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Abstract—Due to their shrinking feature sizes as well as
environmental influences such as high-energy radiation, electrical
noise, particle strikes, etc., integrated circuits are getting more
vulnerable to transient faults. Accordingly, how to make those
circuits more robust has become an essential step in today’s design
flows. Methods increasing the robustness of circuits against these
faults already exist for a long period of time but either introduce
huge additional logic, change the timing behavior of the circuit,
or are applicable for dedicated circuits such as microprocessors
only.

In this work, we propose an alternative method which
overcomes these drawbacks by determining application-specific
knowledge of the circuit, namely the relations of Flip Flops and
when they assume the same value. By this, we exploit partial
redundancies, which are inherent in most circuits anyway (even
the optimized ones), to frequently compare circuit signals for
their correctness – eventually leading to an increased robustness.
Since determining the correspondingly needed information is a
computationally hard task, formal methods such as Bounded
Model Checking, SAT-based Automatic Test Pattern Generation,
and Binary Decision Diagrams are utilized for this purpose.

The resulting methodology requires only a slight increase in
additional hardware, does only influence the timing behavior of
the circuit negligibly, and is automatically applicable to arbitrary
circuits. Experimental evaluations confirm these benefits.

I. INTRODUCTION

Several breakthroughs in the field of the design, fabrication,
and test of integrated circuits allowed for the implementation
of highly complex Integrated Circuits (ICs). These ICs fulfill
several mission- or even safety-critical tasks at once while
following a highly complex functional behavior.

The enormous complexity and the intensive environmen-
tal interaction, particularly in case of long-term autonomous
systems, forms a straining environment. Moreover, shrinking
feature sizes as well as different environmental influences such
as high-energetic radiation, electrical noise, particle strikes,
etc. frequently cause unintended behavior of an IC, which can
lead to disastrous consequences in the worst case. In particular,
the sequential components of the IC, i.e., Flip Flops (FFs), are
characteristically vulnerable to so-called transient faults. Such
a fault appears in form of a toggled bit for a short period of
time and is not logically, electrically, or temporarily masked,
hence, the output signals of the system are invalidated. Due to

this fact, these FFs have to be explicitly protected. To address
this highly relevant field, powerful mechanisms have to be
developed, which are capable to detect and react on occurring
transient faults.

In this context, the robustness of a given circuit is an
important metric, which can be derived from the number of
non-robust FFs that are vulnerable to transient faults. In order
to increase the robustness of a sequential circuit, the number
of vulnerable (non-robust) FFs needs to be decreased. To
this end, the corresponding FFs are hardened by extending
the investigated circuit such that the respective values are
recomputed and, in case of faults, faulty signals can be
replaced. These recomputations are usually conducted either
by additionally employing redundant hardware or redundant
time. More precisely, existing methods which are currently
applied in order to increase the robustness of a given sequential
circuit can roughly be categorized into the following three
schemes [1]:
• Space-based approaches, which embed additional logic

blocks to generate certain redundancy in order to
enhance their robustness. Approaches such as Triple
Modular Redundancy (TMR) [2] or Error-Correction
Code [3]–[5] constitute representatives of this scheme.

• Timing-based approaches, which influence the timing
behavior of the considered circuit in order to guarantee
correct output values at the FFs. Representative candi-
dates of this scheme have been proposed in [6], [7].

• Application-specific approaches, which only consider
dedicated parts of a circuit for which a robust solution
is explicitly derived. Examples of this scheme include,
e.g., dedicated fault-tolerance control flows for micro-
processors [8]. Other application-specific approaches
exploit invariants automatically to ensure correctness,
e.g., hardware assertions [9]. Those assertions are used
to uncover violations of the specific functional behavior
during verification, but do not focus on any dedicated
fault model considering transient faults and, hence, no
compact realization is given a priori.

However, all these schemes come with significant short-
comings: Space-based approaches introduce huge additional
logic into the circuit – often caused by naive multiplication
of sequential elements and, hence, a redundancy which is not
necessarily needed for the functional behavior. Timing-based



approaches suffer from the fact that they potentially increase
the latency and, thus, cause restrictions to the actual design
of the circuit. Application-specific approaches are limited to
dedicated parts of a circuit (e.g., the considered microproces-
sor) and, hence, are not applicable for sequential circuits in
general.

In this work, we are aiming to address these shortcomings
by proposing a solution, which does not simply recomputes
FFs values of the original design, but instead determines
application-specific knowledge of their behavior1. More pre-
cisely, the proposed methodology determines the relations of
FFs and stores the conditions under which FFs assume the
same logic value to partially hardens the FFs. This knowledge
allows employing a dedicated logic block which compares
all corresponding FF values and, hence, can detect if one
of them inherits a fault. The proposed application-specific
knowledge is derived out of typical signal values which
really occurs in the intended functional operation. Common
techniques as described above cover the entire state space
exhaustively, i.e., those techniques cover even a high fraction
of irrelevant state space.

By this, redundancies within the IC are exploited. Even if, in
a typical IC design flow, different optimization techniques are
applied to eliminate redundant components, often a significant
amount of functional equivalence remains and can be exploited
for the purposes considered here. As an example, consider
a Full Adder (FA) with three inputs (a, b, c) and a Half
Adder (HA) with two inputs (a, b). Both of these adders
have two outputs representing the sum and the carry-out bit.
Although both circuits are not completely functional equivalent
(both indeed realize slightly different functions), their behavior
is identical whenever the carry input c is set to ‘0’ – both cir-
cuits are partially functional equivalent and generate the same
value in certain states. Having the information on what signals
assume the same value in what state can be used to compare
those signals with each other and, by this, to strengthen the
robustness of sequential circuits. Later, Section III provides a
more detailed description of the proposed idea.

Overall, this yields substantial improvements compared to
the other solutions reviewed above: In fact, exploiting the in-
formation on partial redundancies allows increasing robustness
with only a moderate hardware overhead in terms of gate count
compared to the space-based approaches. At the same time,
the timing behavior is only affected negligibly (in contrast
to the timing-based approaches). Finally, the resulting flow is
automatically applicable to any sequential circuit and, hence,
not limited to dedicated circuits as the existing applications-
specific solutions.

