Computer-Aided Design for Quantum Computation

(Special Session Summary)

Robert Wille!

Austin Fowler?

Yehuda Naveh?

lInstitute for Integrated Circuits, Johannes Kepler University, Linz, Austria
2Google Inc. Santa Barbara, USA
3IBM Research — Haifa, Israel
robert.wille@jku.at, agfowler@google.com, naveh@il.ibm.com

ABSTRACT

Quantum computation is currently moving from an aca-
demic idea to a practical reality. The recent past has seen
tremendous progress in the physical implementation of cor-
responding quantum computers — also involving big players
such as IBM, Google, Intel, Rigetti, Microsoft, and Alibaba.
These devices promise substantial speedups over conven-
tional computers for applications like quantum chemistry,
optimization, machine learning, cryptography, quantum sim-
ulation, and systems of linear equations. The
Computer-Aided Design and Verification (jointly referred as
CAD) community needs to be ready for this revolutionizing
new technology. While research on automatic design meth-
ods for quantum computers is currently underway, there is
still far too little coordination between the CAD community
and the quantum computation community. Consequently,
many CAD approaches proposed in the past have either ad-
dressed the wrong problems or failed to reach the end users.
In this summary paper, we provide a glimpse into both sides.
To this end, we review and discuss selected accomplishments
from the CAD domain as well as open challenges within
the quantum domain. These examples showcase the recent
state-of-the-art but also outline the remaining work left to
be done in both communities.

1. INTRODUCTION

Quantum computations [20] promise substantial speedups
over conventional computers for certain problems. This is
because, in contrast to the bits of a conventional computer
which can be either 0 or 1, the qubits of a quantum com-
puter can be in an arbitrary superposition of both. Su-
perposition serves as the basis for so-called quantum paral-
lelism, which, in combination with other quantum mechani-
cal effects such as entanglement and interference, allows for
exponential speed-ups — in particular for applications like
quantum chemistry, optimization, machine learning, cryp-
tography, quantum simulation, and systems of linear equa-
tions.

While the theoretical power of quantum computation has
already been known for a while (e.g., through the seminal
work of Shor [30] showing that an important problem such
as factorization can be solved in polynomial time on a quan-
tum computer), actual quantum computers hardly exist yet.
But the corresponding concepts are currently moving from
an academic idea to a practical reality. In fact, the recent
past has seen tremendous progress in the physical implemen-
tation of quantum computers. For example, IBM launched
IBM @ [1], the first publicly available quantum processor,
accessible through a cloud service. While the first processors
(launched in 2017) started with 5 qubits, these have now in-
creased to 20 qubit quantum processors — and a 50-qubit
processor is reportedly being tested. Similarly, Google is
working on a 72 qubit chip that it hopes will be able to
demonstrate quantum advantage. Also additional big play-
ers such as Intel, Rigetti, Microsoft, and Alibaba heavily
invest in quantum computation research.

The Computer-Aided Design and Verification (jointly re-
ferred as CAD) community needs to be ready for this rev-
olutionizing new technology. While research on automatic
design methods for quantum computers is currently under-
way, there is still far too little coordination between the CAD
community and the quantum computation community. Con-
sequently, many CAD approaches proposed in the past have
either addressed the wrong problems, or failed to reach the
end users. In this paper, we provide a glimpse into both
sides: techniques and ideas recently proposed within the
CAD domain as well as open challenges within the quantum
domain. As covering all aspects of CAD for quantum compu-
tation certainly is beyond the scope of this summary paper,
we focus on a selection of corresponding issues, namely

e recent accomplishments from the CAD community on
data-structures and methods for the design of quantum
computers,

e current attempts to build a reliable large-scale quan-
tum computer and the resulting challenges, and

e challenges in the verification of quantum computers
through the lenses of conventional verification method-
ologies.

These issues showcase the recent state-of-the-art in the de-
sign of quantum computers but also outline the huge amount
of work left to be done. Moreover, they also illustrate how
the CAD community can help in these endeavors and where
open potential is still available.

