
JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Design of Application-specific Architectures
for Networked Labs-on-Chips

Andreas Grimmer Student Member, IEEE, Werner Haselmayr Member, IEEE,
Andreas Springer Member, IEEE, and Robert Wille Senior Member, IEEE

Abstract—Labs-on-Chips implement laboratory procedures on
a single chip and are successfully used for chemical and biomed-
ical applications. A promising and emerging realization of such
chips are Networked Labs-on-Chips (NLoCs) in which small
volumes of fluids, so-called droplets, flow in closed channels of
sub-millimeter diameters. NLoCs allow for an incubation and
storage of assays over a long period of time and, hence, avoid
evaporation and unwanted reactions. To increase the flexibility,
effectiveness, and re-usability, network functionalities allow to
passively route droplets in channels and, hence, to dynamically
select operations depending on the executed experiment.

However, only manually designed architectures are considered
for NLoCs thus far. They frequently suffer from large execution
times and/or a high contamination of channels. To overcome these
drawbacks, we propose the consideration of application-specific
architectures for NLoCs. To this end, an automatic design method
is proposed which, for a given set of experiments as well as
constraints and objectives from the designer, is able to generate
an optimized NLoC architecture realizing these experiments.
Evaluations and case studies demonstrate the potential of the
proposed solution for design exploration. Moreover, we are able
to show that application-specific architectures are capable of
realizing experiments in just a fraction of the time needed by
architectures used thus far as well as with a substantially reduced
contamination.

Index Terms—Networked Labs-on-Chips, biochips, architec-
ture, design automation, satisfiability solvers.

I. INTRODUCTION

Advances in the microfluidic technologies have led to the
emergence of so-called Labs-on-Chips (LoCs) in order to
automate laboratory procedures in chemistry and molecular
biology [1]. An LoC is a microfluidic system that realizes one
or multiple experiments which are usually performed in a lab-
oratory (examples include PCR [2], protein crystallization [3],
nanoparticle synthesis [4], or cell encapsulation [5], [6]). By
this, LoCs allow for an automation of many chemical and
biological experiments and, hence, a faster analysis as well
as larger throughput while, at the same time, a significantly
lower fluid consumption is required.

In recent years, different technologies for LoCs have been
considered [7], [8]. The following two technologies are well
established:
• LoCs based on electrowetting on dielectric

(EWOD-based LoCs; often also referred to as Digital
Microfluidic Biochips, i.e. DMFBs; [9]) comprise a
two-dimensional electrical grid controlled by underlying
electrodes. This is illustrated in Fig. 1a. An activated
electrode generates an electric field, which allows to
“hold” discretized portions of liquids, so-called droplets,

Dispensing
ports

Mixing
operation

Detector

Droplets

Electrodes
(2D array)

Detector

Droplets

Electrodes
(2D array)

Actuated

Detector

Actuated
Droplets

Electrodes
(2D array)

Mixing
operation

Dispensing
port

(a) EWOD-based LoC [14]

Valve

Control channel External pressure

Flow channel

Control layer

Flow layer

(b) Flow-based LoC [15]

Fig. 1: Established LoC technologies

on a particular cell within the grid (as illustrated by
means of the light green droplet in Fig. 1a). By assigning
time-varying voltage values to turn electrodes on and
off, droplets can be moved around the grid (as illustrated
by the red droplet in Fig. 1a). By moving two droplets
onto the same cell, mixing operations can be conducted
(as illustrated by the green droplet and dark blue droplet
in Fig. 1a). This eventually provides a platform on
which operations such as mixing, heating, splitting,
or analyzing can be conducted and, hence, complete
experiments can be realized.

• A flow-based LoC (often also referred as microfluidic
Very Large-Scale Integration, i.e. mVLSI [10]) consists of
hundreds or even thousands of integrated microvalves [8],
[11], which are used to control the flow of liquids. Fig. 1b
illustrates the respective schematic of these chips: Each
flow-based biochip consists of a two-layer channel cir-
cuitry, where the control layer contains logic to trigger the
microvalves in order to either close or open a channel in
the flow layer. By combining and controlling the closing
and opening of multiple valves, complex operations, such
as merging, splitting, dispensing, and mixing [12], [13]
can be realized.

However, both technologies inherit significant disadvan-
tages: EWOD-based LoCs suffer from the evaporation of
liquids, the fast degradation of surface coatings, and its lack-
ing biocompatibility [16]–[20]. Flow-based LoCs require a
complex and costly multilayer fabrication process [20], [21].
Hence, an alternative to these two technologies has been
proposed in terms of Networked Labs-on-Chips (NLoCs, [22]–
[24]). Fig. 2 shows a schematic of this promising and emerg-
ing realization. The droplets flow in microchannels of sub-
millimeter diameters (triggered by pressure which is produced
by an external pump). The closed channels allow for an
incubation and storage of liquid assays over a long period
of time and, hence, avoid evaporation and unwanted reac-

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

Bifurcation

Detector
Module

Heater
Module

Mixer
Module

Pump

Fig. 2: Networked Labs-on-Chip

tions [7], [8]. Additional network functionalities enable the
designer to dynamically select the operations to be conducted
and, hence, to dynamically route a droplet to the operations
involved in an experiment. For example, the NLoC shown in
Fig. 2 enables the designer to decide whether droplets should
be heated or not, before they get analyzed by the detector
module.

This passive routing of droplets increases the flexibility, ef-
fectiveness, as well as re-usability of NLoCs and is controlled
by exploiting hydrodynamic forces. Experiments are realized
by defining multiple paths through which the droplets can
flow. These paths are built by bifurcations of channels, i.e. the
splitting of a channel in two or more successor channels.
When a droplet arrives at a bifurcation, it will flow along
the successor channel with the lowest hydraulic resistance
(defined by the channel’s geometry, e.g. the smaller the section
and the longer the channel, the higher the resistance; see [18],
[21], [23], [25]).

More precisely, the architecture of Fig. 2 contains a bi-
furcation after the mixer module. This bifurcation splits the
channel after the mixer module into two successor channels.
Assume that the hydraulic resistance of the successor channel
to the right is lower than those of the channel to the left.
When the pump now injects a droplet, the droplet gets mixed
by the mixer module, flows to the right at the bifurcation,
flows into the detector module, and eventually flows back to
the pump. However, a droplet itself increases the channel’s
hydraulic resistance and, therefore, temporarily “blocks” this
channel for following droplets. Consider again the bifurcation
from the architecture of Fig. 2. Additionally, assume that a
droplet already took the channel to the right and, therefore,
temporarily blocks this channel during its flow. A second
closely following droplet will flow into the channel to the
left because the channel to the right is blocked. Hence, the
second droplet additionally gets heated before it flows into
the detector module.

