric decomposition has to be applied
frequently when the object is rotated. Empirical evaluations
yield that this method is by far the most expensive part of the
whole simulation in terms of execution time. In an industrial
application, this decomposition typically needs to be applied
72 times1 resulting in large execution times.

In this work, we propose a parallel scheme for this in-
dustrial electrophoretic deposition simulation tool, which ad-
dresses these shortcomings. The proposed scheme introduces

1The 72 applications results from the fact that an object is usually rotated
the complete 360◦, whereby 5◦ steps are considered sufficient.

(a) Input Object (b) Flow Volumes (c) Resulting Graph

Fig. 2: Geometric decomposition of a simple object.

two layers of parallelism, which are implemented by
employing OpenMP – allowing for the execution on
shared memory multi-core architectures. The outer layer en-
ables the parallel construction of the volumetric decomposi-
tion, while the inner layer enables parallelism inside the de-
composition methodology. Experimental evaluations confirm
the efficiency and scalability of the proposed scheme, e.g. by
showing that the simulation time of a typical use case in the
automotive industry could be reduced from almost 6 days to
13 hours when employing 16 processing cores.

The remainder of this paper is structured as follows: The
following section provides an overview of the state-of-the-art
and the open challenges. Afterwards, Section III discusses
the proposed parallel simulation scheme. Finally, Section IV
summarizes the results obtained by experimental evaluations,
before the paper is concluded in Section V.

II. STATE-OF-THE-ART AND OPEN CHALLENGES

In this section, we review the state-of-the-art for simula-
tion of Electrophoretic Deposition (EPD, [1], [2]) which is
based on methods for Computation Fluid Dynamics (CFD,
[3], [4], [5]). We particularly review the main characteristic
of previously proposed methods which, originally, prevented
an efficient simulation and motivates the consideration of
a so-called volumetric decomposition scheme. While this
scheme addresses a major obstacle for an efficient EPD
simulation, it causes other drawbacks which are discussed
afterwards. Resolving this drawback and, by this, eventually
enabling an efficient EPD simulation is then considered in the
remainder of this work.

A. CFD-based Simulation for Electrophoretic Deposition

In electrophoretic deposition processes, objects (e.g. BIWs)
get dipped through a tank of paint. In order to simulate such
processes, a three-dimensional representation of the object
which can serve as input data is necessary. In manufacturing
processes, such objects are usually designed using common
CAD-tools and, then, exported as meshes which can be used as
input for various simulation tools. Fig. 2a provides an example
of an object representation used in EPD.

Using such a representation, standard tools based on Com-
putation Fluid Dynamics (CFD) can be utilized (and, in
fact, have been used for many years) in order to simulate

corresponding coating processes. CFD allows the simulation of
fluid flows by the numerical solution of the governing Navier-
Stokes equations, which have been known for over 150 years.

However, CFD is usually applied to simulate a large number
of small volumes like meshes composed of tetrahedra or
hexahedra [8], [9]. Simulating large objects such as entire
car bodies frequently brings CFD to its limits and, hence,
typically requires significantly large computation times (even
on dedicated HPC clusters). Besides that, CFD is very sensitive
to the choice of boundary conditions. A small difference in
boundary conditions may lead to a huge deviation in results.

These drawbacks motivate alternative representation of the
considered objects which is more suited to the simulation of
EPD. For that purpose, the ALSIM architecture has been pro-
posed. This architecture is based on a decomposed volumetric
representation whose key ideas are reviewed next.

B. Volumetric Decomposition

One of the main ideas of ALSIM is to use fewer and larger
volume units compared to standard CFD methods in order to
reduce the computational complexity. For that purpose, the
input model is typically a triangular surface mesh, as against
CFD where volumetric meshes (consisting of e.g. tetrahedras)
are widely used. However, since the main task is to show the
fluid distribution inside the volumes of the object, a volumetric
representation of the object is inevitable. Therefore, as an alter-
native volumetric representation, a geometrical decomposition
into so-called flow volumes has been introduced by Strodthoff
et. al. [10]. Here, flow volumes are defined as connected parts
of a given triangulated solid, with the boundary consisting
of triangles of the triangulated solid and parts of horizontal
planes on top and bottom. To generate these flow volumes, the
object is scanned for local minimums, maximums, and saddle
points (also referred to as critical vertices) while sweeping
from bottom to top. Each of these identified points ends the
former flow volume and starts a new one.

