
fiction: An Open Source Framework for
the Design of Field-coupled Nanocomputing Circuits

(Extended Abstract)

Marcel Walter
1

Robert Wille
2,3

Frank Sill Torres
1,3

Daniel Große
1,3

Rolf Drechsler
1,3

1
Group of Computer Architecture, University of Bremen, Germany

2
Johannes Kepler University Linz, Austria

3
Cyber Physical Systems, DFKI GmbH, Bremen, Germany

{m_walter, frasillt, grosse, drechsler}@uni-bremen.de, robert.wille@jku.at

https://github.com/marcelwa/fiction

ABSTRACT
As a class of emerging post-CMOS technologies, Field-coupled Nano-
computing (FCN) devices promise computation with tremendously

low energy dissipation. Even though ground breaking advances in

several physical implementations like Quantum-dot Cellular Au-
tomata (QCA) or Nanomagnet Logic (NML) have been made in the

last couple of years, design automation for FCN is still in its infancy

and often still relies on manual labor. In this paper, we present

an open source framework called fiction for physical design and

technology mapping of FCN circuits. Its efficient data structures,

state-of-the-art algorithms, and extensibility provide a basis for

future research in the community.

1 INTRODUCTION AND BACKGROUND
Field-coupled Nanocomputing (FCN) [1] is a class of emerging tech-

nologies which conduct computations fundamentally differently

from conventional systems relying e. g. on CMOS. Here, informa-

tion is represented in terms of the polarity or magnetization of

nanoscale cells and can be propagated to adjacent ones using re-

pelling forces of local fields [7, 13]. This results in devices that

allow to represent and process binary information without electri-

cal current flow. Consequently, numerous contributions on their

physical realization have been made in the past and several of some

them in the last three to four years, e. g. molecular Quantum-dot
Cellular Automata (mQCA) [12], atomic Quantum-dot Cellular Au-
tomata (aQCA) [2, 11], or Nanomagnet Logic (NML) [10].

Moreover, this way of representing and processing information

is doable with highest processing performance and remarkably low

energy dissipation – as confirmed by several theoretical and exper-

imental studies (see e. g. [14, 18, 21]). This makes FCN a promising

alternative to conventional integrated circuit technologies. How-

ever, no exhaustive automatic design flow is available for FCN tech-

nologies so far. Also, due to different design rules of CMOS VLSI,

existing classical methods are not applicable to the FCN domain.

In this paper, we present fiction, a framework for the design of

FCN circuits. The framework is written in C++ and uses the EPFL
Logic Synthesis Libraries [17]. With this tool, we especially tackle

the physical design steps of FCN like placement, routing, timing,

and technology mapping under the domain specific constraints.

Logic synthesis however is taken as granted as it can be per-

formed with existing tools like ABC [3]. Even though their physical

implementations differ from each other, the structural models of

This paper discusses fiction v0.2.1.

most FCN technologies are nearly identical. Data structures in fic-
tion are designed around this insight: whenever possible, fiction
abstracts from physical implementations and conducts layout on

a higher level. Only in the final step, a technology mapping is

performed.

On that layer of abstraction, the design task boils down to the

composition of tiles with assigned logic or wire elements. Such

entities for an AND gate, an inverter, a straight wire, and a fan-

out are shown exemplarily in Figure 1. The shade of the tiles, the

coloring of the logic elements, and the numbers in the bottom right

corners represent redundant information about the clocking. For

further information see [1, 9, 21, 24].

In the following, fiction is initially presented from the perspec-

tive of a standard user in Section 2, where an example layout flow

is conducted and benchmarking is elaborated, followed by a de-

scription of the developer’s perspective in Section 3, where the

implementation of a naive random placement is exemplarily shown.

Section 4 concludes the paper.

2 THE USER’S PERSPECTIVE
In this section, two typical application scenarios within fiction are

described. First, it is shown how interaction with the store-based

command-line interface (CLI) alice [17] works by the use case of

obtaining a routed layout which is prepared for physical simulation.

Then, scripting, benchmarking and logging functionalities to easily

generate statistical data are demonstrated.

2.1 The CLI
Starting point of all flows is a synthesized Verilog netlist file which

exclusively uses the assign statement and logic primitives. Suitable

files can be generated with ABC [3] using the following commands.