This principle of selectively blocking channels is used to
route droplets through the NLoC and, by this, to realize
different experiments. We demonstrate this blocking principle
in videos at http://www.jku.at/iic/eda/nloc using a physical

realization. Furthermore, a more detailed consideration of de-
termining a droplet sequence realizing the desired experiment
and especially checking whether an NLoC architecture indeed
allows for the realization of all experiments can be found
in [26], which is based on a discrete model presented in [27].

Having this technology, the problem remains how to design
the actual NLoCs so that indeed the desired experiments are
realized. For EWOD-based and flow-based LoCs, correspond-
ing automatic design solutions addressing e.g. issues such
as scheduling, binding, placement, and routing have already
been presented (see e.g. [14], [15], [28]–[34]). However, to
the best of our knowledge, no (automatic) design solution
exists for NLoCs yet. Up to now only manually designed
architectures have been considered and realized (see e.g. [22],
[35]). But designing an architecture which allows to execute
all experiments, considers the physical constraints, and is
optimized for the designer’s needs is a cumbersome task. Due
to this inherent complexity, the hand-crafted architectures are
often unsuited for the given applications and suffer from large
execution times (crucial for time-sensitive experiments) as well
as a high contamination.

In this work, we aim for overcoming these obstacles by
exploring the potential of NLoC architectures which go be-
yond the currently considered architectures. To this end, we
propose the consideration of application-specific architectures
which are particularly suited for a set of experiments to be
realized. In order to generate these application-specific archi-
tectures, an automatic method based on satisfiability solvers
(SAT-solvers, [36]) is introduced. The proposed method au-
tomatically generates architectures that are optimized with
respect to various physical constraints and/or design objectives
such as the number of required entities, maximally allowed
contamination, etc.

An evaluation and case studies demonstrate how the pro-
posed design method enables designers to explore various
alternative solutions with respect to different criteria so that,
eventually, they can choose the one which best fits to their
current settings and requirements. We further evaluate the per-
formance of the proposed design method and demonstrate the
superiority of the resulting application-specific architectures
compared to the currently used architectures. Finally, we show
how the proposed method is integrated in the overall design
flow.

The remainder of this paper is structured as follows:
The next section introduces the state-of-the-art in the
design of NLoCs. Afterwards in Sec. III, we motivate
application-specific architectures and introduce their notation
used in this work. The considered design task and our general
idea to solve this task is described in Sec. IV. Next, implemen-
tation details are provided in Sec. V. Results of our evaluations
and case studies are summarized in Sec. VI. Finally, the paper
is concluded in Sec. VII.

II. STATE-OF-THE-ART IN NLOC DESIGN

In a Networked LoC (NLoC, [22]–[24]), the droplets flow
in closed microchannels and are passively controlled by hy-
drodynamic forces. The flow driving the droplets through the

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

NLoC is generated by a hydrodynamic pressure produced by
a pump.

In order to realize an experiment, the droplet containing the
biological sample has to traverse a sequence of modules, which
include elementary operations such as droplet generation p (the
pump in combination with junctions is used for generating
droplets; details are reviewed in [37]), mixing m (mixes the
biological sample within a droplet), splitting s (breakup of
droplets), fusion f (the fusion of two or multiple droplets),
detecting d, or heating h1. To enable the traversal of a droplet
from one module to another, the modules have to be connected
by directed channels.

The design of the architecture (i.e. the determination of
the required modules and how these are connected) is done
manually thus far [22], [35]. However, when designing an
architecture, the designer not only has to ensure that the
architecture allows to execute all desired experiments but
also has to consider further physical constraints, which are
motivated by existing technologies. For example, two-way
bifurcations as applied in [22] restrict the number of successor
channels of a module to 2. Moreover, the architecture may not
contain cycles without including the pump, since they would
lead to undesired flow conditions. Besides these constraints,
further architectural characteristics such as channel depth,
number of modules, or contamination exists (since they heav-
ily depend on the considered experiment and/or designer, they
are discussed in more detail later in Sec. IV-A). Considering
all these constraints and parameters makes the design of NLoC
architectures a cumbersome task.

As a consequence, only rather simplistic architectures have
been considered thus far. The ring architecture as sketched in
Fig. 3a is the most frequent realization [22]. Here, a droplet
cyclically traverses the ring in order to execute operations
realized by modules. A module can either be executed or
skipped by the droplet2. In case the operation order defined
by the modules of the ring matches the required sequence of
operations of the experiment, the droplet has to traverse the
ring once. However, for many experiments it is very likely that
a droplet may be sent back to the pump before the experiment
is completed (e.g. when the order of the modules in the ring
is different to the order required for the given experiment). In
such a case, the pump re-injects the same droplet again into
the architecture and the droplet traverses the ring one more
time.

While such an architecture is trivial to design, it inherits
severe drawbacks: In fact, for many experiments the droplet
has to traverse the complete ring several times for conducting
all operations in the required order – significantly increasing
the execution time. These execution times might be par-
ticularly infeasible for time-sensitive experiments in which
reactions depend on a quick execution of operations. Besides
that, the respective droplets frequently pass through the same
channels – eventually leading to a high contamination which
may spoil the result.

1More details on the operations, including possible implementations, can
be found in [38]–[42].

2A possible implementation of such a module is presented in [43].

p

m

f

d

(a) Ring architecture

p1m1

d1

d2

m2f1

(b) Application-specific architecture

Fig. 3: NLoC architectures

Example 1. Consider the ring architecture as shown in
Fig. 3a. Nodes in the architecture denote modules and edges
denote channels. The directions of the edges indicate the flow
direction of the droplets within the channels.

In order to execute the operation sequence p, f, m, d, and
finally back to the pump p (written as φ1 := (p, f,m, d, p)),
the ring has to be traversed two times. In the first traversal
through the ring, only the operation f can be executed. Then,
the pump re-injects the same droplet into the ring again. In
the second traversal, the operations m and d are executed –
completing the experiment. In each traversal, all four modules
have to be passed (either the module is executed or skipped)
– leading to a total number of eight steps for this experiment.
Besides that, after this experiment has been completed, each
channel has been used two times. If further experiments shall
be realized, e.g. φ2 := (p,m, f, d, p) and φ3 := (p, f, d,m, p),
overall 20 steps are needed. Furthermore, each channel is used
five times – leading to a substantial contamination.