Example 1. Consider the object representation from Fig. 2a.
This is geometrically decomposed by vertical cuts into flow
volumes as illustrated in Fig. 2b. Each number denotes one
identified flow volume.

Based on this volumetric decomposition, a graph is con-
structed which represents the topology of the object by flow

(a) Initial State (b) After Rotation

Fig. 3: Influence of rotation to volumes

volumes with their respective relations. The resulting graphs
can be seen as so-called reeb graphs [11], which are originally
a concept of Morse theory [12], where they are used to gather
topological information. This graph representation describes
the topology of the object, which is important for the purpose
of EPD simulation where it is key to know possible flow paths
of liquids.

Example 2. Fig. 2c shows the resulting graph, while the node
numbers correspond to the identified flow volumes shown in
Fig. 2b. By means of this graph, it is known that e.g. fluid of
volume 3 can flow into volume 2 and volume 4, while fluid of
volume 4 can only flow to volume 5.

This approach provides advantages compared to standard
CFD methods, however, it also yields a major disadvantage
which is discussed next.

C. Drawback

The volumetric decomposition technique allows for a vol-
umetric representation with significantly reduced complexity.
However, the topology of the object is changed as soon as
the object is rotated – leading to a different flow volume
decompositions. This is a crucial problem, since, as reviewed
in Section I, electrophoretic deposition is a dynamic process
in which the object is constantly rotated. Due to this inherent
dynamic behavior, the volumetric decomposition needs to be
applied frequently for various rotation angles. An example
illustrates the problem:

Example 3. Fig. 3a shows an object with a filled cup in
the interior before rotating. The graph underneath shows the
resulting simple reeb graph. Node 0 represents the volume of
the object up to the fill level of the liquid. Node 1 represents
the volume above the fill level, while node 2 represents the
interior of the cup containing the liquid.

Fig. 3b shows the object (and the resulting reeb graph)
after a 45◦ rotation. The topology is now completely different,
since node 3 represents the volume up to the new filling level
of the liquid. The volume of node 5 is significantly larger
than the volume of node 1, while node 4 is smaller compared
to node 2. Hence, if the objects are rotated, correspondingly
adjusted representations have to be created.

TABLE I: Distribution of execution times.

Method Execution Time Distribution(%)
Setup 5
Create Reeb Graph 80
Hydro-static Solving 5
Hydro-dynamic Solving 10

In the industrial application, a typical process consists of
a full 360◦ rotation of the object through the tank. Since
empirical evaluations have shown that time steps of maximum
5◦ rotation give the most accurate results, a 360◦ rotation
yields 72 discrete time steps. For each of these time steps
a new reeb graph needs to be created – obviously resulting
in large execution times (especially for complex input data)
which poses one of the main problems in EPD simulation
thus far. In this work, we are addressing this problem by
parallelizing and optimizing this process.

III. PARALLEL SIMULATION
OF ELECTROPHORETIC DEPOSITION

As already discussed, the process of EPD simulation inher-
ently is a sequential process. The simulation consists of a set of
discrete time steps T , while every discrete time step 0 ≤ t < T
inherently depends on the results of its predecessor. Therefore,
the simulation of time step t − 1 needs to be completed
before the simulation of time step t can be started. This
dependency prohibits parallelization in the outermost layer,
i.e. independently simulating each time step t in parallel is
not possible.

However, the simulation of each time step itself offers
potential. In fact, four basic tasks have to be conducted for
each time step t: (1) primary setup work, (2) creation of the
reeb graph, and the actual simulation composed of (3) a hydro-
static solving process (rotation) as well as (4) a hydro-dynamic
solving process (translation). Table I summarizes the effort
needed for average assemblies for each of these steps with
respect to their required execution time.