1 read <inputfile >
2 strash
3 write <outputfile >.v

Also, fiction comes with a set of sample netlist files which can

be found in the benchmarks folder. These can be loaded using the

command read. By this, the netlist is parsed and placed in a store
where it can be accessed and (re-)used by other algorithms. So far,

two state-of-the-art layout approaches are implemented which can

be called via the commands exact [24] and ortho [26]. Algorithm

exact utilizes the Smt solver Z3 [5] to generate minimal layouts

in terms of area within the provided parameters. The approach is

highly configurable and allows to toggle and set up several design

criteria like the clocking scheme, the use of crossings, balanced

ar
X

iv
:1

90
5.

02
47

7v
1

 [
cs

.E
T

]
 7

 M
ay

 2
01

9

https://github.com/marcelwa/fiction

(a) AND (b) INV (c) Wire (d) Fan-out

Figure 1: Tiles in QCA implementation

paths, synchronization elements [20], I/O pins, and wire length

restrictions. However, exact is only applicable for rather small

netlists due to the complexity of the tackled problem [25]. On the

other hand, ortho is a heuristic algorithmwhich does not guarantee

minimal layouts anymore and also is restricted to a fixed clocking

scheme, but therefore can generate results in feasible runtime.

Eventually, both algorithms generate a gate-level abstraction

of an FCN circuit grid. Using the command cell, a technology

mapping is performed with a selected gate library, whose default is

QCA-ONE [15]. Having a QCA circuit in store, it can be written as a

simulation file for theQCADesigner [27], a standard tool for physical
simulation of QCA structures, by entering qca <filename>.qca.
Also, using the command show generates a scalable vector graphic

to inspect the implemented circuit.

2.2 Benchmarking & Scripting
The flow shown in the previous section can easily be repeated

by storing it in a fiction script file. We assume that two designs

generated with different settings of the exact algorithm for the

netlist c17.v shall be compared. Therefore, we create the following

file compare.fs.

1 read ../ benchmarks/ISCAS85/c17.v
2 exact -ixbs 2ddwave4
3 ps -g
4 cell
5 show
6 exact -ps use
7 ps -g
8 cell
9 show

The first call to exact enables designated I/O pins (-i), allows
crossings (-x), routes all I/Os to the grid borders (-b) and uses the

4-phase 2DDWave [23] scheme (-s 2ddwave4), while the second
one allows for unbalanced (de-synchronized) paths (-p) and utilizes

USE [4] as the clocking scheme (-s use).1

To run this script, we enter ./fiction -f compare.fs. Not
only do we get SVG images of both layouts but also, through the use

of ps -g, some statistical information about the layouts are printed,

i. e. the dimension of the resulting grid in tiles, the amount of

gate (#G) andwire tiles (#W), crossings (#C), and latches (#L) used, the
length of the critical path (CP) in tiles, and the throughput (TP) [19,
20]. Note that fan-outs and I/O pins are counted as gates since they

are fixed by the input. This way, the displayed amount of wires

represents the net costs [22]. The resulting graphics are shown in

Figure 2.

1
Further predefined clocking schemes include RES [8] and BANCS [6]. Though the

default is an irregular open clocking which gives the solver a degree of freedom in

assigning the clock numbers itself.

(a) exact -ixbs 2ddwave4 (b) exact -ps use

Figure 2: Two differently layouted variants of c17.v

1 c17: 5 x 7, #G: 18, #W: 18, #C: 3, #L: 0, CP: 11, TP: 1/1
2 c17: 4 x 5, #G: 11, #W: 7, #C: 0, #L: 0, CP: 13, TP: 1/3

Finally, these functionalities can be embedded into a shell script.

For the next scenario, we want to layout all files from a folder, log

their statistical information, and generate simulation models for

QCADesigner. To this end, we create the following bash script.

1 for filepath in ../ benchmarks/TOY/*.v; do
2 f="${filepath ##*/}"
3 ./ fiction -c "read $filepath; ortho; ps -g; cell; qca

${f%.*}. qca" -l ${f%.*}. json
4 done

Using the -c flag, a semicolon-separated list of commands can

be provided and the output is logged in a JSON file by the -l flag.
Note that when logging is activated, ps -g logs contain more

in-depth data about the layout like its bounding box size, energy

consumption [21], etc. For both, the physical models as well as the

log files, the originally entered file name is used extended by the

respective file extension.

3 THE DEVELOPER’S PERSPECTIVE
This section elaborates important design decisions for fiction’s data
types and presents some sample code for a naive random placement

in order to demonstrate their use.