III. APPLICATION-SPECIFIC ARCHITECTURES

In order to overcome the problems of the architectures
considered thus far and to always guarantee the best realization
for a given set of experiments and constraints, we propose
the design of application-specific architectures. Here, multiple
instances of modules may be applied in order to realize a set
of experiments in as less as possible steps and/or with as low
as possible contamination.

Example 2. Fig. 3b shows an application-specific architec-
ture, which is supposed to realize the same experiments as
defined in Ex. 1. The graphical notation is the same as for ring
architectures. In case a module has multiple incoming edges,
the corresponding channels merge into a single input channel
of the module. Furthermore, a module can have at most two
successor edges, which can be physically implemented by a
bifurcation of the outgoing channel of the module.

Although this architecture includes multiple (but still lim-
ited) instances of modules realizing the same operation (for d
and m, two instances each exist), it allows for conducting each
experiment in four steps only (which is the minimal number
of steps). Moreover, no edge is used more than once when
executing any of the experiments – hence, the contamination is
significantly reduced. When executing all experiments, φ1, φ2,
and φ3, this architecture requires 12 steps only (in contrast
to the ring architecture which requires 20 steps) and each
edge is traversed at most two times (in contrast to the ring
architecture which contaminates each edge five times).

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

However, determining such an application-specific architec-
ture is a non-trivial task. In the remainder of this section,
we introduce the notion used to describe NLoC architectures
and state the underlying design problem. Based on that, the
remainder of this work focuses on how to generate the best
possible NLoC architecture for a given set of experiments as
well as constraints and objectives from the designer.

An NLoC realizes a set of experiments given by Φ. Each
experiment is accomplished by driving a droplet through a
sequence of operations from a set O.

Definition 1. Let Φ := {φ1, φ2, . . .} be the set of experiments
to be realized. Further let O := {p,m, s, f, d, h, . . .} be the set
of operations used in the experiments Φ. Then, an experiment
φ ∈ Φ is a sequence of operations with φ ∈ On, where n ∈ N
is a natural number defining the number of operations in the
experiment.

The realization of a set of experiments onto an NLoC
requires modules executing the operation. To realize an ex-
periment, the droplet has to traverse a sequence of modules
executing the operations defined in the experiment. In order to
allow the traversal of a droplet from one module to another,
the modules have to be connected by directed channels. The
used modules and their channels describe the architecture of
an NLoC, which is formally defined as follows:

Definition 2. Each operation o ∈ O can be realized by one
or more instances of a module. The function maxI : O → N
defines the number of available instances of a module realizing
an operation o3. Then, the total set of all available modules is
defined by V̂ := {(ui) : u ∈ O and 1 ≤ i ≤ maxI(u)} where
an element ui ∈ V̂ (also called node in the following) denotes
the ith instance of a module realizing the operation u ∈ O.
Further, the total set of all possible channels between these
modules is defined by Ê := {(ui, vj) : ui, vj ∈ V̂ }. An
element (ui, vj) ∈ Ê (also called edge in the following)
connects the output of the module ui with the input of the
module vj with a channel. Taking V̂ and Ê, a superset
architecture Ĝ := (V̂ , Ê) can be formed representing all
possible architectures of an NLoC from the available modules.
The application-specific architecture G = (V,E) of an NLoC
is a subset of the modules V ⊆ V̂ and channels E ⊆ Ê
from Ĝ which realizes the given set of experiments and, at
the same time, satisfies physical constraints as well as further
design objectives.

Example 3. Consider the set Φ := {φ1, φ2, φ3} of
experiments to be realized with φ1 := (p, f,m, d, p),
φ2 := (p,m, f, d, p), and φ3 := (p, f, d,m, p). Additionally
assume for the operations O := {p,m, f, d}, that
there are maxI(p) = 1, maxI(m) = 2, maxI(f) = 2,
and maxI(d) = 2 modules available. Then, an
application-specific architecture of an NLoC realizing Φ
can be derived from the superset architecture
Ĝ := (V̂ , Ê) composed of the available modules

3Currently, NLoCs mostly have a single instance of a pump producing the
continuous flow, i.e. maxI(p) = 1.

V̂ := {p1,m1,m2, f1, f2, d1, d2} and possible channels
Ê := {(p1, p1), (p1,m1), (p1,m2), (p1, f1), . . .}. This
includes the solution requiring the minimal number of
steps shown in Fig. 3b and discussed before in Ex. 2.

However, the question remains how to obtain an optimized
application-specific architecture. A naive realization, which
always would allow for a realization of all experiments with
minimal steps and minimal contamination, would be an ar-
chitecture in which, for each operation of an experiment, a
dedicated module and channel is built. But obviously, this
would result in a too expensive architecture with no reuse.
Hence, in the following, we consider the research question:

How to efficiently generate an application-specific archi-
tecture for a Networked Labs-on-Chip, which realizes the
given experiments with minimal steps and/or contami-
nation while, at the same time, keeps the architectural
overhead with respect to modules and channels as small
as possible?

IV. DESIGN OF APPLICATION-SPECIFIC ARCHITECTURES

In this section, we first discuss the task of designing
application-specific architectures and the applied quality cri-
teria. In order to handle the complexity of the design task
(which is conducted once for a given set of experiments), we
finally propose the utilization of powerful satisfiability solvers
(SAT-solvers, [36]).

A. Design Task

Recall that the main objective is the realization of an
application-specific architecture realizing a set of experi-
ments Φ := {φ1, φ2, . . .} as discussed in Def. 2. Additionally,
the architecture has to satisfy all physical constraints (i.e. max-
imal allowed successor edges of a node are limited to two and
no cycles without including the pump are allowed) and, at the
same time, has to satisfy the designer’s quality requirements.

In order to define the quality of an architecture, several
design objectives can be used. We focus on the following
important quality criteria4:
• The channel depth, i.e. the maximum distance a droplet

has to traverse from the pump to the modules and, even-
tually, back to the pump. Hence, the maximal channel
depth is determined by the experiment that requires the
longest path in the application-specific architecture. A
small channel depth is desirable to decrease the overall
execution time of the experiments and also to minimize
the required pump pressure.

• The number of channels, i.e. |E|. This metric represents
the complexity of the physical structure to be realized in
the microfluidic system.

• The number of modules used in the architecture, i.e. |V |.
This metric obviously is important, since more modules
in an architecture cause higher fabrication costs.

4Note that the proposed solution can easily be extended to support further
objectives.

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

m1

m2

f1

f2

d1

d2

p1

e(p1,m1) e(m1,p1)

e
(
m

1
,m

2
) e

(
m

2
,m

1
)

e(m1,f1)

e(f1,m1)

......

.........

................
....
....

