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ABSTRACT
The Noisy Intermediate-Scale Quantum (NISQ) technology is cur-

rently investigated by major players in the field to build the first

practically useful quantum computer. IBM QX architectures are the
first ones which are already publicly available today. However,

in order to use them, the respective quantum circuits have to be

compiled for the respectively used target architecture. While first

approaches have been proposed for this purpose, they are infeasible

for a certain set of SU(4) quantum circuits which have recently been

introduced to benchmark corresponding compilers. In this work,

we analyze the bottlenecks of existing compilers and provide a

dedicated method for compiling this kind of circuits to IBM QX

architectures. Our experimental evaluation (using tools provided by

IBM) shows that the proposed approach significantly outperforms

IBM’s own solution regarding fidelity of the compiled circuit as

well as runtime. Moreover, the solution proposed in this work has

been declared winner of the IBM QISKit Developer Challenge. An
implementation of the proposed methodology is publicly available

at http://iic.jku.at/eda/research/ibm_qx_mapping.

1 INTRODUCTION
Quantum computers offer a promising computation paradigm that

allows to solve certain tasks significantly faster than conventional

machines. Instead of bits, these devices operate on so-called qubits
that can not only be in one of the basis states |0⟩ and |1⟩, but also in

an (almost) arbitrary superposition of both, i.e. |ϕ⟩ = α |0⟩ + β |1⟩.

In combination with other quantum mechanical phenomena like

entanglement and phase shifts, this allows to develop quantum cir-

cuits (i.e. a sequence of operations that are applied to the qubits) that

gain an exponential speedup compared to conventional machines

for several practically relevant problems.

Currently, there is an ongoing “race” to build the first practically

useful quantum computer between large companies like IBM, Intel,

Rigetti, and Google [11, 14, 16, 20]. They all develop devices that can

be classified to the Noisy Intermediate-Scale Quantum (NISQ [19])

technology. Although still limited by their number of available

qubits and low fidelity, these devices provide the capability of run-

ning quantum algorithms for dedicated problems in domains such

as quantum chemistry or physical simulation and they provide the

first step towards fault-tolerant quantum computing. Among the

different solutions currently developed by the companiesmentioned

above, IBM’s approach (yielding so-called IBM QX architectures) is
the first one which is already publicly available today (through a

cloud access launched within their project IBM Q [1]). Because of

this, we are focusing on this architecture in the following.

However, in order to use IBM QX devices (or NISQ devices in

general), the respective quantum circuits have to be compiled to the

target architecture. This includes a decomposition of the operations

into elementary gates provided by the architecture, as well as a

mapping procedure that maps the logical qubits of the circuit to the

physical ones of the QX device. While for the decomposition step,

several solutions exist (cf. [7, 17, 18, 27]), especially the mapping

step constitutes a tough challenge, since further physical constraints

have to be considered. In fact, 2-qubit gates can be applied to certain

pairs of physical qubits only. Therefore, SWAP operations have to

be inserted that exchange the state of two physical qubits and, by

this, allow to “move” the logical qubits to positions where they can

interact with each other. Since each additional operation further

decreases the fidelity of the quantum circuit, their number shall be

kept as small as possible.

Accordingly, researchers investigated how to efficiently accom-

plish that—yielding a large body of solutions for minimizing the

number of SWAP operations required for satisfying the physical

constraints. But most of them (e.g. the ones proposed in [9, 21, 25,

26, 28]) focus on so-called nearest neighbor constraints, which are

not sufficient to get executed on IBM QX architectures (or NISQ

architectures in general for that purpose). Other ones (such as pro-

posed in [13, 24]) focus on specific quantum circuits only. In fact,

to the best of our knowledge, only IBM’s own solution [5] (pro-

vided in the corresponding SDK) as well as the approaches recently

proposed in [22, 29] are capable of sufficiently compiling quantum

circuits for IBM QX architectures thus far.

However, recently a set of quantum circuits (called SU(4) quan-
tum circuits in the following) has been introduced which turns out

to constitute a worst case for these compiling methods—making

them infeasible. This is a crucial issue since this kind of circuits

has explicitly been advocated by IBM to benchmark compilers

(e.g. through a so-called QISKit Developer Challenge [4]). Hence,

for a class of circuits which is considered to be important by a major

player in the development of quantum computers, no method exists

for efficiently compiling them to IBM QX architectures.

In this paper, we address this problem by providing a dedicated
compiler for SU(4) quantum circuits for IBM QX architectures. To

this end, we analyze the existing compilation approaches and de-

termine their respective advantages and bottlenecks. Based on that

evaluation, we present a compilation approach which explicitly

takes the structure of SU(4) quantum circuits into consideration.