Core of the implementation are the classes fcn_gate_layout
and fcn_cell_layout – a gate level, tile-based abstraction and a

physical FCN cell-based layout respectively. They are based on a

boost::grid_graph, a highly memory efficient grid data structure

from the Boost Graph Library (BGL) [16]. Following BGL’s paradigm,

the grid topology is separated from the associated elements like

wires, gates, or cells respectively. Such associations happen via

defaulted maps that return standard values (mostly used for free

grid positions), when an uninitialized access happen to save even

more memory.

Also, regular clocking schemes like USE are stored in terms of

a small cut-out which is then seamlessly extrapolated for larger

layouts as there is no need to store clock values for every single tile.

Furthermore, all data structures provide convenience functions and

iterators to shift attention away from implementation details and

towards actual algorithms when working with fiction as a developer.
The following code snippet demonstrates how a simple function

can be implemented to randomly place vertices of a logic_network

(constructed from a parsed Verilog file) on layout tiles.
2

1 void naive_random_placement ()
2 {
3 // fetch current logic network from store
4 auto network = store <logic_network_ptr >().current ();
5 auto n = network ->vertex_count ();
6

7 // create an empty 4-phase USE layout of size n x n
8 auto layout = std:: make_shared <fcn_gate_layout >(

fcn_dimension_xy{n, n}, use_4_clocking , network);
9

10 // for all logic vertices v
11 for (auto&& v : network ->vertices ())
12 {
13 auto placed_successfully = false;
14 do
15 {
16 // sample a random tile t in ground layer
17 auto t = layout ->random_tile(GROUND);
18 if (layout ->is_free_tile(t))
19 {
20 // place v at t
21 layout ->assign_logic_vertex(t, v);
22 placed_successfully = true;
23 }
24 } while (! placed_successfully);
25 }
26 // place resulting layout in a store
27 store <fcn_gate_layout_ptr >().extend () = layout;
28 }

The given function naive_random_placement can for instance

be implemented as a new command in the file io/commands.h by
following the scheme of existing ones or by considering the official

alice documentation. Note that the function as given here only

places gates but does neither take care of their orientation nor

their routing. A custom router can fully benefit from the whole

functionality offered by the BGL as most of their (path finding)

algorithms work on boost::grid_graphs as well.
Assuming the routing step has happened as well, one might want

to convert the gate level abstraction to an actual cell-based imple-

mentation to conduct lower level optimizations. We further assume,

the QCA-ONE gate library should be utilized for the technology

mapping. The following code snippet does the job.
2

1 void technology_mapping ()
2 {
3 // fetch current gate layout from store
4 auto gates = store <fcn_gate_layout_ptr >().current ();
5 // prepare a library object for technology mapping
6 auto lib = std:: make_shared <qca_one_library >(gates);
7 // apply library to generate a cell -based layout
8 auto cells = std:: make_shared <fcn_cell_layout >(lib);
9 // store cell layout
10 store <fcn_cell_layout_ptr >().extend () = cells;
11 }

For further information, we refer the reader to io/commands.h
and tech/fcn_gate_library.h.

Additionally to the already introduced functionalities, fiction sup-
ports the use of externally clocked synchronization elements [20],

2
Note that applicable usages of std::move have been omitted due to space limitations.

the use of multiple wires elements in the same tile in the gate-

level abstraction already, and the direct construction of (cell-wise

clocked) physical cell layouts without the use of any gate library.

4 CONCLUSION
In this paper, we introduced fiction, an extensible open source frame-

work written in C++ for the layout, optimization, and physical

design of Field-coupled Nanocomputing Circuits. The framework

comes with efficient data structures, state-of-the-art algorithms,

as well as rich scripting and logging functionalities. We thereby

provide a foundation for future research in the community.

ACKNOWLEDGMENTS
Wewould like to thank Gregor Kuhn andMario Kneidinger for code

contributions and the authors of the EPFL Logic Synthesis Libraries
for their inspiring work.

REFERENCES
[1] N. G. Anderson and S. Bhanja. Field-coupled Nanocomputing: Paradigms, Progress, and

Perspectives. Springer, New York, 1st edition, 2014.

[2] S. Bohloul, Q. Shi, R. A. Wolkow, and H. Guo. Quantum Transport in Gated Dangling-

Bond Atomic Wires. Nano Letters, 17(1):322–327, 2017.
[3] R. Brayton andA.Mishchenko. ABC: AnAcademic Industrial-Strength Verification Tool.