(a) Ĝ and corresponding e(ui,vj)-vars

e(p1,m1) = 1 e(p1,f1) = 1
e(p1,f1) = 1 e(f1,d1) = 1
e(f1,m2) = 1 e(d1,m2) = 1
e(m2,p1) = 1 e(m2,d2) = 1
e(d1,p1) = 1 e(d2,p1) = 1

e(ui,vj) = 0 for all remaining vars.

(b) Possible assignment to e(ui,vj)-vars

m1

m2

f1
d1

d2

p1

(c) G represented by assignment

Fig. 4: Symbolic formulation of all possible architectures

• The contamination, i.e. the maximum and/or average
number of times a channel is passed by a droplet (as-
suming all experiments are conducted). The more often a
droplet traverses a channel, the higher the probability that
the channel is contaminated and spoils an experiment.

Determining an architecture, which optimizes one or multi-
ple objectives, is a computationally hard problem. To handle
this complexity, we propose to exploit the deductive power
of SAT-solvers. Our thesis is that SAT-solvers can be used
to generate optimized application-specific architectures. How-
ever, corresponding SAT-solvers are specialized for solving
decision problems. Hence, we next discuss how to re-phrase
the design problem considered here as a decision problem.

B. General Idea

In order to utilize SAT-solvers, we have to re-phrase the
design problem considered here as a decision problem, i.e.

“Is there an architecture which
(i) realizes all experiments,

(ii) satisfies all physical constraints, and

(iii) is optimized with respect to one or more of the quality
criteria?”

Furthermore, this decision problem has to be formalized in
a fashion that can be handled by the utilized SAT-solvers. To
this end, the following steps are conducted:
• A symbolic formulation representing all possible archi-

tectures Ĝ to be considered is created. This is done
by encoding these architectures in terms of Boolean
variables.

• The possible assignments are restricted (by additional
Boolean constraints) so that only assignments result
which represent architectures realizing all experiments
and satisfying all physical constraints (employing issue (i)
and (ii) of the decision problem).

• An objective function is added which enforces the SAT-
solver to determine that particular assignment (out of the
remaining ones) which is optimized or even optimal with
respect to one or more of the quality criteria (employing
issue (iii) of the decision problem).

Passing the resulting formulation to the SAT-solver either
yields an assignment (which is optimized with respect to the
objective function) or proves that no assignment satisfying all
constraints exists. In the former case, the desired architecture
can be derived from the obtained variable assignments. In the
latter case, it has been proven that no architecture exists which
realizes all experiments under the given constraints. In the next
section, details to all these steps are provided.

V. IMPLEMENTATION

In this section, the details on the corresponding
SAT-formulation are provided. To this end, we explain
the implementation of all steps of the decision problem
reviewed in Sec. IV-B.

A. Symbolic Formulation of all Architectures

In order to symbolically formulate all possible architectures
to be considered, an encoding of all possible graphs with nodes
V ⊆ V̂ and edges E ⊆ Ê is created. To this end, a symbolic
one-hot encoding is applied where a single Boolean variable
represents whether an edge possible according to Ê is indeed
present in E. More formally:

Definition 3. Let Ĝ = (V̂ , Ê) be the superset architecture out
of which a sub-graph G representing the desired architecture
shall be derived. Then, for each edge (ui, vj) ∈ Ê, a free
Boolean variable e(ui,vj) with ui, vj ∈ V̂ is introduced5.
These variables represent whether (e(ui,vj) = 1) or not
(e(ui,vj) = 0) there is an edge from node ui to node vj .

Note that, by this, also the presence of nodes in G is
implicitly represented: If an assignment is applied representing
no incoming edge to a node vj ∈ V̂ (i.e. e(ui,vj) = 0 for all
ui ∈ V̂ \ {vj}), then vj is not present in G.

Example 4. Consider again the setting as given in Ex. 3.
Fig. 4a sketches the resulting graph Ĝ = (V̂ , Ê) together
with the introduced e(ui,vj)-variables. A possible assignment
to these variables is given in Fig. 4b leading to a graph G as
shown in Fig. 4c (which is equal to the architecture shown in
Fig. 3b).

5Note again that ui ∈ V̂ denotes a node representing the ith instance
(1 ≤ i ≤ maxI(u)) of a module realizing the operation u ∈ O.

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

φ1 := (p, f, m, d, p)
φ1[1] = p φ1[2] = f φ1[3] = m φ1[4] = d φ1[5] = p

Variables: exφ1[1]1
exφ1[2]1

exφ1[2]2

exφ1[3]1

exφ1[3]2

exφ1[4]1

exφ1[4]2
exφ1[5]1

Assignments: exφ1[1]1 = 1
exφ1[2]1 = 1
exφ1[2]2 = 0

exφ1[3]1 = 0
exφ1[3]2 = 1

exφ1[4]1 = 0
exφ1[4]2 = 1

exφ1[5]1 = 1

Fig. 5: Variables representing realizations of experiment φ1

Passing this symbolic formulation to a SAT-solver would
yield an arbitrary assignment to the e(ui,vj)-variables and,
hence, an arbitrary sub-graph G of Ĝ. Since we are not
interested in an arbitrary graph but one that satisfies the
experiments and constraints, we now have to restrict the
possible assignments to all e(ui,vj)-variables.

B. Realization of Experiments

First, restrictions are enforced which only allow for
e(ui,vj)-assignments that represent graphs realizing the desired
set of experiments Φ. Recall that an experiment φ ∈ Φ is
given as a sequence of operations and these operations have
to be executed by respective modules. Hence, we have to make
sure that the graph G contains a path of nodes realizing the
operation sequence given by φ. To this end, we introduce
new Boolean variables representing all possibilities how an
experiment can be realized.

Definition 4. Let φ ∈ Φ be an experiment and φ[p] ∈ O
with 1 ≤ p ≤ |φ| be the pth operation in it (where |φ| is
the length of the experiment). Further, let φ[p]i ∈ V̂ with
1 ≤ i ≤ maxI(φ[p]) be the ith instance of the module to be
employed at position p. Then, for all φ[p]i, new Boolean
variables exφ[p]i are introduced. These variables represent
whether (exφ[p]i = 1) or not (exφ[p]i = 0) the module at
position p of experiment φ is realized using the ith instance.

Example 5. Consider the experiment φ1 := {p, f,m, d, p}
defined in Ex 3. The newly introduced notations and vari-
ables are summarized in Fig. 5, i.e. the sequence of
modules as specified by φ1 (first row), the corresponding
φ[p]-notation (second row), as well as the accordingly in-
troduced exφ[p]i -variables (third row). A possible assignment
to these exφ[p]i -variables is given in the fourth row. This
eventually represents that the experiment φ1 is realized using
the instances (p1, f1,m2, d2, p1).