Instead, the proposed methodology needs to determine
the needed information, i.e., the relations of FFs and the
conditions under which they assume the same logic value.
Since this is a computationally hard task, we propose to
address this with a dedicated orchestration of formal meth-
ods such as Bounded Model Checking (BMC, [11]), pow-
erful solvers for the Boolean Satisfiability Problem (SAT
problem, [12]), SAT-based Automatic Test Pattern Genera-

1A preliminary version of this work has previously been presented in [10].

tion (ATPG) and compact data structures involving Binary
Decision Diagrams (BDDs, [13]), which is capable of coping
with this complexity. Finally, this approach is flexible in the
sense that the designer can easily configure the trade-off
between the hardware overhead and the desired enhancement
in robustness.

Experimental results confirm the benefits of the proposed
methodology. In fact, robustness of a circuit can be increased
to approx. 95% in most of the cases, while the circuit size
increases only by a factor of approx. 1.06 on average. Com-
pared to established methods (e.g., TMR, where indeed 100%
robustness is achieved, but at the expense of more than tripling
the circuit size), this provides a suitable alternative and a trade-
off between robustness and hardware overhead.

The proposed methodology is described in the remainder
of this paper as follows: Section II provides a comprehensive
description of the background which is needed to make this
paper self-contained – including a review on sequential cir-
cuits, transient faults, and robustness. Afterward, the general
idea and the general flow of the proposed approach are
described in Section III. A detailed description of the main
components, namely the Partition Enumeration and the State
Collector, are presented in Section IV and V, respectively. The
conducted experimental results are summarized and discussed
in Section VII. Finally, conclusions are drawn in Section VIII.

II. BACKGROUND

This section briefly reviews the relevant terminologies used
in the remainder of this paper to assess the vulnerability of ICs.
First, the concept of sequential circuits is formally introduced
and the frequently used fault model is covered. Finally, an
established metric to qualitatively assess the vulnerability of a
circuit with respect to these faults is reviewed.

A. Sequential Circuits
A sequential circuit Φ is given as a commonly known

gate level representation that consists of Primary Inputs (PIs),
Primary Outputs (POs), combinational gates G, and sequential
elements (SE) such as FFs, i.e., Φ = (IN,OUT,G,SE). The
sequential elements are assumed to be synchronous to (at least)
one clock domain.2 The FFs of a given sequential circuit can
be grouped by a hierarchical levelizing procedure. Two FFs
FFi and FFj are contained in the same group, if the number
of FFs in both fan-in cones are the same on the shortest path
towards the PIs.

Alternatively, a sequential circuit can also be represented by
a Finite State Machine (FSM). An FSM is defined by a tuple
M = (I, S, T ), where I describes the set of initial states, S
represents the state space of the circuit, and T defines the
transition relation. A transition relation T (s, s′) evaluates to
true, if there is at least one transition from state s to state s′.
The set of reachable states S∗ ⊆ S contains those states
that are reachable from an initial state in an arbitrary number
of steps.

2In order to ease the following descriptions, we will assume a single clock
domain. However, the proposed methodology can be extended to further clock
domains as well.



B. Transient Faults
The shrinking feature size leads to an increased vulnerability

of circuits against Single Transient Faults (STFs), which
are typically caused by Single Event Upsets (SEUs), e.g.,
high-energetic radiation, electrical noise, particle strikes, or
other environmental effects [14], [15]. Typically, the influence
of a transient fault occurring at a FF is modeled as an
unintended toggled output value. This influence can possibly
cause an invalid and unintended behavior of the circuit Φ for
a short period of time.

In order to increase the robustness of a circuit Φ, a Fault
Detection Mechanism (FDM) can be applied that handles cases
in which a single transient fault occurs at a FF, e.g., to realize
precautions.

C. Assessing Robustness
To consider the vulnerability of sequential circuits against

transient faults, a metric for robustness has been introduced,
which measures the fault tolerance (i.e., the robustness) with
respect to a fault model [16], [17]. More precisely:

Definition 1: Let Φ = (IN,OUT,G,SE) be a sequential
circuit. A FF is considered to be non-robust, if there is at least
one reachable state and one transient fault such that the output
behavior of Φ is inverted. Let N be the set of non-robust FFs
with N ⊆ SE. Then, the robustness of Φ can be determined
as follows [18]:

R = 1− |N |
|SE|

In order to determine the robustness of a given sequential
circuit, the non-robust FFs N can be computed by either formal
methods [19] or simulation-based techniques [20]–[23]. In
general, the robustness can be determined using a simulation-
based approach as follows:

1) Define a number r of simulation cycles to be considered
while adjusting the state of the circuit which is finally
used for fault injection. Beside this, define a number k
of cycles to be simulated for fault propagation.

2) The PIs of a given sequential circuit Φ are stimulated
up to r − 1 cycles using random values.

3) In cycle r, the state sr is extracted from the simulation
environment. A copy ŝr of sr is modified so that an
STF is injected at a randomly chosen FF f ∈ SE and,
hence, the output value of f is toggled.

4) The circuit Φ is simulated twice for up to k cycles: One
simulation starts from the healthy state sr and one from
faulty state ŝr containing the injected STF. During both
simulation runs and for every clock cycle, the same PIs
values are driven.

5) In cycle r + k, all POs of both simulation runs are
compared. If at least one of the POs values differs,
the f is non-robust unless the circuit contains an FDM
reporting a fault.

6) This procedure is repeated from Step 3 until all FFs are
covered by fault injection.

Due to the nature of the random simulation, the number of
covered states depends on the chosen parameters for r and k.

Fig. 1: A non-robust sequential circuit

III. PROPOSED APPROACH

This section introduces the proposed methodology in some-
what more detail. To this end, the general idea is motivated
and illustrated. Afterward, we summarize the core components
needed to realize the ideas. This provides the basis for the
detailed description of the implementation of the proposed
methodology which follows in Sections IV-VI.