This distribution of efforts is surprising, considering that
EPD is essentially performing fluid simulation, where typically
the solving part is rendered as the bottleneck (see e.g. [13],
[14]). However, these results clearly suggest that the target of
any kind of optimization should be the reeb graph construction.
The actual simulation (hydro-static/hydro-dynamic solving)
consumes only 15% of the total execution time, which shows
that the whole process is clearly dominated by the volumetric
decomposition. Note that for larges objects (e.g. BIW), the
time spent on setup tasks will be less and shifted towards
reeb graph construction.

In order to speedup the process of reeb graph construction,
two basic layers of parallelization are introduced:

• Independent parallel computation of each graph: Instead
of computing the graph sequentially for every time step t
and then directly performing the simulation, n graphs
are computed in parallel, while n is the amount of
cores available on the system. Time step t is then only
simulated when the corresponding graph construction is

completed and time step t−1 has already been simulated
(hereinafter referred to as outer parallel layer).

• Parallelization of the reeb graph construction itself: Some
of the employed methods for constructing the graph are
applicable for data parallelism and are therefore target of
a nested parallelism approach (hereinafter referred to as
inner parallel layer).

The description of the implementation of corresponding
techniques is covered by the following subsections.

A. Outer Parallel Layer

For the sake of parallelizing the reeb graph construction,
the basic flow of the architecture needs to be re-developed. To
this end, we first review the reeb graph construction process
as applied thus far and sketched in Algorithm 1. The flow
consists of mainly three steps while iterating through all time
steps T . The first step is to rotate the input mesh according to
the kinematic of the real process (see Line 3). Based on this
rotated mesh, a new reeb graph is created (Line 4). Once this
reeb graph is constructed, the hydro-static and hydro-dynamic
equation systems are solved (Line 5). Afterwards the results
of this time step t are available and can be exported for further
analysis (Line 6).

Algorithm 1 Original simulation flow

1: M ← input Mesh
2: for each time step t ∈ T do
3: Mr ← rotateMesh(M)
4: Gi ← createGraph(Mr)
5: Gi ← solveEquationSystem(Gi)
6: exportResults(Gi)
7: end for

In order to parallelize the reeb graph construction, the
base algorithm is re-developed as follows: Instead of iterating
through the time steps t ∈ T and solving the equation system
for time step t after creating the graph, n graphs are created
in parallel while keeping the equation systems in sequential
order. This is sketched in Algorithm 2.

Algorithm 2 Proposed (parallel) simulation flow

1: V ← empty list
2: for each t ∈ T do
3: S ← getStepData(t)
4: push S onto V
5: end for
6: #pragma omp parallel num threads(n)
7: #pragma omp parallel for ordered schedule(dynamic,

1)
8: for each vi ∈ V do
9: Gvi ← createGraph(vi)

10: #pragma omp ordered
11: solveEquationSystem(Gvi)
12: end for

Here, the method starts with reading in the step data, which
contains the positions and rotation angles of the object (see
Line 3). Afterwards, n threads are entrusted with the construc-
tion of the reeb graph and the simulation (hydro-static/hydro-
dynamic solving) of each time step t (see Line 5-8). As soon
as the first graph is completed, the same thread starts with
computing the first simulation step (see Line 9-10). Once
the second graph has been constructed, the corresponding
thread computes the second simulation step and so on. If a
thread has completed its simulation step, it will continue with
creating more graphs if there are any steps still not simulated.
Considering the fact that the graph creation consumes much
more computation time than the actual simulation of a step,
a thread rarely needs to wait for the previous simulation step
to be completed. In-fact, this happens only when the graph
construction for time step t consumes significantly less time
than the simulation of time step t− 1.

In general, this method exhibits a rather irregular workload
distribution among its iterations. This is because the amount
of time needed for the graph construction may differ heavily
between the single time steps (depending on the respective
rotation angles). Hence, if there are e.g. 8 graphs to be
constructed and each thread gets assigned 2, it might happen
that the last graph creation terminates earlier than the first one
and, thus, the last thread is just busy waiting. Therefore, to
receive optimal performance, a dynamic scheduling paradigm
is employed (as shown in Line 6 of Algorithm 2). The actual
solving of the equation system needs to be kept in the same
order as it was executed in serial, since the result of time
step t inherently depends on time step t− 1. This behavior is
achieved, by employing the ordered clause. This still allows
for a high degree of concurrency, since the graph construction
has substantial run time.