Since the SAT-solver may arbitrarily assign the newly in-
troduced exφ[p]i -variables, a constraint has to be added which
enforces that each operation in an experiment is realized by
exact one module. To this end, for each experiment φ ∈ Φ and
each operation φ[p] of φ, all possible instances (represented
by exφ[p]i with 1 ≤ i ≤ maxI(φ[p])) are considered. Then,
it is enforced that only one of them indeed is realizing the
operation, i.e. only one of the corresponding exφ[p]i -variables
is set to 1. This is accomplished by the constraint

∧
φ∈Φ

|φ|∧
p=1

maxI(φ[p])∑
i=1

exφ[p]i

 = 1.

Finally, it has to be ensured that the respectively chosen
chain of instances realizing the experiment φ (represented
by exφ[p]i -variables) is indeed also realized in the graph G. To
this end, the e(ui,vj)-variables have to be restricted depending
on the respective values of the exφ[p]i -variables. This is
enforced by the constraint

∧
φ∈Φ

|φ|−1∧
p=1

maxI(φ[p])∧
i=1

maxI(φ[p+1])∧
j=1

exφ[p]i ∧ exφ[p+1]j =⇒

e(φ[p]i,φ[p+1]j),

which checks for each experiment φ ∈ Φ and each sequence
of operations φ[p] and φ[p+1] whether the instances φ[p]i and
φ[p + 1]j are used to realize them, respectively (i.e. whether
the variables exφ[p]i and exφ[p+1]j are set to 1). If this is true,
then it is enforced that G contains a channel between these
modules (i.e. that e(φ[p]i,φ[p+1]j) is set to 1).

Passing this (extended) formulation to a SAT-solver would
yield an assignment to the e(ui,vj)-variables which will repre-
sent a sub-graph G of Ĝ realizing all given experiments.

C. Satisfying Physical Constraints

After the realization of the experiments is guaranteed, we
address that the physical constraints are satisfied, i.e. that the
maximal number of successor edges of a node are limited
to two and that resulting architectures do not contain cycles,
which do not include the pump.

In order to restrict the maximal number of successor edges
of a node to two, we have to ensure for each node except the
pump (i.e. ui ∈ V̂ \

{
p1
}

) that the number of successor edges
(i.e. the number of variables e(ui,vj) set to 1) is less than or
equal to 2, i.e.

∧
ui∈V̂ \{p1}

∑
vj∈V̂

e(ui,vj)

 ≤ 2.

Next, it has to be ensured that the resulting architectures do
not contain cycles, which do not include the pump. Therefore,
all edges which do not have the pump as source or destination
(i.e. (ui, vj) where ui, vj ∈ V̂ \ {p1}) must not build a path
which allows to start at some node ui and follow a sequence
of edges that eventually loops back to ui again. To this end,
we again introduce new Boolean variables – this time for
representing all paths possible in the graph G.

Definition 5. Let (ui, vj) ∈ (V̂ \ {p1}) × (V̂ \ {p1}) be
all tuples of modules excluding the pump. Then, for every
tuple a new Boolean variable pth(ui,vj) is introduced, which

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

represents the existence (pth(ui,vj) = 1) or non-existence
(pth(ui,vj) = 0) of a path from node ui to vj . A path is a
sequence of edges starting at node ui which eventually ends
in node vj .

Obviously, these pth(ui,vj)-variables depend on the respec-
tive assignment of the e(ui,vj)-variables. If there exists an edge
between ui ∈ V̂ and vj ∈ V̂ (i.e. if e(ui,vj) is set to 1),
then there also exists a path between these nodes. This is
accomplished by the constraint∧

ui∈V̂ \{p1}

∧
vj∈V̂ \{p1}

e(ui,vj) =⇒ pth(ui,vj).

In a similar fashion, also the transitive relations of paths
are enforced, i.e. if there is a path between the nodes ui ∈ V̂
and vj ∈ V̂ and a path between the nodes vj and wk ∈ V̂ ,
then there is also a path between the nodes ui and wk. This
motivates the constraint∧
ui∈V̂ \{p1}

∧
vj∈V̂ \{p1}

∧
wk∈V̂ \{p1}

pth(ui,vj) ∧ pth(vj ,wk) =⇒

pth(ui,wk).

By this, all paths possible in the graph G are recursively
defined and become accessible due to the pth(ui,vj)-variables.
Now, it only has to be ensured that no cyclic paths occur, i.e. if
there is a path between the nodes ui ∈ V̂ and vj ∈ V̂ , there
must not be an edge from the nodes vj to node ui. Hence,
enforcing ∧

ui∈V̂ \{p1}

∧
vj∈V̂ \{p1}

pth(ui,vj) =⇒ e(vj ,ui) = 0

prohibits the generation of graphs G with cycles.
Passing the resulting formulation to a SAT-solver now

only yields assignments representing architectures realizing
the desired experiments and satisfying the physical constraints.
If the SAT-solver determines that no assignment is possible
satisfying all constraints, it has been proven that the desired
experiments cannot be realized given the number of possi-
ble instantiations for each module. Then, the designer has
to increase the respective values for maxI. If a satisfying
assignment is determined, the corresponding graph can easily
be derived from the respective values of the e(ui,vj)-variables
(as illustrated in Fig. 4).

D. Employing the Quality Criteria

Usually, the formulation presented above yields a significant
number of possible assignments. This is because the consid-
ered experiments can usually be realized by a large number of
possible architectures (in particular, if the respective values for
maxI are large and, hence, a high degree of freedom exists).
However, all these architectures significantly differ in their
quality. Hence, designers might be interested in a solution,
which is optimized or even optimal with respect to one or
more of the quality criteria.

In order to employ that, we exploit the fact that many
SAT-solvers do not only allow for determining a satisfying
assignment, but an assignment which is additionally optimized

with respect to an objective function6. More precisely, in order
to determine a graph G optimized with respect to
• the number of channels, we have to minimize the number

of edges in G by using the number of e(ui,vj)-variables
set to 1, i.e.

min :
∑

(ui,vj)∈Ê

e(ui,vj),

• the number of modules, we have to minimize the number
of nodes contained in G, i.e.

min :
∑
vj∈V̂

 ∨
ui∈V̂

e(ui,vj)

 , or

• the contamination, we have to minimize the number how
often an edge (ui, vj) ∈ Ê is used in all experiments, i.e.

min : max
(ui,vj)∈Ê

(∑
φ∈Φ

|φ|−1∨
p=1

φ[p] = u ∧ φ[p+ 1] = v∧

exφ[p]i ∧ exφ[p+1]j

)
.