A. General Idea
The general idea of the proposed methodology rests on the

following observations:
• Today’s circuits usually contain a huge number of FFs,

which can store at least a single bit, i.e., ‘0’ or ‘1’. If
a single FF is affected by a transient fault, this bit is
toggled. Existing approaches insert redundant logic into
the design, e.g., to recompute the correct value, which
causes a significant hardware overhead.

• At the same time, the value of an observed single FF is
often equal to the value of many other FFs. Moreover,
since the behavior of the circuit is known, it is possible
to determine the relation between them, i.e., the states
in which certain FFs assume the same value.

• Hence, instead of introducing redundancy for recompu-
tations, we propose to simply compare the value of a FF
to the values of other FFs from which it is known that,
for the respectively considered state, they are supposed
to generate the same value.

In order to realize this idea, a formalism is required that posts
whether a partition of non-robust FFs assumes the same value
for given reachable states. In the following, this is formally
described in terms of an equivalence property.

Definition 2: Let Pj ⊆ N be a partition of at least two non-
robust FFs and Ŝ ⊆ S∗ be a set of reachable states. Then, an
Equivalence Property (EP) is defined by

EP(Ŝ, Pj) := {f1, . . . , fl ∈ Pj

∣∣∣∣ all FFs f1, . . . , fl outputs the
same value under the same
state s ∈ Ŝ

}
and evaluates to true if all combinations of FFs fn, fm ∈ Pj

assume the same output value in all of these states Ŝ ⊂ S∗.
Example 1: Consider the circuit shown in Fig. 1 which is

composed of five FFs distributed in two hierarchical circuit
levels 1 and 2. If both FF1 and FF2 (level 1) are set
to ‘0’, then FF3, FF4, and FF5 (level 2) are assumed to



have the same output value ‘0’ after a single clock cycle.
This scenario is represented by an EP(Ŝ, Pj) with the partition
Pj = {FF3, FF4, FF5} and the state sj ∈ Ŝ being defined
by FF1 = 0 and FF2 = 0, i.e., EP(Ŝ, Pj) = 1 holds.

Using the Equivalence Property and the general idea
sketched above, robustness of sequential circuits is enhanced
as follows:

1) Determine the set N ⊆ SE of non-robust FFs of the
given sequential circuit. The assessment of robustness
as reviewed in Section II-C can be utilized.

2) Consider all non-robust FFs N and determine the level-
wise subsets Ni ∪Ni+1 ∪ · · · ∪NL = N with 1 ≤ i ≤
L according to their hierarchical circuit levels (L being
the total number of hierarchical levels in a rank-ordered
circuit [24, p. 45]). Furthermore, assume that each FF
has exactly one hierarchical level: Ni∩Nj = ∅ ∀i 6= j.
The above described clustering allows to execute all
FFs’ comparisons within one single time frame. This is
crucial to reduce the complexity of the calculation itself
and, especially, the costs of the robustness improve-
ment. Consequently, there is no need to hold specific FF
values over different time frames, e.g., by introducing
further, potentially vulnerable, state elements while
massively increasing the computational effort as well as
hardware scale. Thus, the level-wise sets of non-robust
Ni are exclusively used in the remainder.

3) For each level 1 ≤ i ≤ L and for all subsets of non-
robust FFs Ni ⊆ N , determine suitable partitions Pj ∈
P(Ni) and a set of reachable states Ŝ ⊆ S∗ such that
all FFs in Pj are supposed to generate the same value,
i.e., determine Pjs and corresponding Ŝs for which
EP(Ŝ, Pj) = 1 holds.

4) Using the knowledge from the obtained EPs, synthesize
a Fault Detection Mechanism (FDM). To this end,
realize the following logic blocks:

• Activator A: Generates a signal A (supposed to trigger
the FDM) stating whether (A = 1) or not (A = 0) the
FFs in Pj are supposed to generate the same value under
the current state s ∈ Ŝ. This signal is directly calculated
by the current state (single time frame) of FFs within
the fan-in cone. More precisely, it is not required to
consider previous values, which is solely enabled by the
hierarchical sort as described above in Step 2).

• Comparator C: Generates a signal C stating whether
(C = 1) or not (C = 0) all FFs in a partition Pj to be
hardened actually assume the same output value.

• Detector: Generates a fault signal F reporting the de-
tection of a fault. A fault is detected, if not all FFs in a
partition Pj assume the same output value (i.e., C = 0),
although they are supposed to do that for the current
state (i.e., A = 1), i.e., F = ¬C ∧ A.

This proposed FDM detects transient faults occurring in FFs
of the considered circuit. If a fault is detected, an introduced
fault signal F is driven. This enables the realization of pre-
cautions against faulty behavior at the POs, e.g., by resetting
the circuit or masking the affected POs. Overall, this leads

to an enhanced robustness. The ratio of the enhancement can
thereby be controlled, e.g., by adjusting the number knowledge
collected through the EPs.

B. Realization
The bottleneck of the proposed methodology is the de-

termination of – as much as possible – application-specific
knowledge in terms of EPs. Ensuring the completeness would
require that all possible partitions Pj ∈ P(Ni) of all non-
robust FFs in the same hierarchical circuit level are considered.
Obviously, this lead to an exponential complexity, which is
not feasible for practical applications. Moreover, most of the
partitions Pj are likely to be not suitable for an EP anyway,
since no state sj may exists for them so that all assume the
same value.

In order to realize this proposed approach effectively, a
mechanism is introduced, which aims to determine good
partitions. Particularly, a SAT-based ATPG model is adopted
to compute the criteria of quality for an investigated partition.
In addition to that, we heavily exploit formal methods such
as Bounded Model Checking (BMC, [11]), powerful solvers
for the Boolean Satisfiability Problem (SAT problem, [12]),
and compact data structures involving Binary Decision Dia-
grams (BDDs, [13]).

Eventually, this leads to a methodology composing:
1) A Partition Enumerator selects suitable partitions

Pj ∈ P(Ni) which have not been considered before.
2) A State Collector determines the states Ŝ under which

all FFs in the selected partition Pj assume the same
value and, hence, determines all EP(Ŝ, Pj) evaluating
to true.