S =H O = 9O = O
o 9O = = O O —~
©c o o o —~ —~ — —~
r ! . .
00010 3 0 310 & 0 F
0013 0 3 058 0 £ 0
010/ 0o F ozt 0 F o
! . .
01110 5 0 3,0 35 0 3
100[0 5t 0 340 £ 0 3
—i —i ! —
1017070:% 0?10
110|520 £ 05 0 3 0O
1o & 0 350 5 0 3
(a) Matrix (b) Decision diagr.

Figure 1: Matrix and dec. diagr. of a 3-qubit computation

2. DATA-STRUCTURES AND METHODS
FOR QUANTUM COMPUTATION

In the past decades, the conventional CAD community
was frequently faced with tremendously complex challenges
that often required the efficient consideration of problems of
exponential (or even larger) size. In order to tackle those, re-
searchers and engineers developed sophisticated CAD meth-
ods employing, e.g., data-structures based on decision dia-
grams or powerful reasoning engines. In contrast, many de-
sign problems in the quantum domain are still addressed
in a rather straight-forward fashion, e.g., by exponential
array-based descriptions or enumerative search algorithms.
This section illustrates how these established concepts from
the conventional design of circuits and systems can be ap-
plied to improve the design of quantum computers. To
this end, two examples are considered: (1) Compact data-
structures that may allow to represent quantum computa-
tions in a less than exponential fashion and (2) methods for
maping quantum functionality to certain quantum architec-
tures in a fashion that is more efficient than enumeration or
random searches.

2.1 Data-structures for Quantum Computation

Quantum computations obviously differ significantly from
conventional computations. Instead of Boolean bits, they
rely on so-called qubits which can assume not only the val-
ues 0 and 1 but also superpositions of them. More for-
mally, a qubit is a two-level quantum system which can
be described by a two-dimensional complex Hilbert space.
The state of a qubit can be denoted by a state vector (g),
where o and 8 are complex numbers representing the ampli-
tudes of the current state with respect to the basis states |0)
and 1), respectively, and where a normalization constraint
|a? + |8]> = 1 must hold. If n > 1 qubits are involved, the
quantum state is defined by the tensor product of the respec-
tive single-qubit state spaces — leading to a normalized vec-
tor of dimension 2". Similarly, operations on quantum states
can be represented by unitary matrices of size 2" x 2. As
an example, Fig. 1la shows a quantum operation over n = 3
qubits represented by a 2% x 22 = 8 x 8 unitary matrix.

Hence, the simplest way to define a data-structure for
quantum computation is to straight-forwardly represent the
state vectors and unitary matrices in terms of 1-dimensional
and 2-dimensional arrays, respectively. But since those rep-
resentations grow exponentially with the size of the quantum
systems (i.e., the number n of qubits), they quickly become

infeasible. This can be observed, e.g., in corresponding ap-
plications such as [11, 33, 16] which rely on array represen-
tations and, hence, are only applicable for quantum compu-
tations with a rather small number of qubits.

Motivated by that, alternative representations are cur-
rently investigated. Here, data-structures based on decision
diagrams are considered a promising approach [34, 35, 24].
They are designed to exploit redundancies and, by this, gain
a more compact representation that is much smaller in many
practically relevant cases. This is accomplished by repre-
senting a state vector and/or a unitary matrix in terms of
a directed acyclic graph. For example, sub-matrices which
occur multiple times are represented by a shared graph struc-
ture.

To illustrate that, consider Fig. 1b which shows a deci-
sion diagram-based representation of the unitary matrix of
Fig. 1a. To obtain that, the matrix is partitioned, i.e., the
2™ x 2™ matrix (represented by the top node) is split into four
sub-matrices of dimension 2"~ x 2"~ (represented by the
top node’s successors). This is recursively continued until
only single matrix entries (represented by a terminal node
or O-stubs representing 0-entries) remain. Doing this parti-
tioning allows for representing (structurally) equivalent sub-
matrices by the same (shared) graph structure. For example,
the top-left matrix and the bottom-left matrix (represented
by the first and third successor) are structurally equivalent,
i.e., differ only by the factor —¢ in their respective matrix
entries. Hence, both sub-matrices are represented by the
same node, while the differences in the factor is represented
by corresponding edge weights (—i¢ in case of the third suc-
cessor; if no edge weight is annotated, the factor of 1 is
assumed). These shared graph structures frequently allow
to represent a unitary matrix in a much more efficient fash-
ion than, e.g., by a complete 2-dimensional array. In fact,
cases have been investigated where this yields a polynomial
or even linear rather than an exponential representation of
quantum computations.