This objective function sums up the usages of an edge
(ui, vj) ∈ Ê over all experiments φ ∈ Φ and, then,
minimizes the most frequently used edge. Whether an
edge is actually used in an experiment can be determined
using the exφ[p]i -variables.

The quality criteria channel depth is always optimal because
the constraints described in Sec. V-B ensure direct channels
between modules realizing consecutive operations defined in
the experiments.

VI. EVALUATION AND CASE STUDIES

The proposed approach has been implemented in Java
resulting in an automatic method which enables designers
to efficiently generate application-specific architectures for a
given set of experiments and user-defined parameters such as
the maximal number of module instances, an objective func-
tion employing the desired quality criteria, etc. The resulting
architectures are optimized or even optimal with respect to
the provided settings and criteria. To efficiently handle the
complexity, the solver Z3 [44] in its latest version has been
utilized. In order to demonstrate and evaluate the applicability
of the proposed solution, several experiments and case studies
have been conducted using experiments to be realized on an
NLoC. Therefore, we considered for each NLoC a set of
experiments which are generated out of sequencing graphs
from [45]. More precisely, we considered the operations along
each path through the graph as an experiment.

In the following, we focus on a selection of representatives
which show the applicability and performance of the proposed
method, the improvement of application-specific architectures
compared to the current state-of-the-art, as well as their
integration in the overall design flow. All experiments have
been conducted on a 3.2 GHz Intel Core i5 machine with
8GB of memory running 64-bit Ubuntu 14.04.

6Alternatively to objective functions, it is also possible to define constraints
restricting the different quality criteria.

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

p1

d2 m3 f3

h2 m2

m1 f2
d3

(a) Min. modules/channels

p1

m1 f2
d3

h1 m3

f1
m2

d2

d1

(b) Max. contamination of two

Fig. 6: Architectures for Benchmark 1

A. Potential for Design Exploration

In a first series of experiments, we evaluated the potential
of the proposed solution for design exploration. As discussed
above, designers might be interested in architectures which are
optimized with respect to different (even contradictory) quality
criteria. Using the objective functions, the method can easily
be adjusted to generate an architecture which e.g. is optimized
for the number of channels or the contamination.

That this can make a difference is exemplarily shown by
realizing the set of experiments Φ := {(p,m, f, h,m, d, p),
(p,m, d,m, f,m, d, p), (p, h,m, f,m, d, p)}7. Realizing this
set of experiments while aiming first for a minimal channel
depth, second for a minimal number of modules, and third for
a minimal number of channels yields a solution as shown in
Fig. 6a. However, this architecture has a worst-case contami-
nation of three, e.g. the channel represented as edge (m3, d2)
is used three times. If application-specific constraints require
the generation of an architecture where e.g. the worst-case
contamination is not greater than two, the addition of a
constraint limiting the contamination yields a solution as
shown in Fig. 6b. Although this architecture requires one more
module and one more channel (the trade-off to be accepted),
it guarantees a worst-case contamination of two and, hence,
satisfies the additional constraint.

In a similar fashion, alternative (application-specific) design
objectives can be employed. This makes the proposed solution
flexible and allows for an easy and efficient design exploration.
By this, designers are supported by alternatives (including
their pros and cons) allowing them to trade-off their respective
design needs.

B. Performance Evaluation

Determining G is obviously a computationally hard problem
because for each experiment φ ∈ Φ, the SAT-solver has to
determine the respective modules (i.e. valid assignments for
the exφ[p]i -variables). Here a huge number of possibilities
exits. For example, let r be the maximal number of allowed in-
stances for all modules and let |φ| the length of an experiment.
Then, for each of the |φ| positions, r variables are introduced
(namely exφ[p]1 , . . . , exφ[p]r) where exactly one of them has
to be equal to 1 – resulting in r possible combinations.
Multiplying these combinations for all |φ| positions would

7This is one set of experiments generated out of a sequencing graph
from [45].

yield r|φ| combinations for an experiment to be realized –
an exponential complexity. This becomes even more complex
when all experiments in Φ are considered.

In order to evaluate whether the proposed method is capable
of dealing with this complexity, we performed evaluations
using randomly generated benchmarks, which can be scaled
with respect to the number of experiments and their length.
This way, we were able to evaluate the performance of the
proposed solution with respect to various problem sizes. In
this performance evaluation, we increased the problem size
until the proposed method did not generate an architecture
within 60 minutes.

Using five operations (a reasonable number of basic opera-
tions), the method is capable of determining architectures for
up to
• 32 experiments with an average channel length of 7.28

(the resulting architecture consists of 30 nodes and 170
edges).

• an average experiment length of 13 for 6 experiments
(the resulting architecture consists of 41 nodes and 103
edges).

C. Comparison to the State-of-the-Art

The ring constitutes the commonly used architecture so far.
However, this architecture suffers e.g. from a large execution
time (specified by the channel depth) and a high contamination
(specified by the usage of the channels). Application-specific
architectures as generated by the proposed method yield
significantly better results in this regard.

This is confirmed by the results summarized in Table I for
experiments generated out of sequencing graphs from [45]
(using both the number of channels and the number of modules
as optimization criteria). The first five columns provide the
name, the number of operations (|O|), the number of exper-
iments (|Φ|), the maximal number of considered instances
for each module (Max. Instances), and the average length of
the experiments (Avg. φ Length). Afterwards, the respective
results are reported if the experiments have been realized by
means of a ring8 (denoted by R) or an application-specific
architecture (denoted by G). More precisely, the number of
modules (|V |) and channels (|E|) specify the size of the result-
ing architecture. The maximal channel depth (Max. Channel
Depth) and the average channel depth (Avg. Channel Depth)
state how many channels the droplet has to flow through at
most/on average in order to conduct any of the experiments.
Furthermore, the maximal contamination (Max. Contamina-
tion) and the average contamination (Avg. Contamination)
state how often a channel is maximally traversed or how often
the channels are in average traversed by the droplet containing
the biological sample, respectively. Furthermore, we provide
the run-time (in CPU seconds) necessary to generate the
architecture.

The results show the benefits of the application-specific
architectures. The increase of the NLoC sizes is acceptable
as the size is not a limiting factor at the moment. Much

8The module order with the lowest channel depth is used for a fair
comparison.

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE I: Comparison to the state-of-the-art

Benchmark |O| |Φ| Max.
Instances

Avg.
φ Length |V | |E| Max.

Channel Depth
Avg.

Channel Depth
Max.

Contamination
Avg.