3) An FDM Synthesizer takes the obtained knowledge,
realizes the FDM, and, eventually, embeds the resulting
logic into the original circuit.

In the remainder, each step is described in more detail and
illustrated by means of the circuit considered in Fig. 1.

IV. PARTITION ENUMERATOR

The partition enumerator is supposed to select partitions of
FFs which are likely to generate the same value in certain
states. To this end, all non-robust FFs (given in N ) are
initially distinguished according to their hierarchical circuit
level. The FFs of a circuit level NL are then divided into
sets of partitions, which are separately considered. However,
since it is not practically feasible to enumerate all possible
partitions, a method is needed which returns a proper set of
partitions yielding good robustness results.

For this purpose, two different methods are proposed in the
following: The first method is a random-based computation
PRAND and the second one PSAT exploits SAT techniques.
However, both techniques differ strongly concerning their com-
plexity and quality. Generating a random set is considerably
less time-consuming than solving a SAT-instance. In contrast,
the quality of the enumerated sets is much better following
the SAT-based approach, since the respectively guided search
considers the functional behavior of the circuit.



Algorithm 1: Partition Enumeration procedure
Data: set of non-robust FFs: Ni, partition generator: PGEN

1 Container E = ∅ /* Data container for EPs
*/

2 Context ctx /* Overall context */
3 while True do
4 Let Pj = PGEN(ctx,Ni)

/* PGEN calls PRAND _or_ PSAT */
5 if Pj = ∅ then
6 return E
7 Ŝ = StateCollector(Pj)

8 if Ŝ 6= ∅ then
9 E = E ∪ EP(Ŝ, Pj)

10 ctx.accept(Pj)

11 else
12 ctx.decline(Pj)

For both methods PRAND as well as PSAT, a common
algorithmic framework as shown in Algorithm 1 is used: The
non-robust FFs Ni and a partition generator function PGEN –
sharing the algorithmic base of both methods– are provided as
input. The generator function additionally gets a context object
representing the actual state and providing two functions:
accept marks a partition to be accepted and decline marks
that the State Collector could not identify any state satisfying
EP, which is strictly required as stated in Definition 2.

The approach evaluates new partitions as long as PGEN

generates non-empty ones by invoking either the random-based
PRAND or the newly proposed SAT-based PSAT technique
based on designer’s choice. In contrast to the PRAND random
technique, PSAT invokes the proposed metric to determine the
quality (with respect to the stated criteria) of an arbitrary
partition. This allows evaluating the quality of the individual
partition to, especially, select the best – again with respect
to the stated criteria – one. In each iteration, the generated
partition is passed to the State Collection (Line 7) that com-
putes states Ŝ in which all FFs in the currently considered
partition Pj assume the same value (described in detail in
Section V). If at least one state s ∈ Ŝ exists (Lines 8 to 10),
an EP is created using the states Ŝ determined by the State
Collector as well as the currently considered partition Pj .
Then, the resulting EP is stored within a global data container
E (used later by the FDM Synthesizer) and the partition Pj is
accepted by calling accept. In contrast, if no state exists, i.e.,
Ŝ = ∅ the partition is declined by calling decline.

A. Randomized Search
The first method PRAND to obtain partitions selects some

FFs of a given set randomly. Generating those partitions is
very fast but does not consider any logical context of the FFs.
However, this naive approach of randomly selecting partitions
achieves already strong improvements in terms of robustness
while keeping the hardware overhead low.

Technically, a set of non-robust FFs and a pre-defined upper
bound ps are provided as an input. The resulting size of the
generated partition is less than the pre-defined bound. The
algorithm randomly picks an uncovered FF and adds it to
the partition. Finally, the partition is checked whether there
are some states to satisfy EP. If there are such states, the
partition is taken for hardening. Otherwise, another partition
is generated. Eventually, the algorithm terminates since already
checked partitions are stored in order to avoid loops.

B. SAT-based Search
Due to the huge number of possible partitions, enumerating

all of them is practically not feasible. Thus, a further method is
proposed, which conducts a SAT-based search. This addresses
the crucial task of determining a good subset of promising
partitions. The basic idea of the SAT-based search PSAT is that
FFs of a set P forms a good partition if (a) an assignment of the
fan-in cone exists such that an occurring transient fault in one
FF ∈ P is propagated and visible towards at least one primary
output and (b) all FFs of P assume the same value. Counting
the total number of those test patterns (cf. Definition 3) can
be assumed as a metric as formally given in Definition 4 for
the qualitative evaluation. Thus, it is possible to rate different
sets of FFs (partitions), i.e., the most promising candidate can
be derived out of this evaluation.

More precisely:
Definition 3: Given a set of non-robust FFs P ⊆ NL of a

level L, a test pattern is a set of assignments of primary inputs
such that a transient fault of any flip flop of P is observable at
the primary outputs. All test patterns are denoted as TP(P ).

Definition 4: Given a set of test patterns of FFs TP(P ). The
test pattern metric (denoted M(P ) for a given partition P ) is
defined as

M(P ) =
|TP(P )|

2|X|
,

where X defines the number of primary inputs as well as FFs
in the fan-in cone of partition P .

Observation 1: Given two sets of FFs P1 ⊆ Ni and P2 ⊆
Ni of a circuit level i and let M(P1) and M(P2) be two ratings
of sets of FFs P1 and P2, respectively. Then, without loss of
generality, m1 > m2 states that P1 is more suited to satisfy
an EP than P2. This is due to the relatively high percentage
of states, which are considerable for an EP.

In the following part, the underlying algorithmic approach
is described in more detail, which takes advantages of the
Observation 1 to, eventually, implement the proposed SAT-
based approach.

1) Background: The proposed method is inspired by Au-
tomatic Test Pattern Generation (ATPG), particularly, the
formal model typically used by SAT-based ATPG [25]–[27].
Generally, ATPG identifies a test set, more precisely, a set of
input stimuli (test patterns) for a considered circuit, which is
capable to detect a certain fault. Here, a fault is an assumed
faulty behavior of a circuit’s component due to physical
defects. Different well-known structural [28] as well as formal
SAT-based [25]–[27] approaches exist, which both determine
suitable test sets for arbitrary sequential circuits.