Fig. 4 illustrates the complete parallel work flow. Each
thread gets assigned one reeb graph and, as soon as the
corresponding graph construction is completed, time step t
is simulated. Once the simulation of time step t terminated,
the reeb graph for another time step is constructed if required.
Otherwise the thread terminates.

B. Inner Parallel Layer

The second layer focuses on the parallelization of the reeb
graph construction itself. To this end, two basic steps have to
be considered:

1) Identifying the critical vertices of the mesh (i.e. its local
maxima, minima, and saddle points) and,

2) Using these local information, constructing the volume
decomposition by a sweep plane algorithm [15].

Additionally, another step needs to be considered, which
was omitted thus far to keep the descriptions simple, namely:

3) Integrating so-called bottlenecks into the reeb graph.
The following descriptions provide details to all three steps.
1) Identifying Critical Vertices: The first step to construct

the reeb graph is to identify the critical vertices, such as
local minima, maxima, and saddle points. The basic algorithm

Fig. 4: Illustration of the parallel flow.

iterates through the mesh and creates a new extremum for
every identified extrema point. An extrema point can be
identified by considering their adjoining points. For example,
if adjoining points have lower z-coordinate values, the given
point is identified as a local maxima. Algorithm 3 sketches
the baseline of the algorithm.

Algorithm 3 Baseline of collecting extrema values

1: EL← empty list
2: M ← mesh
3: for each vertex v ∈M do
4: if v is critical then
5: e← new extremum induced by v
6: determine region sets and store them in e
7: push e onto EL
8: end if
9: end for

Since the mesh is essentially a set of vertices, this algorithm
is parallelized by portioning the mesh container. Each thread
iterates through its respective portion and generates a new
extremum for every critical point.

2) Constructing the Volume Decomposition: As stated
above, the volume decomposition is conducted using a plane
sweep algorithm. In related work, there have already been
several attempts of parallelizing plane sweep algorithms.
These attempts traditionally employ methods to statically
or dynamically segment the input. The operations are then
performed in parallel over these segments. However, some
of these proposed solutions introduce the need for heavy
synchronization, or can only be applied on input arranged
as orthogonal line segments [16] [17]. In [18], the plane
sweep methodology is avoided to achieve a solution without

the need for synchronization. This approach however does
not scale well for a smaller number of cores. In [19], the
input is dynamically segmented to spatial operations, while
performing the operation on multiple portions of the input in
parallel without the need for synchronization. The presented
methodology splits the input into strips, while the split lines
are generated at roughly equal intervals and are parallel to the
sweep plane. Each strip is then used as an input to a sweep
plane algorithm.

However, these methods for parallelization are not applica-
ble to the problem considered in this work. Here, the sweep
plane algorithm constructs the volume decomposition by scan-
ning for the identified critical vertices. Each of such critical
vertex triggers an event, which starts a new flow volume and
causes the previous flow volume to end. When separating the
input into strips, the information about the previous critical
vertex and, hence, the start vertex of a new flow volume is lost.
In other words, a parallelization would cause significant data
dependencies requiring substantial synchronization efforts and,
hence, would basically consume all possible benefits gained
by a parallel execution. Consequently, we have chosen to keep
the sweep plane method sequential and do not suggest any
parallelizations for this step.

3) Integrating Bottlenecks: The final step of the graph
construction is the integration of so-called bottlenecks. These
are needed to consider liquid flows with respect to time.
Without the consideration of time, liquids would touch every
reachable surface of the object immediately. But of course,
liquids needs time to spread, especially when it goes through
narrow channels. For that purpose, it is essential to detect all
narrow channels of an object in order to limit the liquid flow
speed. Such narrow channels are referred to as bottlenecks.

1

3456

7 8

9

1011

12

13

14 15

16

22

(a) Initial decomposition.