Contamination Time [s]

R G R G R G R G R G R G R G

B1 5 3 3 6.33 5 9 5 12 15 7 13.33 6.33 8 3 8 1.58 1 3
B2 5 8 6 6.00 5 11 5 19 25 6 18.75 6.00 30 8 30 2.52 1 2820
B3 5 10 6 7.70 5 13 5 23 30 8 24.50 7.70 49 10 49 3.35 3 2642
B4 5 12 6 7.83 5 15 5 28 30 8 24.17 7.83 58 12 58 3.36 22 3996
B5 5 14 7 9.21 5 18 5 33 30 10 26.07 9.21 73 14 73 3.91 206 8982

R: ring architecture G: application-specific architecture |O|: number of operations |Φ|: number of experiments
Max. Instances: maximal instances of each module Avg. φ Length: average length of the experiments |V |: number of nodes
|E|: number of edges Max./Avg. Channel Depth: maximal and average channel depth Max./Avg. Contamination: maximal and

average contamination Time [s]: required run-time in CPU seconds to generate the architecture

more important is the significant decrease in channel depth
and also contamination, which are crucial criteria for many
time-sensitive experiments. Therefore, the resulting architec-
tures constitute a significant improvement. Moreover, further
improvements are possible if additional quality criteria are
employed.

D. Integration into the Design Flow

Finally, we describe how the proposed method is embedded
in the design flow and how physical implementations can
be obtained from the application-specific architectures. Recall
that the proposed solution provides the determined architecture
in terms of a graph composed of nodes and edges. In the phys-
ical implementation, each node is realized by a corresponding
module/pump and each edge is realized by a corresponding
channel. The direction of the edges indicates the intended
flow direction of the droplets within these channels. If a node
has two successor edges, a bifurcation is used in the resulting
physical implementation. Similarly, multiple incoming edges
to a node are merged into a single channel. Finally, a physical
implementation can be fabricated at low costs with 3D printers
or engraving machines using polymers as base material [37],
[46].

Overall, this yields a first step in the design flow for NLoCs:
Given a set of experiments (e.g. Φ := {φ1, φ2, φ3} with φ1 :=
(p, f,m, d, p), φ2 := (p,m, f, d, p), and φ3 := (p, f, d,m, p)
as considered in the example), the method proposed in this
work allows for the automatic generation of an application-
specific architecture as shown in terms of a graph in Fig. 3b.
This architecture can then be mapped to a physical implemen-
tation whose blueprint is shown in Fig. 7a. After the realization
of this blueprint, e.g. the experiment φ3 can be conducted
by letting the droplet containing the biological sample flow
through the path indicated in Fig. 7b.

VII. CONCLUSIONS

In this work, we considered the design of Networked
Labs-on-Chips – a promising and emerging technology which
overcomes drawbacks of established LoC technologies. In
a first step towards an automatic design flow for NLoCs,
we propose the design of application-specific architectures.
These application-specific architectures address drawbacks of
manually designed architectures such as large execution times

d

f1

1

2

d

m

2

1

m

p

(a) Physical structure

1m

d2

1

m2

d

f1

p

(b) Path for φ3 = (p, f, d,m, p)

Fig. 7: Blueprint of the architecture from Fig. 3b

or high contaminations. In order to derive the respective
architectures, a method has been proposed which tackles the
underlying complexity using SAT-solvers. Evaluations and
case studies showed that the proposed method enables design-
ers to generate architectures satisfying their needs as well as
quality criteria and confirmed the advantages of application-
specific architectures compared to the current state-of-the-art.

REFERENCES

[1] A. J. Demello, “Control and detection of chemical reactions in microflu-
idic systems.” Nature, vol. 442, no. 7101, pp. 394–402, 2006.

[2] Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper,
J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, “Planar chip device
for PCR and hybridization with surface acoustic wave pump,” Journal
on Lab on a Chip, vol. 5, no. 3, pp. 308–317, 2005.

[3] B. Zheng, L. S. Roach, and R. F. Ismagilov, “Screening of protein
crystallization conditions on a microfluidic chip using nanoliter-size
droplets,” Journal of the American Chemical Society, vol. 125, no. 37,
pp. 11 170–11 171, 2003.

JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

[4] L.-H. Hung, K. M. Choi, W.-Y. Tseng, Y.-C. Tan, K. J. Shea, and A. P.
Lee, “Alternating droplet generation and controlled dynamic droplet
fusion in microfluidic device for CdS nanoparticle synthesis,” Journal
on Lab on a Chip, vol. 6, no. 2, pp. 174–178, 2006.

[5] M. He, J. S. Edgar, G. D. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T.
Chiu, “Selective encapsulation of single cells and subcellular organelles
into picoliter-and femtoliter-volume droplets,” Journal of Analytical
Chemistry, vol. 77, no. 6, pp. 1539–1544, 2005.

[6] Y.-C. Tan, K. Hettiarachchi, M. Siu, Y.-R. Pan, and A. P. Lee, “Con-
trolled microfluidic encapsulation of cells, proteins, and microbeads in
lipid vesicles,” Journal of the American Chemical Society, vol. 128,
no. 17, pp. 5656–5658, 2006.

[7] S. Haeberle and R. Zengerle, “Microfluidic platforms for Lab-on-a-Chip
applications,” Journal on Lab on a Chip, vol. 7, pp. 1094–1110, 2007.

[8] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Mi-
crofluidic Lab-on-a-Chip platforms: requirements, characteristics and
applications,” Journal of Chemical Society Reviews, vol. 39, no. 3, pp.
1153–1182, 2010.

[9] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,” Journal on Lab on a
Chip, vol. 2, no. 2, pp. 96–101, 2002.

[10] I. E. Araci and S. R. Quake, “Microfluidic very large scale integration
(mVLSI) with integrated micromechanical valves,” Journal on Lab on
a Chip, vol. 12, no. 16, pp. 2803–2806, 2012.

[11] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer
optimization for flow-based mVLSI microfluidic biochips,” in Int’l Conf.
on Compilers, Architecture and Synthesis for Embedded Systems, 2014,
pp. 1–10.

[12] T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the
nanoliter scale,” Journal on Reviews of Modern Physics, vol. 77, no. 3,
p. 977, 2005.

[13] V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R.
Quake, “Scaling properties of a low-actuation pressure microfluidic
valve,” Journal of Applied Physics, vol. 95, no. 1, pp. 393–398, 2004.

[14] O. Keszocze, R. Wille, T.-Y. Ho, and R. Drechsler, “Exact one-pass
synthesis of digital microfluidic biochips,” in Design Automation Con-
ference, 2014, pp. 1–6.