Generally, the SAT problem is about determining a satisfy-
ing solution for a given Boolean function (or proving that no
such solution exists). These functions can be represented in
Conjunctive Normal Form (CNF). A CNF Φ is a conjunction
of clauses, whereby, a clause ω is a disjunction of literals and
a literal represents a Boolean variable ν in its positive x or
negative form x̄. The Boolean function Φ : {0, 1}n → {0, 1}
is classified as satisfiable (sat) if an assignment of all variables
exists such that Φ = 1 holds. Otherwise, it is classified as
unsatisfiable (unsat) [29].

These SAT-based ATPG approaches [25]–[27] allow deter-
mining test pattern for even hard-to-detect faults in complex
designs. This is due to the fact that powerful SAT-solvers
are applied for determining the actual test pattern, hence, a
CNF has to be generated, processed (by a SAT-solver) and,
especially, used to extract the test pattern. At first, the investi-
gated circuit is completely converted into a CNF representation
as it is, i.e., in a fault-free fashion.3 Beside this, a fault
(with respect to the considered fault model) is introduced into
a copy of this circuit. More precisely, this faulty circuit is
reduced to the essential components, which are affected by
the introduced fault, and translated into a CNF representing
the faulty circuit. Finally, a miter circuit is expanded to the
corresponding primary output pairs of both, the fault-free
and faulty circuit. The proposed SAT-based approach adopts
the well-known SAT-based ATPG scheme and extends the
underlying SAT-instance by the problem specific requirements,
which are discussed in the following. Especially, this leads
to the generation of a formal representation, which allows
invoking powerful solving engines and, finally, to determine
certain criteria of quality.

2) Formal Model: Given a set P of FFs that needs to be
rated. The basic principle of the SAT-based approach is shown
in Figure 2 for partition P , more precisely, the adopted model
of the SAT-based ATPG [27], [32] is shown. This model is
used to generate the SAT-instance and mainly consists of the
following: At first, the fault-free sub-circuit, which behaves
like the original circuit. All FFs FF1, ..., FF3 of partition
P are included, whose outputs are assumed to be equal.
Additionally, the fan-in cone of all these FFs are included in
the sub-circuit as well, i.e., towards the previous hierarchical
FF level or towards the primary inputs, respectively. Secondly,
the faulty sub-circuit holds a single F̂F 3 ∈ P modeling a
transient fault. Hereby, the sub-circuit contains the fan-in and
fan-out cone from the fault-free as well as faulty sub-circuit
are driven by the same Test Pattern (TP). It is assumed that this
transient fault – while following the fault injection of [18] –
tampers at least one signal in the cone of Test Response (TR),
which is directly driven by F̂F 3. Thus, a Boolean difference
is enforced between the corresponding signals TR and T̂R.
This model is translated into SAT-problem resulting in a SAT-
instance. If the SAT-instance is satisfiable, there is assignment
of the primary inputs - forming the test pattern. All test
patterns up to an upper bound are computed. Finally, a rating

3Note that, in order to ease the description, we will not cover the details of
the CNF conversion. This has already sufficiently been covered by previous
work e.g. in [30], [31].

Fig. 2: SAT-based circuit model

Algorithm 2: State Collecting procedure
Data: enumerated partition: Pj ,max. number of states: u
Data: unrolling depth: l

1 Ŝ = ∅ /* stored as BDD */
2 for k = 1 to l do
3 F = SFind(Pj , k)
4 repeat
5 if |Ŝ| > u then return Ŝ

6 Ŝ = Ŝ ∪ si+1 /* collects state */
7 F = F ∧ ¬si+1 /* blocks solution */
8 until SAT(F )

9 return Ŝ

is computed by calculating M(P ).
Despite the complexity of solving a SAT-problem reasonable

run times to solve the instance are achieved by applying very
common techniques, e.g., incremental satisfiability, cone-of-
influence reduction.

3) Algorithm: Given a set of non-robust FFs NL of a
circuit level L. The SAT-based search first randomly builds
a pre-defined number of subsets P1, . . . , Pn of NL. For each
partition the test pattern metric M(P ) is obtained. Finally,
the partition with the highest rating is considered as best
partition and returned as result. To improve the efficiency of
the realization, common techniques from SAT-based ATPG are
applied, for instance, incremental satisfiablity [32], [33] as well
as cone-of-influence reduction [34] are both applied.

V. STATE COLLECTOR

Once promising partitions have been determined by the
Partition Enumerator, the main task of the State Collector is to



Fig. 3: Applying the proposed methodology to the circuit from Fig. 1

determine reachable states Ŝ such that the EP holds for a parti-
tion Pj obtained by the Partition Enumerator. These states are
collected by utilizing Bounded Model Checking (BMC). This
technique is initially designed for functional verification of
digital circuits proving or disproving a temporal property [35],
[36]. A bounded number of time frames of a sequential
circuit is checked against a specification often in terms of
an LTL-property [11]. However, practically BMC is used for
identifying functional failures rather than proving the absence
of those. Efficient SAT-solver are used to solve a BMC instance
leading to a practically efficient technique. Given a Finite State
Machine (FSM) M = (I, T, S) with (1) I being a predicate of
the initial state, (2) T being the transition relation, and (3) S
being the state space as well as given P as a temporal property,
the BMC problem is formulated as follows:

BMC = I(s0) ∧
∧

0≤i≤l

T (si, si+1) ∧ P (sl)

The variable l defines the number of time frames to be
unrolled. To cover all reachable states, l needs to be set
to the sequential depth of the FSM – often not practically
feasible. Hence, l is usually chosen with a proper value by
the designer. Therefore, a trade-off between run time and
accuracy is employed. To solve the generated BMC instance
by a SAT-solver [12], the instance has to be unrolled starting
from l = 0 up to the designer-defined threshold. Translating a
BMC problem into a satisfiability instance is done by unrolling
the circuit up to a certain time frame applying the technique
of [37]. The resulting formula can be translated into a CNF in
polynomial time with respect to the number of variables and

operators using the encoding proposed in [30]4.
Once the instance becomes satisfiable, the property is dis-

proved and a counterexample can be extracted from the SAT-
instance. Otherwise, the property holds with respect to l. As
initially mentioned, this BMC technique is utilized by the State
Collector. In particular, solutions for the BMC problem [11] are
used to determine the specific states, which describes the actual
translation of the LTL properties into a satisfiability problem.
In general, BMC is about determining a path of states s0 . . . sl
from the initial state s0 so that, eventually, the terminal state
sl violates or satisfies a certain property.