1

3456

7 10

11

1213

14

16

17 18

19

22

15

8 9

(b) Decomposition after bottleneck integration.

Fig. 5: Integration of bottlenecks into the volumetric decomposition.

(a) Initial reeb graph. (b) Reeb graph after bottleneck integration.

Fig. 6: Influence of bottleneck integration to the reeb graph.

For the purpose of detecting bottlenecks, which are defined
as the shortest loop round a narrow channel, an algorithm
can be employed which creates a distance field (using the
Dijkstra algorithm) in order to find the shortest path between
two nodes in a graph. Starting from one vertex of the mesh,
its neighbors are added to the distance field, along with
their neighbors, until the given circumference is reached. A
bottleneck is found whenever the neighborhood of a newly
inserted vertex fulfills a certain criterion.

As discussed in Section II-B, the flow volumes and their
relations are represented by the reeb graph. Bottlenecks are
found and represented as lists of vertices. For the simulation,
their position with respect to the flow volumes is relevant.
Therefore, the bottlenecks need to get integrated into the reeb
graph.

There exist basically two types of bottlenecks, horizontal
and vertical bottlenecks, as illustrated in Fig. 5a (bottlenecks
are depicted as small elipses). Vertical bottlenecks can only
appear inside of a volume, therefore a split of the volume
is indispensable. Horizontal bottlenecks can either appear
between two volumes or inside a volume. In case they appear
inside a volume, the volume needs to be split, otherwise
the respective node connection just needs to be marked as a
bottleneck connection. This bottleneck integration significantly
influences the flow volumes, as seen in Fig. 5b. The influence

to the reeb graph is shown in Fig. 6. Fig. 6a shows the reeb
graph before bottleneck integration. The nodes with dashed
lines correspond to volumes which need to be split. Fig. 6b
shows the reeb graph after splitting. The dashed lines show
the newly introduced bottleneck connections, through which
the liquid flow is limited.

This whole process of bottleneck integration is especially
important, considering that empirical evaluations have shown
that for a BIW, typically more than 3000 of such bottlenecks
are detected. This causes the amount of flow volumes to
increase heavily and takes up to 50% of the whole reeb graph
generation run time.

For the purpose of parallelizing this process, the bottleneck
integration is split into two basic methods: The volume split-
ting and the volume connecting. Algorithm 4 sketches the
basic algorithm which can be executed in parallel. A map
M of volumes V to be split by their associated bottlenecks
B is stored (see Line 1-3) . While iterating through the map,
the volume vi is split by its associated bottleneck b (Line 5).
The resulting volumes are stored in the list Lvs , which is then
integrated into the volume list LV (Line 6). Since LV is a
global container, which stores all volumes sorted by ascending
z-levels, the write to this container needs to be sequential and,
hence, locked.

After the volumes are split, they need to be connected to

Algorithm 4 Split volumes by bottlenecks

1: LV ← list of all volumes V
2: B ← list of all detected bottlenecks
3: M ← map of all volumes V with associated bottlenecks

B
4: for each element e ∈M do
5: Lvs ← split v of e by associated bottleneck b
6: integrate vs into LV

7: end for

their respective upper and lower volumes. This is sketched in
Algorithm 5. While iterating through all splitted volumes LVs

(see Line 1-2), a given splitted volume vs is first connected to
the upper volumes and then to its lower volumes (Line 3-4).
Since it might happen that the upper or lower volumes of vs
were also splitted, the actual setting of the connection needs
to be locked in order to avoid race conditions.

Algorithm 5 Connect splitted volumes

1: LVs
← list of all splitted volumes Vs

2: for each splitted volume vs ∈ LVs do
3: connect vs to upper volumes
4: connect vs to lower volumes
5: end for

Both algorithms can be executed in parallel and, by this,
significantly speed up the process. Evaluations summarized in
the next section, confirm this improvement.

IV. EXPERIMENTAL EVALUATIONS

In order to evaluate the performance of the proposed parallel
scheme, a range of experiments was conducted whose results
are summarized in this section. The following subsection
shows the speedup obtained for the reeb graph construction
alone. Afterwards, the speedup obtained for the entire simu-
lation is presented.