[15] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in
Asia and South Pacific Design Automation Conference, 2017, pp. 530–
535.

[16] D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng,
G. Cristobal, M. Marquez, and D. A. Weitz, “Electric control of droplets
in microfluidic devices,” Angewandte Chemie International Edition,
vol. 45, no. 16, pp. 2556–2560, 2006.

[17] C.-G. Yang, Z.-R. Xu, and J.-H. Wang, “Manipulation of droplets in
microfluidic systems,” Trends in Analytical Chemistry, vol. 29, no. 2,
pp. 141–157, 2010.

[18] A. Biral, D. Zordan, and A. Zanella, “Modeling, simulation and experi-
mentation of droplet-based microfluidic networks,” Trans. on Molecular,
Biological, and Multi-scale Communications, vol. 1, no. 2, pp. 122–134,
2015.

[19] E. D. Leo, L. Donvito, L. Galluccio, A. Lombardo, and G. Morabito,
“Microfluidic networks: design and test of a pure hydrodynamic switch-
ing function,” in Int’l Conf. on Communications, 2013, pp. 787–791.

[20] L. Donvito, L. Galluccio, A. Lombardo, and G. Morabito, “µ-NET: a
network for molecular biology applications in microfluidic chips,” Trans.
on Networking, 2015.

[21] ——, “On the assessment of microfluidic switching capabilities in NLoC
networks,” in Int’l Conf. on Nanoscale Computing and Communication,
2014, p. 19.

[22] E. De Leo, L. Galluccio, A. Lombardo, and G. Morabito, “Networked
labs-on-a-chip (NLoC): Introducing networking technologies in mi-
crofluidic systems,” Journal of Nano Communication Networks, vol. 3,
no. 4, pp. 217–228, 2012.

[23] E. D. Leo, L. Donvito, L. Galluccio, A. Lombardo, G. Morabito, and
L. M. Zanoli, “Communications and switching in microfluidic systems:
Pure hydrodynamic control for networking Labs-on-a-Chip,” Trans. on
Communications, vol. 61, no. 11, pp. 4663–4677, 2013.

[24] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,”
Journal on Lab on a Chip, vol. 8, pp. 198–220, 2008.

[25] E. D. Leo, L. Donvito, L. Galluccio, A. Lombardo, G. Morabito,
and L. M. Zanoli, “Design and assessment of a pure hydrodynamic
microfluidic switch,” in Int’l Conf. on Communications, 2013, pp. 3165–
3169.

[26] A. Grimmer, W. Haselmayr, A. Springer, and R. Wille, “Verification of
Networked Labs-on-Chip architectures,” in Design, Automation and Test
in Europe, 2017, pp. 1679–1684.

[27] ——, “A discrete model for Networked Labs-on-Chips: Linking the
physical world to design automation,” in Design Automation Conference,
2017.

[28] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthesis
of digital microfluidic biochips,” in Design, Automation and Test in
Europe, 2006, pp. 1–6.

[29] Y.-H. Chen, C.-L. Hsu, L.-C. Tsai, T.-W. Huang, and T.-Y. Ho, “A
reliability-oriented placement algorithm for reconfigurable digital mi-
crofluidic biochips using 3-D deferred decision making technique,”
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 8, pp. 1151–1162, 2013.

[30] D. Grissom and P. Brisk, “Fast online synthesis of generally pro-
grammable digital microfluidic biochips,” in Int’l Conf. on Hard-
ware/Software Codesign and System Synthesis, 2012, pp. 413–422.

[31] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular
devices,” Design Automation for Embedded Systems, vol. 14, no. 3, pp.
287–307, 2010.

[32] A. J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin, “Priority
scheduling in digital microfluidics-based biochips,” in Design, Automa-
tion and Test in Europe, 2006, pp. 329–334.

[33] W. H. Minhass, P. Pop, and J. Madsen, “System-level modeling and syn-
thesis of flow-based microfluidic biochips,” in Int’l Conf. on Compilers,
Architecture and Synthesis for Embedded Systems, 2011, pp. 225–233.

[34] P. Pop, I. E. Araci, and K. Chakrabarty, “Continuous-flow biochips:
Technology, physical-design methods, and testing,” Journal on Design
& Test, vol. 32, no. 6, pp. 8–19, 2015.

[35] E. D. Leo, L. Galluccio, A. Lombardo, and G. Morabito, “On the
feasibility of using microfluidic technologies for communications in
Labs-on-a-Chip,” in Int’l Conf. on Communications, 2012, pp. 2526–
2530.

[36] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook
of Satisfiability. Amsterdam, NL: IOS Press, Feb. 2009.

[37] H. Gu, M. H. Duits, and F. Mugele, “Droplets formation and merging in
two-phase flow microfluidics,” Journal of Molecular Sciences, vol. 12,
no. 4, pp. 2572–2597, 2011.

[38] Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design
of microfluidic channel geometries for the control of droplet volume,
chemical concentration, and sorting,” Journal on Lab on a Chip, vol. 4,
no. 4, pp. 292–298, 2004.

[39] D. Link, S. L. Anna, D. Weitz, and H. Stone, “Geometrically mediated
breakup of drops in microfluidic devices,” Physical Review Letters,
vol. 92, no. 5, p. 054503, 2004.

[40] J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, and
J. Metze, “Digital reaction technology by micro segmented flowcompo-
nents, concepts and applications,” Chemical Engineering Journal, vol.
101, no. 1, pp. 201–216, 2004.

[41] Y.-C. Tan, Y. L. Ho, and A. P. Lee, “Droplet coalescence by geometri-
cally mediated flow in microfluidic channels,” Journal of Microfluidics
and Nanofluidics, vol. 3, no. 4, pp. 495–499, 2007.

[42] W. Wang, C. Yang, and C. M. Li, “On-demand microfluidic droplet
trapping and fusion for on-chip static droplet assays,” Journal on Lab
on a Chip, vol. 9, no. 11, pp. 1504–1506, 2009.

[43] W. Haselmayr, A. Biral, A. Grimmer, A. Zanella, A. Springer, and
R. Wille, “Addressing multiple nodes in Networked Labs-on-Chips
without payload re-injection,” in Int’l Conf. on Communications, 2017.

[44] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Tools and Algorithms for Construction and Analysis of Systems, 2008,
pp. 337–340.

[45] M. F. Schmidt, “Microfluidic flow-based biochips,” https://sites.google.
com/site/mlsibiochips/, 2012.

[46] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides,
“Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),”
Journal of Analytical Chemistry, vol. 70, no. 23, pp. 4974–4984, 1998.