Experimental evaluations clearly show that the proposed approach

significantly outperforms IBM’s current solution as well as the other

recently provided compilers with respect to fidelity of the result-

ing circuits as well as regarding runtime. Moreover, the proposed

approach has been declared winner of the IBM QISKit Developer

Challenge. According to IBM, the proposed solution yields compiled

circuits with at least 10% better costs than the other submissions

while generating them at least 6 times faster.

The remainder of this work is structured as follows. In Section 2,

we review IBM’s QX architectures, the considered SU(4) quantum

circuits, as well as the compilation problem itself. In Section 3, we

review the existing state of the art discuss why existing solutions

suffer in compiling SU(4) circuits—providing the motivation of this

work. In Section 4, we present the dedicated solution in detail;

followed by an experimental comparison to the state of the art in

Section 5. Section 6 concludes the paper.

2 BACKGROUND
In this section, we briefly discuss IBM’s QX architectures as well

as the considered quantum circuits and provide a more detailed

description of the considered compilation task.
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Figure 1: Coupling map of the IBM QX architectures [2]

2.1 IBM’s QX Architectures
In 2017, IBM started the initiative IBM Q in order to make quantum

computers available to the broad audience via cloud access. Cur-

rently, their infrastructure contains two 5-qubit quantum devices

located in Yorktown and Tenerife (also called IBMQX2 and IBMQX4,
respectively), as well as a 16-qubit device located in Rueschlikon

(also called IBM QX5), which are publicly available. Moreover, there

exists a 20-qubit architecture located in Austin that is available for

IBM’s partners and members of the IBM Q network.

All these devices use superconducting qubits that are connected

with coplanar waveguide bus resonators [2]. Quantum operations

are conducted by applying microwave impulses to the qubits. By

this, all these architectures have the same (or at least similar) phys-

ical constraints that have to be satisfied when running quantum

algorithms (i.e. quantum circuits) on them.

In fact, IBM’s QX architectures only support two types of quan-

tum operations (i.e. quantum gates):U (θ ,ϕ, λ) = Rz (ϕ)Ry (θ )Rz (λ)
is a single qubit gate, which is composed of two rotations around

the z-axis and one rotation around the y-axis (i.e. an Euler decom-

position). Furthermore, a controlled NOT gate (i.e. a CNOT ) can be

applied to a pair of qubits. If the so-called control qubit (denoted as •

in quantum circuits) is in basis state |1⟩, the state of the target qubit

(denoted as ⊕ in quantum circuits) is inverted. These two quantum

gates provide a universal basis, i.e. any quantum algorithm can be

conducted by usingU and CNOT gates only.

However, besides the restriction regarding the available gates,

there are further physical constraints given by the architecture. In

fact, CNOT gates can be applied only to qubits that are connected

by a bus resonator. Furthermore, only the qubit with lower fre-

quency may serve as target while only the qubit with the higher

frequency may serve as control (except for certain cases; cf. [2]).

These restrictions are summarized in so-called coupling maps.

Example 1. Fig. 1 shows the coupling maps for the IBM QX2,
IBMQX4, and IBMQX5 architectures. Here, qubits are visualized with
vertices and an arrow pointing from qubit Qi to qubit Q j indicates
that only CNOTs with control qubit Qi and target qubit Q j can be
applied.

In the following, we denote the devices listed above, as well as

(future) devices that employ the same type of constraints as IBM QX
architectures. Besides that, note that, since quantum computers are

still in their infancy, applying a quantum gate fails with a certain

probability (cf. NISQ devices [19]). According to data provided by

IBM [3], CNOT operations approximately have a fidelity that is

10 times smaller than for single qubit gates. Because of that, it is

of uttermost importance to keep the number of CNOT gates in

particular as small as possible.
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SU (4)

U1 • U3 U5 • U6

q1
≡

U2 U4 • U7

Figure 2: KAK decomposition of an SU(4) gate

2.2 Considered Quantum Circuits
Quantum algorithms or quantum circuits are usually described

using high-level quantum languages [6, 15], quantum assembly

languages (e.g. OpenQASM 2.0 developed by IBM [12]), or circuit

diagrams (such as those shown in Fig. 2), where the qubits are

visualized as circuit lines that are passed through quantum gates.

These lines do not refer to an actual hardware connection (as in

conventional logic), but rather define in which order (from left to

right) the respective gates (i.e. operations) are applied.