For our purposes, we revise this BMC formulation in order
to determine a path of states so that, eventually, the EP holds
for the currently considered partition Pj . More precisely,

SFind(Pj , l) = I(s0) ∧
∧

0≤i<l

T (si, si+1) ∧ P

is employed where P is a logical formula modeling EP(sl, Pj).
The formula SFind is satisfiable, if there is at least one
path s0 . . . sl such that all FFs in the currently considered
partition Pj assume the same output value at state sl. The
number l of transitions to be considered, i.e., the unrolling
depth of the circuit, can be iteratively increased until either a
state sl has been determined or the maximal unrolling depth
(defined by the designer) is reached. The selection of the
maximal unrolling depth l while keeping run times reasonable
is a challenging task. To cover the entire search space, l needs
to be aligned with the completeness threshold as stated in
Algorithm 2. However, from a practical point of view, this

4Note that, in order to ease the description, we will not cover the details of
the CNF conversion. This has already sufficiently been covered by previous
work, e.g., in [30], [31].



is often unfeasible and, moreover, (mostly) not required at all.
For many practical instances, getting a satisfactory result is
possible without reaching the completeness threshold.

Please note that there are many techniques available, which
are approximating the reachable state space of digital circuits
and, hence, those techniques can significantly improve the run
time [38]–[40]. However, they are not considered in this work
to keep the presentation clear.

If no path can be determined, the partition Pj has been found
unsuitable as no state could have been determined in which all
FFs in Pj assume the same output value. In addition to that,
another parameter u > 0 is added which prevents the State
Collector from determining too many states. Considering too
many states increases significantly the complexity of the FDM
while hardly improving the achieved robustness anymore.

Overall, this leads to the State Collecting method as summa-
rized in Algorithm 2. The algorithms receive the partition Pj

from the Partition Enumerator, the maximum number u of
states to be generated, as well as the unrolling depth l for
the underlying BMC problem. The collected states Ŝ are
compactly represented by means of BDDs [13] and initialized
by the empty set in Line 1.

As long as the maximum number u of states to be deter-
mined is not reached (Line 5), further states are computed.
This is done by formulating the BMC problem (Line 3) for the
currently considered unrolling depth k (0 < k < l). Afterward,
the resulting formulation (denoted by F ) is solved by a SAT-
solver (Line 8). As long as a satisfying solution is determined,
the corresponding states are added to Ŝ (Line 6) and, afterward,
blocked in the BMC formulation F so that new states can be
determined (Line 7).

Example 2: Given the exemplary partition Pj =
{FF3, FF4, FF5} as provided by the Partition Enumerator,
states shall be determined so that all FFs in Pj assume the
same output value. Assuming that both cones f1 and f2
in the circuit from Fig. 1 do not contain any FFs, a State
Collector instance according to SFind is formulated. Solving
this instance yields a satisfying solution where all FFs
{FF3, FF4, FF5} have the same output value ‘0’. From that,
it is shown that EP(Ŝ, Pj) holds under the state s ∈ Ŝ defined
by FF1 = 0 and FF2 = 0. Consequently, the partition Pj is
valid. In the Partition Enumerator (Algorithm 1), this EP is
later stored in the container E .

VI. FDM SYNTHESIZER

The methods from above yield a data container E including
all application-specific knowledge which has been obtained in
terms of EPs, i.e., all valid partitions Pj and corresponding
states Ŝ which satisfy the equivalence property. This knowl-
edge is now utilized in order to synthesize an FDM. More
precisely, for each determined EP(Ŝ, Pj) ∈ E , a fault signal
F is to be generated which is set to ‘1’ whenever the circuit
is in a state s ∈ Ŝ (checked by the activator) and, at the same
time, the FFs in the partition Pj do not assume the same value
(checked by the comparator). In the following, details on the
realization of this FDM are provided.

1) Activator A: For a given EP(Ŝ, Pj), a signal A has to be
created which is set to ‘1’ iff the circuit is in a state s ∈ Ŝ. As
mentioned before in Section V, all currently relevant states Ŝ
are stored in terms of a BDD. Hence, corresponding logic
triggering the signal A can easily be derived from the BDD
by replacing all BDD nodes with a corresponding MUX gate
(as, e.g., shown in [41]).

Besides that, the timing of A has to be properly adjusted.
Transient faults are assumed to occur in the transition between
two consecutive states. This is why the states s ∈ Ŝ are
collected for state sl−1 (assuming their effects manifest in
state sl). Consequently, the check for states has to be conducted
one state before the values of all FFs in Pj are to be compared,
i.e., the activator signal A has to be generated one state before
the comparison is conducted. This requires signal A to be
buffered for one cycle, which is accomplished by introducing
an additional FF L-Act1.

However, since L-Act1 is vulnerable to transient faults,
robustness is not guaranteed anymore. Hence, a second FF
L-Act2 which also receives the value of signal A is introduced.
After one cycle, the output values of both FFs L-Act1 and
L-Act2 are checked for equivalence. If the two values are not
equal, a fault is reported (by setting the fault signal F to ‘1’).

Example 3: Consider again the running example with the
circuit from Fig. 1 and the determined EP(Ŝ, Pj). Fig. 3 shows
the resulting circuit created by the FDM scheme proposed
in this work. The bottom left corner of Fig. 3 sketches the
resulting Activator logic. More precisely, using Ŝ represented
as BDD, a MUX circuit is created which generates the signalA
(sketched by the block State Collector). Then, the resulting
signal is passed to the two FFs L-Act1 and L-Act2. To protect
both newly inserted FFs against possible single transient faults,
an XOR gate is introduced. In case of a deviation between
both FFs L-Act1 as well as L-Act2, the Activator Fault signal
is triggered, which, especially, overdrives the fault signal F to
indicate an occurred fault.