Such data-structures eventually can help with several de-
sign tasks in quantum computation. First applications con-
firming that include, e.g., synthesis [21, 23, 41], verifica-
tion [36, 22], and simulation [40]. In particular for simu-
lation, this recently yielded impressive speed-ups, where a
solution based on decision diagrams was able to simulate
certain benchmarks in minutes, while other simulation ap-
proaches required hours or even days'. Moreover, the data-
structure can often be used in a “black box” fashion, i.e., the
details of the representation can be ignored and only the ac-
tually desired functionality has to be instantiated through
proper interfaces (e.g., by providing a quantum circuit in
an established quantum assembly language). Corresponding
implementations of such a data-structure and its interface
can be found at http://iic.jku.at/eda/research/quantum_dd.

2.2 Methods for the
Mapping to Quantum Architectures

One frequently occurring task in the field is to map a given
quantum functionality (usually given in terms of a quantum
circuit diagram and/or provided by corresponding languages
such as Scaffold [4], Quipper [12], or OpenQASM [7]) to a
corresponding quantum architecture. In the following, this
is illustrated by means of IBM QX architectures. Those have

'However, please note that the performance of the
data-structure often depends on the characteristics of the
benchmark and the applied method. Developing an under-
standing what kind of representation best works for what
kind of quantum computation is still an open research task.

pawuban

(a) Coupling map for IBM QX3 architecture

lo I3 la

| |
I |

qo0 % qo Qo + qo H qo0

Q o—— O Q1+ ¢ {HHPH fQ i G2

qQ I I qQ Q2 P q2 a 41 a3 A1 ’ISW q3
I I

g3 T q3 Q3 g3 = aive SR Q1

o —PpH—a Quea D u

ds 41_“_17 45 Q54+ g5 @ g5

go g1 192 g3 191 go g1 92 93 94

(b) Original circuit (c) Mapped circuit

Figure 2: Mapping of a circuit to the IBM QX3 architecture

recently been released by IBM and, by a cloud access, can be
utilized publicly. However, those architectures do not allow
arbitrary interactions (i.e., operations), but are limited as
described by a so-called coupling graph shown in Fig. 2a for
the 16-qubit architecture IBM QX3. Here, nodes indicate
physical qubits (denoted by Q;) and arrows indicate the al-
lowed interactions. More precisely, two-qubit operations can
only be performed on qubits which are adjacent in the graph
and where the edge direction goes from the control qubit to
the target.

Now, having a quantum functionality over n logical qubits
qo,q1,---Qn—1, the problem is how to map this to the m
physical qubits Qo, Q1,...Qm—1 of the architecture. More-
over, since there usually does not exist a mapping solution
that satisfies all constraints given by the coupling graph, the
mapping between logical qubits and physical qubits might
change during the execution. To this end, so-called Hadamard
(H) and SWAP gates can be applied to flip the direction
of control and target qubits and to change the mapping
of the logical qubits, respectively. In other words, these
gates can be used to “move” the logical qubits on the actual
architecture until the constraints are satisfied. For exam-
ple, the quantum circuit shown in Fig. 2b? cannot directly
be mapped to the IBM QX3 architecture, since the corre-
sponding coupling map does not allow, e.g., the interaction
between ¢1 as a control and go as a target in the second
gate as well as the interaction between ¢; and ¢4 at all in
the third gate. Applying H and SWAP gates as shown in
Fig. 2¢3 resolves this problem.

However, inserting the additional gates to satisfy the con-
straints imposed by the coupling graph drastically increases
the number of gates — which in turn significantly increases
the probability of errors during the computation. Hence,
minimizing the number of H and SWAP gates is a pri-
mary objective. This constitutes a typical combinatorial
task which is very similar to what frequently has to be ad-
dressed in the design of conventional circuits and systems.
Accordingly, the CAD community has started to develop so-
lutions which tackle this problem by exploiting efficient rea-
soning methods established in conventional circuit design.
Initially, this has been done for so-called nearest neighbor
architectures (which impose similar constraints and where

2The control and target qubit of the gates are represented
by e and @, respectively.