In International Conference on Computer Aided Verification, pages 24–40. Springer, 2010.
[4] C. A. T. Campos, A. L. P. Marciano, O. P. V. Neto, and F. S. Torres. USE: A Universal,

Scalable, and Efficient Clocking Scheme for QCA. TCAD, 35(3):513–517, 2016.
[5] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS/ETAPS, Berlin,

Heidelberg, 2008.

[6] R. E. Formigoni et al. BANCS: Bidirectional AlternatingNanomagnetic Clocking Scheme.

In SBCCI, pages 1–6. IEEE, 2018.
[7] D. Giri, G. Causapruno, and F. Riente. Parallel and Serial Computation in Nanomagnet

Logic: An Overview. TVLSI, pages 1–11, 2018.
[8] M. Goswami et al. An efficient clocking scheme for quantum-dot cellular automata.

Electron. Lett., pages 1–14, 2019.
[9] K. Hennessy and C. S. Lent. Clocking of Molecular Quantum-dot Cellular Automata. J.

Vac. Sci. Technol. B, 19(5):1752–1755, 2001.
[10] X. K. Hu, H. Dey, N. Liebing, G. Csaba, A. Orlov, G. H. Bernstein, W. Porod, P. Krzys-

teczko, S. Sievers, and H. W. Schumacher. Edge-Mode Resonance-Assisted Switching of

Nanomagnet Logic Elements. IEEE Trans. Magn., 51(11):1–4, 2015.
[11] T. R. Huff, H. Labidi, et al. Atomic White-Out: Enabling Atomic Circuitry through Me-

chanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface. ACS Nano,
11(9):8636–8642, 2017.

[12] C. S. Lent et al. Molecular Cellular Networks: A non von Neumann architecture for

molecular electronics. In ICRC, pages 1–7, 2016.
[13] C. S. Lent and P. D. Tougaw. A Device Architecture for Computing with Quantum Dots.

Proceedings of the IEEE, 85(4):541–557, 1997.
[14] J. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow. Tunnel Coupled Dangling Bond

Structures on Hydrogen Terminated Silicon Surfaces. JCP, 134(6), 2011.
[15] D. A. Reis et al. A Methodology for Standard Cell Design for QCA. In ISCAS, pages

2114–2117, 2016.

[16] J. Siek, A. Lumsdaine, and L.-Q. Lee. The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley, 2002.

[17] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli. The EPFL Logic Synthesis Li-

braries, 2018. arXiv:1805.05121.

[18] J. Timler and C. S. Lent. Power Gain and Dissipation in Quantum-dot Cellular Automata.

J. Appl. Phys., 91(2):823–831, 2002.
[19] F. S. Torres et al. Exploration of the Synchronization Constraint in Quantum-dot Cellular

Automata. In DSD, pages 642–648, 2018.
[20] F. S. Torres, M. Walter, R. Wille, D. Große, and R. Drechsler. Synchronization of Clocked

Field-Coupled Circuits. In IEEE-NANO, pages 1–5. IEEE, 2018.
[21] F. S. Torres, R. Wille, P. Niemann, and R. Drechsler. An Energy-aware Model for the

Logic Synthesis of Quantum-Dot Cellular Automata. TCAD, PP(99), 2018.
[22] F. S. Torres, R. Wille, M. Walter, P. Niemann, D. Große, and R. Drechsler. Evaluating the

impact of interconnections in Quantum-dot Cellular Automata. In DSD, pages 649–656,
2018.

[23] V. Vankamamidi, M. Ottavi, and F. Lombardi. Clocking and Cell Placement for QCA. In

IEEE-NANO, volume 1, pages 343–346. IEEE, 2006.

[24] M.Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler. An Exact Method for Design

Exploration of Quantum-dot Cellular Automata. In DATE, pages 503–508, 2018.
[25] M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler. Placement & Routing for

Tile-based Field-coupled Nanocomputing Circuits is NP-complete. In JETC, 2019.
[26] M. Walter, R. Wille, F. S. Torres, D. Große, and R. Drechsler. Scalable Design for Field-

coupled Nanocomputing Circuits. In Proceedings of the 24th Asia and South Pacific Design
Automation Conference, pages 197–202. ACM, 2019.

[27] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. QCADesigner: A Rapid Design

and Simulation Tool for Quantum-dot Cellular Automata. TNANO, 3(1):26–31, 2004.

	Abstract
	1 Introduction and Background
	2 The User's Perspective
	2.1 The CLI
	2.2 Benchmarking & Scripting

	3 The Developer's Perspective
	4 Conclusion
	Acknowledgments
	References