2) Comparator C: For a given EP(Ŝ, Pj), a signal C has to
be created which is set to ‘1’ iff the FFs in a partition Pj

assume the same values. This can easily be realized by
connecting the corresponding FF outputs by XNOR gates and
comparing their result. Since a further fan-out is introduced
to the specific FF, the timing is slightly affected, which can
easily be addressed by state-of-the-art techniques of the power
optimization and, hence, is negligible.

The example illustrates the resulting logic.
Example 4: Consider again the running example with the

circuit from Fig. 1 and the determined EP(Ŝ, Pj). The bottom
middle part of Fig. 3 sketches the resulting Comparator logic.
Here, the outputs of all FFs {FF3, FF4, FF5} ∈ Pj are
compared by XNOR gates. Afterward, the outputs of these
XNOR gates are passed to an AND gate. If all FFs assume
the same value, this AND gate evaluates to ‘1’.

3) Generating the Fault Signal F: Finally, the signals A
and C are assembled into a single FDM that generates the
fault signal F . Recall that F is set to ‘1’ iff a fault has been
detected. For a given EP(Ŝ, Pj), this is the case if the circuit
just left a state Ŝ (stored in the both FFs L−Act1 and L−Act2,



which drive the signal A)5 and all FFs in P| are not equal. This
is described by F = ¬C ∧A and, hence, an occurred transient
fault can be realized easily within the later application.

Example 5: Consider again the running example and the
resulting circuit shown in Fig. 3. As can be seen in the
bottom right corner, the signal C is first inverted and, afterward,
ANDed with the A signal. The resulting value is additionally
ORed with the fault value from the robustness check of
the Activator – eventually resulting in the desired signal F .
Consider now the entire circuit and, e.g., a transient fault
in FF3 (denoted by the red strike symbol). This causes the
FFs {FF3, FF4, FF5} ∈ Pj to not assume the same value
anymore in states Ŝ where this is supposed to happen, i.e., the
EP(Ŝ, Pj) fails. This case is propagated through the FDM (see
annotations in Fig. 3) which, eventually, sets the fault signal F
to ‘1’, and, by this, detects the fault.

Logic as described above is, of course, added for all EP ∈ E .
Overall, this leads to a circuit which has a slightly increased
number of gates but substantially improved robustness. This
has been confirmed by experimental evaluations whose results
are summarized next.

VII. EXPERIMENTAL RESULTS

This section describes the experiments, which have been
conducted to evaluate the proposed approach. At first, the
experimental setup is presented and, secondly, the results are
shown and discussed.

A. Setup
The proposed methodology has been implemented in C++.

To determine the non-robust FFs of the circuit, a simulation-
based robustness checker has been implemented which trans-
forms the given circuits (provided in Verilog and parsed
by Verific) into a compiled simulation model (to this end,
LLVM [42] IR code is generated by the simulation envi-
ronment). In order to conduct the respective BMC instance
(cf. Section V) and the SAT-based partitioning approach
(cf. Section IV-B), MiniSAT [12] on top of metaSMT [43],
together with the X-value abstraction as described in [44] has
been utilized. The BDD package CUDD has been used to
generate the MUX circuits.

The resulting flow has been evaluated using ITC’99 bench-
mark circuits. The robustness of a circuit has been introduced
in Section II-C.

In order to determine the set of all non-robust FFs (cf. Sec-
tion II-C), the parameters l = 500 and r = 5 for simulation
have been found suitable for these circuits according to the
(minimal) latency analysis of [45]. The Partition Enumerator
(cf. Section IV) considered different maximal partition sizes
holding maximal ps ∈ {8, 16} FFs.

Finally, the State Collector (cf. Section V) always assumed
an unrolling depth of l = 10 and a bounded number u = 1024
of states to be collected per partition Pj

6. The selection of the
unrolling depth l is aligned with the maximal latency, which is

5Note that this FF stage introduces a required delay of one clock cycle.
6Note that this bound u was not exceeded.

TABLE I: Run time for different ps ∈ {8, 16}

circ. #gates #FFs PRAND run time [m] PSAT run time [m]

ps = 8 ps = 16 ps = 8 ps = 16

b05 608 66 < 0.10 < 0.10 < 0.10 0.15
b06 66 9 < 0.10 < 0.10 < 0.10 < 0.10
b07 382 51 0.18 0.18 2.96 44.03
b08 168 21 < 0.10 < 0.10 < 0.10 < 0.10
b09 131 28 < 0.10 < 0.10 2.88 11.25
b10 172 17 < 0.10 < 0.10 0.26 17.18
b11 366 30 < 0.10 < 0.10 1.50 0.28
b12 1000 121 1.26 1.15 0.71 0.911
b13 309 53 < 0.10 0.11 21.98 791.67
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Fig. 4: Comparison between random-based and SAT-based
approach

determined for the simulation-based approach in work [45] and
acts as an upper bound for the applied formal BMC model. The
developed flow seamlessly integrates both, the random as well
as the SAT-based technique. This allows the designer to easily
select a trade-off between the overall robustness improvement
with respect to the introduced hardware overhead.

All evaluations have been conducted on an Intel Xeon E5-
2640v4 2.4 GHz processor with 256GB system memory. The
time-out (TO) is set to 96h and for the memory-out (MO) is
set to 64GB.

B. Evaluation

The obtained results are summarized as follows:
• Table I provides details on the considered benchmark

circuits, i.e., its respective name, number of gates, and
number of FFs, as well as the run time (in CPU minutes)
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required by both proposed methodologies when maximal
partition sizes of ps ∈ {8, 16} are applied.