3 A Hadamard gate is represented by a box labeled H, while
each of the two target qubits of a swap gate is represented
by X.

data

—— ——t # measure

Figure 3: Layout of the 72 qubit “Bristlecone” chip

also SWAP gates have been applied to move qubits together
in order to satisfy physical constraints), e.g., in [38, 28, 37,
29, 13]. Recently, also constraints for IBM architectures
have been considered [39]*. They already can outperform
solutions from the quantum community (such as provided
by IBM’s own SDK QISKIT [3]) which rely on solutions
based on enumerations or random searches [3] rather than
sophisticated methods such as A*, reasoning, or constraint-
based engines regularly employed by the CAD community.

3. BUILDING A RELIABLE
LARGE-SCALE QUANTUM COMPUTER

Researchers are currently working to build reliable large-
scale quantum computers. In this section, we briefly de-
scribe the current status of Google’s project and the asso-
ciated challenges. The 72 qubit “Bristlecone” chip is geo-
metrically laid out as shown in Fig. 3. This chip has only
nearest-neighbor interactions but is large enough to handle,
one day, a distance 5 surface code [14] in two different posi-
tions — enabling alternation between these two positions to
facilitate the suppression of leakage [10, 9].

However, many aspects of the system need to be improved
to run the surface code. For example:

e First, it is still common for a small number of wires on
each chip to not work. The wiring yield needs to be
raised to 100% at least part of the time.

e Second, the tunable-frequency qubits we use have
frequency-dependent decoherence times, and unwanted
two-level systems (TLSs) resulting from, we believe,
contaminants on the chip surface that can severely re-
duce the decoherence times over hundreds of MHz of
continuous frequency range. Such frequency ranges
must be avoided when bringing neighboring qubits closer
in frequency to execute 2-qubit gates. TLSs are not
static in time, drifting both in and out of existence and
to different frequencies, so finding operating frequency
ranges for all pairs of qubits is extremely challenging.

e Third, the lines delivering microwave signals to drive
gates from room temperature electronics racks to the
chip at 10mK at the bottom of a dilution refrigerator
are not 100% reliable, and with over 200 lines for the
72 qubits, it is not uncommon for a wire to be broken.

4Recently, IBM even conducted a Developer Challenge to
this topic [2]. A description of the winning approach is avail-
able in [42].

e Fourth, the final set of electronics to generate and
shape these microwaves, at time of writing, is only just
now being calibrated and connected to the fridge.

e Finally, high-fidelity multi-qubit simultaneous readout
using low amounts of hardware remains an outstanding
challenge. Currently, most testing and calibration is
done reading out just a single qubit at a time. This as-
pect of the system needs to be significantly improved,
although it should be noted that multi-qubit readout
has been achieved by our group in the past.

All of the above issues are being tackled by capable teams
of people, and we are optimistic that all of them can be
solved in the short to medium term. Besides that, we also
hope that accomplishments and expertise from the CAD
community may contribute towards the efficient solution of
these issues.

4. VERIFYING QUANTUM COMPUTERS

Verification of the quantum computer [18] is an impor-
tant part of building the machine. It has a lot of common-
alities with the verification of conventional computers, but
also has additional aspects which are unique to the nature
of the quantum computer. Generally speaking, we can cat-
egorize the challenges arising from verification of quantum
computers into three:

e Logic verification, i.e., whether the hardware design is
logically equivalent to its specification.

e Quantum verification, i.e., whether the hardware in-
deed performs quantum computation logic.

e Physical verification, i.e., whether the hardware imple-
mentation performs as intended.

In the following sections, those issues are briefly covered.

4.1 Logic Verification

Logic verification does not pose a great challenge for the
near future, as near-term machines are likely to have no
more than a few hundreds of qubits, and no complex design
structures are being planned for this time period. Hence,
logic verification generally amounts to inspection of the de-
sign, and simple checks that all intended connectivities as,
e.g., in the architecture of Fig. 2(a), are in place.