A. Speedup for the Reeb Graph Construction

To evaluate the scalability of the methods in terms of input
size and number of execution cores, data sets composed of
different numbers of triangles were executed employing a
range of up to 16 cores. Table II shows the data sets considered
for the experiments. The number of triangles refers to the size
of the input triangular surface mesh as introduced in Section I.
The considered data sets are typical data sets used in the
automotive industry: Spare wheel case, liftgate, and cabin are
car assemblies (i.e. car parts), while BIW (Body In White)
refers to an entire car body.

TABLE II: Considered data sets.

Spare Wheel Case Liftgate Cabin BIW
triangles 60k 200k 850k 3M

All experiments have been executed on a two socket
Intel Xeon E5-2660 v3. The source code was compiled
with GCC 5.4.0 with optimization level -O3 and executed
on Ubuntu 16.04. Additionally, a fill-socket-first policy was
adopted. We are comparing both, the outer parallel layer and
the additional inner parallel layer (as introduced in Section
III-A and Section III-B, respectively) with respect to speedup.

Fig. 7a shows the obtained speedup without including the
inner parallel layer. The values show that for all considered
test cases, this basic parallel approach results in a significant
speedup. However, for smaller data sets the efficiency drops
exceedingly when increasing the number of cores (e.g. for
the spare wheel case 16 cores yield the same speedup as 8
cores). This is caused by the fact that, for smaller data sets, the
time spent on reeb graph construction is proportionally smaller
compared to bigger data sets and shifts more towards the
actual simulation. Hence, some threads are just busy waiting
after completing their respective reeb graph construction until
the simulation of the preceding step is completed. For the
entire car body (BIW), a speedup of 12.3 was achieved when
employing 16 cores.

Fig. 7b shows the speedup obtained when additionally
including the inner parallel layer. The values show that in
almost all the considered test cases, this approach yields an
additional speedup compared to using only the basic parallel
scheme. Only for the smallest data set, the spare wheel case,
this approach does not excel, particularly when employing
higher number of cores. For the largest data set, the BIW,
a speedup of 14.6 was achieved when using 16 cores.

The presented results show that the introduced methods
yield significant speedups for all ranges of input sizes when
employing a smaller number of cores. For bigger data sets,
also a higher number of cores scales well. However, a higher
number of cores also introduces an overhead for smaller data
sets resulting in less efficiency for the considered smaller test
cases.

B. Speedup for the Entire Simulation

To show the improvements gained for a typical industrial
automotive use case, we are also showing the speedup in
absolute times of the entire simulation (i.e. all steps listed
in Table I) gained for a BIW. The BIW is composed of 2.5
million triangles, the simulation is using 72 discrete time steps
of 5◦ rotation each. Fig. 8 shows the timings in hours received
for the BIW, including both, the inner parallel layer and the
outer parallel layer. While a sequential simulation consumes
almost 6 days, the parallel simulation employing 16 cores can
be conduced within 13 hours.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a parallel scheme for a elec-
trophoretic deposition simulation tool for shared memory
architectures. Starting from a sequential architecture, potential

2 4 8 16

0

2

4

6

8

10

12

14

Cores

Sp
ee

d
u

p Spare Wheel Case

Engine Hood

Cabin

BIW

(a) Without including the inner parallel layer.

1 2 3 4

0

2

4

6

8

10

12

14

16

Cores

Sp
ee

d
u

p Spare Wheel Case

Engine Hood

Cabin

BIW

(b) With including inner parallel layer.

Fig. 7: Speedup of the parallel reeb graph construction scheme.

1 2 4 8 16

0

20

40

60

80

100

120

140

160

Cores

R
u

n
ti

m
e

(h
)

BIW

Fig. 8: Speedup of the entire simulation in absolute execution time.

parallelism was unveiled in the process of reeb graph construc-
tion. In order to speedup this construction, two parallelization
layers where introduced which were implemented in C++
employing OpenMP.