• Fig. 4 presents a direct comparison between the random-
based and SAT-based approaches: The right X-axis
shows the difference HSG −HRB of the random-based
scale factor HRB and of the SAT-based scale factor
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HSG. Thus, the lower the scale bar chart is, the lower
the introduced hardware overhead is while applying the
SAT-based approach instead of the random-based one
and vice versa. The resulting robustness improvement
of the enhanced designs (by utilizing the proposed
approaches) RRB and RAG are compared with respect
to the design’s initial robustness7 Rinit is determined as
follows: ∆RRB = RRB −Rinit and ∆RSG = RSG −
Rinit, respectively. The left X-axis provides the differ-
ence of both robustness improvements: ∆RSG−∆RRB .
Thus, the higher the robustness bar chart is, the higher
the robustness improvement is, which is achieved while
applying the SAT-based approach instead of the random-
based one and vice versa.

• Fig. 5 shows the hardware overhead (in terms of a
gate count in percentage) caused by applying the pro-
posed methodologies, i.e., one random-based as well
as SAT-based approach, for the considered maximal
partition sizes.8

• Fig. 6 presents on the left X-axis the overall number
of introduced FDMs into the circuit by applying the
SAT-based approach for both maximal partition sizes.
Furthermore, the right X-axis shows the overall nodes of
all state collectors. Note that each FDM holds exactly
one individual state collector. Besides this, note that the
state collector is represented as a BDD, which can be
synthesized by a one-to-one mapping between nodes and
MUX-gates as stated in [41].

• Fig. 7 shows the robustness of the original circuit as

7Note that the initial robustness is due to the circuit’s structure and, more
precisely, due to the implicitly given redundancies as observed in [46].

8If no bar is shown, a hardware overhead of 0% or close to 0% is measured.



well as the robustness after applying both proposed
methodologies (again for different maximal partition
sizes ps ∈ {8, 16}).

First, Figure 4 presents a direct comparison between the
random-based and the SAT-based approach. The SAT-based
approach allows reducing the introduced hardware-overhead in
two third of the conducted experiments while achieving at least
the same (or even a slightly higher) robustness enhancement.
In case of benchmark circuits b06 (b13), the newly proposed
SAT-based approach clearly shows its advantages against the
random-based one: The robustness is even more increased by
approx. 55% (10%).

Besides that, the results nicely show the effect of different
partition sizes ps as stated in Figure 5: In almost all cases
a larger ps leads to a smaller hardware overhead. This is
because larger partitions cover more FFs and, hence, require
the consideration of a smaller total number of partitions leading
to less FDM logic. This is both valid for the random-based as
well as the SAT-based approach.

Particularly, this observation can also be validated for the
SAT-based approach by considering Figure 6: The number of
introduced FDMs is lower equal when invoking the SAT-based
technique with ps ≤ 8 instead of ps ≤ 16. For instance, we see
3 (2) FDMs being introduced to the circuit b11 with ps equals
to 8 (16). This leads to overall 21 (10) nodes in the generated
state collectors.

At the same time, this reduces the required run time since
less BMC checks have to be conducted. Both methodologies
are slightly able to improve the robustness for b08 only.
Moreover, the hardware overhead is even the same.

However, more important is the overall performance. In this
regard, the proposed methodology provides a suitable alter-
native to previously proposed solutions such as discussed in
Section I. Although space-based approaches such as TMR [2]
can guarantee 100% robustness, they usually require more than
thrice the amount of hardware (i.e., yielding a scaling factor
of > 3.0). In contrast, the solution proposed in this work is
capable of always improving the robustness to more than 90%
(in some cases even close to 100%), while only 5.8% more
hardware is required for this in average. As already discussed
before, the proposed solution also outperforms timing-based
and application-specific approaches, since timing is hardly af-
fected at all in the proposed solution and the methodology can
be applied to arbitrary sequential circuits. By this, a suitable
trade-off between enhancing the robustness and keeping the
hardware overhead small is achieved.

Moreover, the determination of good partition is a compu-
tational hard task: While considering structural information as
done by the SAT-based approach, the run time is increased.
The run times are manageable, even though common ATPG
techniques, e.g., modeling J-frontiers and D-chain-based prop-
agation, have not been applied.

The proposed SAT-based approach tackles this challenge by
exploiting powerful formal model, which is inspired by SAT-
based ATPG techniques, leading to:

1) An enhanced robustness in most of the cases compared
to the random-based approach and has never been
reduced,

2) the scale factor is in almost all cases reduced compared
to the random-based approach or the robustness [cf. 1)]
has been significantly enhanced.

Additionally, for the SAT-based approach a trade-off be-
tween the effort and the benefit can be adjusted on designer’s
choice.

VIII. CONCLUSIONS & FUTURE WORK

In this work, we proposed an approach for improving the
robustness of sequential circuits. The main idea is to avoid
an hardware overhead, which often introduces unnecessary re-
dundancy. The proposed approach exploits application-specific
knowledge about the FFs in each reachable state. To this end,
a methodology is introduced, which gains the corresponding
knowledge and, afterward, utilizes them for a fault detec-
tion mechanism. To cope with the underlying complexity,
a dedicated orchestration of formal techniques is employed.
This results in a hardening method which requires only a
slight increase in additional hardware, does only influence the
timing behavior negligibly by introducing just one further fan-
out to the FFs, and is automatically applicable to arbitrary
circuits. Experimental evaluations confirmed these benefits:
Robustness can be increased to approx. 84% (97%), while
the circuit size increases only by a factor of approx. 1.07
(1.07) on average while applying the random-based (SAT-
based) approach. Future work will focus on developing a
technique for not only detecting the respective faults but also
correcting them with the proposed methodology. Furthermore,
a significant performance improvement can be achieved by
introducing a K-induction for the state-collector, which would
allow representing the collected stats in an exact and non-
symbolic manner.

Future work will focus on applying the proposed technique
to large (industrial-sized) circuits. One method towards this is
the consideration of a compositional approach. This technique
is often applied to reduce the search-space when employing
formal methods. The compositional approach follows the idea
to pick parts of the circuits, e.g., provided by module-bounds of
a hardware description language. Then, the technique proposed
here can be applied to harden these parts. Since manageable
parts are hardened separately, the search space is significantly
reduced compared to the entire circuit. However, the number
FFs fulfilling the EP condition will potentially grow since
more states will lead to the EP condition than actually possible
considering the entire circuit. But the FDM integrated into the
entire circuit will not cause false-positive since only reachable
states occur in operation.
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