4.2 Quantum Verification

Verifying the Process is Quantum

Quantum verification is an inherent quantum computation
challenge which does not have a conventional analog. Here,
we are interested whether the result we get from running
our machine utilizes in any real way the quantum mechani-
cal aspects of computation. Naively, one could question why
this should be interesting. After all, if we get the result we
wanted, why should we care how we got it. However, deeper
consideration shows that this indeed is a fundamental ques-
tion to answer for at least two reasons. From a theoretical
viewpoint, it is crucial to show that the added computa-
tional power promised by quantum computation can indeed
be realized by a physical system. In its deepest sense, this
is a test of our understanding of quantum mechanics. A
preliminary to pass this test is that we can verify that the
computation was quantum, and not an ingeniously fast im-
plementation of a conventional (digital or analog) computer.
Second, from a practical point of view, building a quantum

computer requires tremendous amounts of efforts. If at the
end, the result we get cannot be verified to be of quan-
tum nature, than those efforts have mostly been wasted, as
we could likely have built the same conventional computer
which gave us the results at much lesser efforts.

Verifying the Result is Correct

Related to quantum verification is the question of validating
the output of a presumably quantum (and presumably cor-
rect) computer. This is again an open challenge with deep
theoretical roots. The question amounts to how do we ver-
ify that any given result of an algorithm run on a quantum
computer is correct. For some classes of problems the an-
swer is trivial. For example, for NP-hard problems, as well
as for the Shor’s and Grover’s algorithms, the correctness of
the results can be verified in polynomial runtime on a con-
ventional computer. Similarly, results of optimization prob-
lems [8] can be verified for correctness (i.e., that they satisfy
all input constraints) in polynomial time on a conventional
computer, and if in addition the value of the optimization
function obtained from the computer is lower than for any
previously obtained solution, then we have reached our goal
of finding a globally better solution. Thirdly, there may be
problems that can be verified in the physical laboratory. For
example, if the quantum computer, when solving a quan-
tum chemistry problem [15], suggests a particular design for
a molecule, we may go ahead and verify in the laboratory
that the molecule can be synthesized as suggested, and that
its parameters conform with the computation.

However, for a whole set of problems such verification
cannot be readily done and in fact remains a serious open
challenge. Such problems include sets of the hardest prob-
lems known. For example, sampling problems such as Boson
sampling [32] are apparent candidates for realizing quan-
tum advantage for the first time. That is because they are
particularly hard to solve on conventional computers, even
for relatively small problem sizes, but adjust well to quan-
tum sampling algorithms. However, these same virtues make
their verification extremely challenging. Suppose a 60-qubit
quantum machine came up with some answer to the prob-
lem. How do we verify that the answer is correct? After
all, the best one can do to solve an n-qubit quantum sam-
pling problem on a conventional machine is to simulate the
quantum algorithm. Hence, with today’s conventional sim-
ulation limit of 56-qubits [26] (and this also on the largest
supercomputers available), one cannot know whether the re-
sult obtained from a quantum machine solving a 60-qubit
sampling problem is in fact correct.

Solution Approaches

There are a variety of theoretical approaches for solving the
above problems [18], but none is satisfactory in practice yet.
However, thinking of this from a conventional design au-
tomation point of view, the problem is not fundamentally
different from a conventional verification problem. For ex-
ample, when the next generation of a conventional computer
becomes available (either actual hardware, or at the design
stage), there is typically no computer available which can re-
liably verify each result that is obtained by the new design.
This is because of two reasons. First, the new design (e.g., an
IBM POWER 9 machine, or the Summit supercomputer),
is much stronger and faster than any predecessor. Second,
the shear results space is exponentially large and one can-
not just verify any result which is obtained by the newly
available computer. The practical way to solve this inherent
issue is twofold. First, invest as much as possible already in

verification at the design stage, covering as much of the logic
space as possible — in contrast to attempting to cover the re-
sults space. Second, use the most powerful machines from
the last predecessor generation to run for a very long time,
covering huge areas of this space. This twofold approach has
proved itself time and again, and is what allows us to con-
tinue developing modern microprocessors of unprecedented
complexity [31].