The presented methods yield significant speedups for the
reeb graph construction for both, smaller as well as larger data
sets. For an entire car body, a speedup of 14.6 was achieved
for the reeb graph construction when employing 16 cores. The
execution time of the entire simulation could be reduced from
almost 6 days to 13 hours for a typical automotive industry
use case where a BIW is considered.

Future work includes a parallel implementation for dis-
tributed memory architectures, as well as improved scheduling
methodologies to achieve further speedups.

ACKNOWLEDGMENT

This work has been supported by the Austrian Research
Promotion Agency (FFG) within the project “Industrienahe
Dissertationen 2016” under grant no. 860194.

REFERENCES

[1] L. Besra and M. Liu, “A review on fundamentals and applications of
electrophoretic deposition (epd),” Progress in Materials Science, vol. 52,
no. 1, pp. 1 – 61, 2007.

[2] F. N. Jones, M. E. Nichols, and S. Peter Pappas, “Electrodeposition
coatings,” in Organic Coatings: Science and Technology, 08 2017, pp.
374–384.

[3] H. K. Versteeg and W. Malalasekera, An introduction to computational
fluid dynamics: the finite volume method. Pearson Education, 2007.

[4] C. Chu, “Computational fluid dynamics,” in Numerical Methods for
Partial Differential Equations, 1979, pp. 149 – 175.

[5] G. Strang and G. J. Fix, An analysis of the finite element method.
Wellesley-Cambridge Press, 1988.

[6] M. Schifko, S. Xinghua, and K. Kazumasa, “Enhanced dip paint
simulation at the very first milestone of car development,” JSAE Annual
Congress, vol. 99, pp. 5–9, 2013.

[7] M. Schifko, H. Steiner, H. Mohri, and C. Bauinger, “Enhanced e-coating
- thickness plus gas bubbles, drainage and buoyancy force,” SAE World
Congress and Exhibition, pp. 1–9, 2016.

[8] T. J. Baker, “Mesh adaptation strategies for problems in fluid dynamics,”
Finite Elements in Analysis and Design, vol. 25, no. 3, pp. 243 – 273,
1997.

[9] J. F. Thompson, “Grid generation techniques in computational fluid
dynamics,” American Institute of Aeronautics and Astronautics, vol. 22,
no. 11, pp. 1505 – 1523, 1984.

[10] B. Strodthoff, M. Schifko, and B. Juettler, “Horizontal decomposition
of triangulated solids for the simulation of dip-coating processes,”
Computer-Aided Design, vol. 43, pp. 1891–1901, 2011.

[11] H. Doraiswamy and V. Natarajanb, “Efficient algorithms for computing
Reeb graphs,” Computational Geometry, vol. 42, pp. 606–616, 2009.

[12] J. Milnor, “Morse theory.” Princeton University Press, vol. 51, 1963.
[13] K. Verma, K. Szewc, and R. Wille, “Advanced load balancing for SPH

simulations on multi-GPU architectures,” in IEEE High Performance
Extreme Computing Conference, 2017, pp. 1–7.

[14] P. Zaspel and M. Griebel, “Massively parallel fluid simulations on
Amazon’s HPC Cloud,” in First International Symposium on Network
Cloud Computing and Applications, 2011, pp. 73–78.

[15] J. Nievergelt and F. P. Preparata, “Plane-sweep algorithms for intersect-
ing geometric figures,” Communications of the ACM, vol. 25, 1982.

[16] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-
memory computational geometry,” in IEEE 34th Annual Foundations of
Computer Science, 1993, pp. 714–723.

[17] H. Kriegel, T. Brinkhoff, and R. Schneider, The combination of spatial
access methods and computational geometry in geographic database
systems. Springer Berlin Heidelberg, 1991, pp. 5–21.

[18] M. T. Goodrich, “Intersecting line segments in parallel with an output-
sensitive number of processors,” in First Annual ACM Symposium on
Parallel Algorithms and Architectures, ser. SPAA ’89. ACM, 1989, pp.
127–137.

[19] M. McKenney and T. McGuire, “A parallel plane sweep algorithm
for multi-core systems,” in International Conference on Advances in

Geographic Information Systems. ACM, 2009, pp. 392–395.