The conventional approach described above should be
adopted in the quantum regime as well. The first part, ver-
ifying the new processor already at the design stage, falls
back to logic verification. While we are not there yet (see
Section 4.1), we should start building methodologies and
tools to be ready to the time where logical design structures
for quantum chips start becoming complex. The second
part, verifying top-end chips with the newest hardware avail-
able, is a much more challenging task which still requires
a significant amount of theoretical and practical research.
The point is that the latest predecessor of a new quantum
chip is also a quantum computer. We are currently still
in the very first stages of understanding how to simulate a
quantum computer by using another quantum computer [5].
Nevertheless, as this is going to be a necessity, we expect
this line of research to grow rapidly, resulting in robust al-
gorithms and subsequent methodologies for performing such
quantum-by-quantum verification. As the field evolves, we
expect it to lead to ways to reliably verify both aspects —
of the quantumness of the process, and the correctness of
results.

4.3 Physical Verification

Physical verification lies between the two extremes of quan-
tum verification and logic verification. The main need for
physical verification is the ubiquitous presence of noise in
the entire lifetime of the quantum circuit. Noise events may
appear at the initialization stage, at the application of any
type of gate, at readout, and anywhere in between. Noise is
crucial to analyze for two different reasons. First, we need to
understand the overall behavior of our hardware. In partic-
ular, at the design phase, we need to use this understanding
to decide between design alternatives. Second, near-term us-
ages of quantum machines will be noise-limited and actual
applications would be of so-called Noisy Intermediate-Scale
Quantum (NISQ) type [27]. This means that any near-term
application would need to know the noise behavior of the
underlying hardware in order to choose the exact type and
parameters of the algorithms it will run [8, 15]. In addi-
tion to those pressing issues, and looking further into the
future, fault-tolerant quantum computation would be based
on huge on- and off-chip infrastructure for error correction.
Designing the error correction schemes would again strongly
rely on a very detailed understanding of the noise processes
in the hardware.

In the following, we discuss directions towards addressing
those issues.

Simulation and Emulation

Two ingredients are needed in order to understand the phys-
ical hardware. First, is a set of physical noise models at the
right level of abstraction. Here, we have a plethora of mod-
els, ranging from very specific, hardware-dependent noise
processes, up to abstract, mathematical models specified at
the same language of the quantum program [20]. Second,
we need algorithms which, given the noise models and pos-
sibly a quantum circuit, can simulate or emulate the runtime
behavior of the system in order to give us the insights we
need.

The exact description of the hardware behavior by, e.g.,
state vector simulators, is lower-bounded by
single-exponential complexity in the number of qubits. If
built naively, runtime can easily become double exponential
when describing noise in the density matrix formalism [20].
In order to manage this runtime complexity, specific algo-
rithmic schemes can be deployed. The density-matrix for-
malism can be abandoned in favor of quantum trajectories
formalisms [6], which reduces the double exponential run-
time to a single exponential while keeping the exact func-
tionality. The cost here is the need to write and maintain a
much more complex algorithm. Further, using sophisticated
data structures as presented in Section 2.1, while still con-
serving the single-exponential runtime, may result in huge
performance gains on specific sets of problems. Lastly, mak-
ing use of modern computational physics approaches such
as tensor networks [25], may again drastically reduce run-
time by taking hold of hidden patterns in the inputs to the
simulator. All those advancements require complex software
building blocks and are a major new playground where ex-
pertise in building tools for exponential problems can be a
strong entry point. The conventional verification community
has long dealt with exponential problems and solutions (sat-
isfiability solvers, constraint satisfaction problems — CSP’s,
and binary decision diagrams to name a few), and can be of
substantial help in this new domain.

Whatever the technology for dealing with quantum simu-
lation, at the end, the problem is exponential and sooner or
later we will reach the limit of applicability of any exact ap-
proach (at least if run on a conventional computer). Hence,
in parallel to simulation we should start thinking about ways
to gain required knowledge on the system (the combined
hardware and intended applications running on it), while
giving up exact and complete knowledge. This leads us to
the field of quantum emulation — and in particular methods
of simulating the full system at the right level of abstrac-
tion. Emulation relies heavily on our ability to understand
and model the entire system at any given abstraction. This
again is a skill, coupled with tools and methodologies, devel-
oped and tuned over decades in the field of hardware veri-
fication. Thus, another natural and significant conventional
point of entry into the quantum verification regime.

Randomized Benchmarking and Quantum Tomography

One cannot discuss the area of physical verification without
mentioning two additional technologies widely used. Quan-
tum tomography [20] is used to verify in detail the very na-
ture of the quantum physical system. It is practical only for
very small systems. In contrast, random benchmarking [17]
is a highly scalable way of characterizing and calibrating
the overall behavior of a circuit — gates and qubits com-
bined. Here, long random sequences of gates are applied
in a way which leads to conventionally predictable results.
Comparing these expected results with the actual outcome
from the hardware provides a means for verifying the hard-
ware and calibrating it as necessary. A main challenge here
is how to choose the best set of sequences such that a par-
ticular verification task is achieved, while maintaining rel-
atively small sets of sequences that need to be run. This
challenge closely resembles the challenges behind automatic
test program generation for conventional hardware verifica-
tion. It appears CSP, the technology of choice for modeling
and solving this task [19], can charmingly fit the quantum
version as well.

5. CONCLUSIONS

We have briefly presented the exciting new field of quan-
tum design and verification through the prism of the great
sea of knowledge and methodologies existing with the con-
ventional CAD community. We hope this overview helps
bridging the gap between this and the quantum computation
community. We believe there is so much to gain from close
collaboration and mutual learning between the two commu-
nities and, hence, warmly advocate any steps taken towards
that goal.

6. ACKNOWLEDGMENTS

We thank Gadi Aleksandrowicz, Yael Ben-Haim, Alexan-
dru Paler, and Alwin Zulehner for their contributions to this
work. We also thank all researchers and collaborators which,
in the past years, worked with us on the development of the
approaches which have been reviewed in this paper. We ac-
knowledge use of IBM Q for this work. The views expressed
are those of the authors and do not reflect the official pol-
icy or position of IBM or the IBM Q team. This work has
partially been supported by the European Union through
the COST Action IC1405 and the Google Research Award
Program.

7. REFERENCES

1] IBM Q. https://www.research.ibm.com/ibm-q/. Accessed:
2018-08-08.

[2] QISKit Developer Challenge. https:
//ax-awards.mybluemix.net/#qiskitDeveloperChallengeAward.
Accessed: 2018-08-08.

[3] QISKIT SDK. https://qiskit.org/. Accessed: 2018-08-08.

[4] A.J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu,

A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, and
F. Chong. Scaffold: Quantum programming language. Technical
report, 2012.

[5] S. Bravyi, G. Smith, and J. A. Smolin. Trading classical and
quantum computational resources. Physical Review X,
6(2):021043, 2016.

[6] T. A. Brun. A simple model of quantum trajectories. American
Journal of Physics, 70(7):719-737, 2002.

[7] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta.
Open quantum assembly language. arXiv preprint
arXiv:1707.03429, 2017.

[8] E. Farhi, J. Goldstone, and S. Gutmann. A quantum
approximate optimization algorithm. arXiv preprint
arXiv:1411.4028, 2014.

[9] J. Ghosh and A. G. Fowler. A leakage-resilient approach to
fault-tolerant quantum computing with superconducting
elements. Phys. Rev. A, 91:020302(R), 2015. arXiv:1406.2404.

[10] J. Ghosh, A. G. Fowler, J. M. Martinis, and M. R. Geller.
Leakage and paralysis in ancilla-assisted qubit measurement:
Consequences for topological error correction in
superconducting architectures. arXiv:1306.0925, 2013.

[11] B. Giles and P. Selinger. Exact synthesis of multiqubit
Clifford+T circuits. Phys. Rev. A, 87(3):032332, Mar. 2013.

[12] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron. Quipper: a scalable quantum programming
language. In Conf. on Programming Language Design and
Implementation, pages 333-342, 2013.

[13] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. An
efficient conversion of quantum circuits to a linear nearest
neighbor architecture. Quantum Information & Computation,
11(1&2):142-166, 2011.

[14] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter.
Surface code quantum computing by lattice surgery. New J.
Phys., 14:123011, 2012. arXiv:1111.4022.

[15] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and
quantum magnets. Nature, 549(7671):242, 2017.

[16] N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels.
QX: A high-performance quantum computer simulation
platform. In Design, Automation and Test in Europe, 2017.

[17] E. Magesan, J. M. Gambetta, and J. Emerson. Scalable and

robust randomized benchmarking of quantum processes.

Physical review letters, 106(18):180504, 2011.

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

38]

(39]

[40]

[41]

[42]

Y. Naveh, E. Kashefi, J. R. Wootton, and K. Bertels.
Theoretical and practical aspects of verification of quantum
computers. In Design, Automation and Test in Europe, pages
721-730, 2018.

Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus,
and G. Shurek. Constraint-based random stimuli generation for
hardware verification. AI magazine, 28(3):13, 2007.

M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge Univ. Press, 2000.

P. Niemann, R. Wille, and R. Drechsler. Efficient synthesis of
quantum circuits implementing Clifford group operations. In
Asia and South Pacific Design Automation Conf., pages
483-488, 2014.

P. Niemann, R. Wille, and R. Drechsler. Equivalence checking
in multi-level quantum systems. In Int’l Conf. of Reversible
Computation, pages 201-215, 2014.

P. Niemann, R. Wille, and R. Drechsler. Improved synthesis of
Clifford+T quantum functionality. Design, Automation and
Test in Europe, 2018.

P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and

R. Drechsler. QMDDs: Efficient quantum function
representation and manipulation. IEEE Trans. on CAD,
35(1):86-99, 2016.

R. Oris. A practical introduction to tensor networks: Matrix
product states and projected entangled pair states. Annals of
Physics, 349:117-158, 2014.

E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh,

T. Magerlein, E. Solomonik, and R. Wisnieff. Breaking the
49-qubit barrier in the simulation of quantum circuits. arXw
preprint arXiv:1710.05867, 2017.

J. Preskill. Quantum computing in the NISQ era and beyond.
arXiv preprint arXiv:1801.00862, 2018.

M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum
circuits for linear nearest neighbor architectures. Quantum
Information Processing, 2010.

A. Shafaei, M. Saeedi, and M. Pedram. Optimization of
quantum circuits for interaction distance in linear nearest
neighbor architectures. In Design Automation Conf., pages
41-46, 2013.

P. W. Shor. Algorithms for quantum computation: discrete
logarithms and factoring. Foundations of Computer Science,
pages 124-134, 1994.

B. Sinharoy, J. Van Norstrand, R. J. Eickemeyer, H. Q. Le,

J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. Brown,
J. E. Moreira, et al. IBM POWERS processor core
microarchitecture. IBM Journal of Research and
Development, 59(1):2-1, 2015.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S.
Kolthammer, X.-M. Jin, M. Barbieri, A. Datta,

N. Thomas-Peter, N. K. Langford, D. Kundys, et al. Boson
sampling on a photonic chip. Science, page 1231692, 2012.

D. S. Steiger, T. Héaner, and M. Troyer. ProjectQ: an open
source software framework for quantum computing. arXiv
preprint arXiv:1612.08091, 2018.

G. F. Viamontes, I. L. Markov, and J. P. Hayes. Improving
gate-level simulation of quantum circuits. Quantum
Information Processing, 2(5):347-380, 2003.

S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo. An
XQDD-based verification method for quantum circuits. IEICE
Transactions, 91-A(2):584-594, 2008.

R. Wille, D. Grofle, D. M. Miller, and R. Drechsler.
Equivalence checking of reversible circuits. In Int’l Symp. on
Multi- Valued Logic, pages 324-330, 2009.

R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay,
and R. Drechsler. Look-ahead schemes for nearest neighbor
optimization of 1D and 2D quantum circuits. In Asia and
South Pacific Design Automation Conf., pages 292-297, 2016.
R. Wille, A. Lye, and R. Drechsler. Exact reordering of circuit
lines for nearest neighbor quantum architectures. IEEE Trans.
on CAD of Integrated Circuits and Systems,
33(12):1818-1831, 2014.

A. Zulehner, A. Paler, and R. Wille. An efficient methodology
for mapping quantum circuits to the IBM QX architectures.
IEEE Trans. on CAD, 2018.

A. Zulehner and R. Wille. Advanced simulation of quantum
computations. IEEE Trans. on CAD, 2018. Code available at:
http://iic.jku.at/eda/research/quantum_simulation/.

A. Zulehner and R. Wille. One-pass design of reversible
circuits: Combining embedding and synthesis for reversible
logic. IEEE Trans. on CAD, 37(5):996-1008, 2018.

A. Zulehner and R. Wille. Compiling SU(4) quantum circuits to
IBM QX architectures. 2019.