In this paper, we consider quantum circuits provided by IBM to

benchmark the performance of respective compilers (e.g. through a

so-called QISKit Developer Challenge [4]). These circuits are prod-

ucts of random 2-qubit gates from SU(4) that are applied to random

pairs of qubits and denoted as SU(4) quantum circuits in the follow-

ing.
1
More precisely, in each layer of the circuit, the available qubits

are grouped randomly into pairs of 2 qubits each (if their number is

even). Then, to each of these pairs of qubits, a random 2-qubit gate

from SU(4) is applied. Since these 2-qubit gates are not available in

the gate set of the IBM QX architectures, KAK-decomposition [23]

is used to decompose each of these 2-qubit gates into a sequence

of three CNOTs and 7 single qubit gates. Eventually, these decom-

posed gates form the circuits for determining the performance of

the compilers.

Example 2. Fig. 2 shows the KAK decomposition of a random
SU(4) gate. For simpler visualization, we neglect the parameters θ ,
ϕ, and λ for the single qubit gates Ui (which are usually different
for eachUi ). As can be seen, single qubit gates and CNOT gates are
applied in an interleaved fashion.

2.3 Considered Problem
In this work, we consider how to efficiently compile the quantum

circuits reviewed in the previous section to IBMQX architectures. In

general, compilation is comprised of two steps. First, the operations

occurring in the quantum circuits have to be decomposed into ele-

mentary operations that are available on the target hardware. In the

literature, there exist plenty of such approaches (e.g. those proposed

in [7, 17, 18, 27]) for different gate libraries like Clifford+T [10] or

the the NCV library [8]. Those solutions can easily be integrated in

compilers such as the one proposed here.

However, the second step represents a bigger challenge: Here,

we need to determine a mapping of the n logical qubits occurring

in the quantum circuit (denoted by q0,q1, . . . ,qn−1 in the follow-

ing) to the m ≥ n physical qubits in the hardware (denoted by

Q0,Q1, . . . ,Qm−1 in the following) such that the physical (architec-

tural) constraints reviewed above are satisfied. In almost all cases,

it is not possible to determine such a mapping so that these con-

straints are satisfied for all gates/operations throughout the circuit.
Consequently, the mapping has to change dynamically. This can be

achieved by adding SWAP gates to the circuit, which exchange the

state of two physical qubits and, thus, allow to “move” the logical

qubits to positions where they can interact with each other.

1
SU(4) is the special unitary group with degree 4, i.e. the Lie group of 4 × 4 unitary

matrices with determinant 1. The functionality of any 2-qubit gate is described by an

element from this group.
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Figure 3: Decomposition of a SWAP gate

Example 3. Fig. 3 shows a SWAP operation and how it can be de-
composed into operations that are available on IBM QX architectures.
In the left-most circuit shown in Fig. 3, the logical qubits q0 and q1 are
mapped to the physical qubits Q0 and Q1, respectively. By applying
a SWAP operation between Q0 and Q1 the “position” of q0 and q1 is
permuted. The SWAP operation can be decomposed into a sequence of
three CNOTs as shown in the center of Fig. 3. If we assume that only
CNOTs with control qubit Q0 and target qubit Q1 are possible (like
for IBM QX2; cf. Fig. 1a), we additionally have to invert the direction
of the middle CNOT by applying Hadamard gates H = U (π/2, 0,π )
before and after the CNOT (as shown in the right-most circuit in
Fig. 3).

Obviously, the number of additional SWAP operations shall be

kept as small as possible, since each further operation decreases

the fidelity of the circuit when running on an IBM QX device.
2

Therefore, IBM has set the goal to develop a compiler (including

a mapping strategy) such that a circuit with the largest possible

fidelity results [4].

3 STATE OF THE ART AND MOTIVATION
FOR A DEDICATED SOLUTION

In this section, we discuss the current state of the art and moti-

vate the need for a dedicated approach for compiling the circuits

reviewed in Section 2.2 to IBM’s QX architectures reviewed in

Section 2.1.

In the literature, there have already been several works that con-

sider the mapping of quantum circuits to physical devices. However,

most of them either focus on so-called nearest neighbor constraints
only [9, 21, 25, 26, 28] and/or on special quantum circuits to be

mapped [13, 24]. In the corresponding nearest neighbor architec-

tures, a 2-qubit gate can be applied to any neighboring qubits and

also in any desired direction—clearly violating the constraints for

IBM QX architectures represented by the coupling maps. Moreover,

many of the previously proposed approaches are only applicable

for a very limited number of qubits (even lower than the 16 already

available from IBM).

In contrast, few methods exist which map the logical qubits of

a quantum circuit to the physical ones of the IBM QX architec-

tures. More precisely, a solution developed by IBM itself (based on

Bravyi’s algorithm and implemented in IBM’s own SDK QISKit [5])
as well as the works presented in [22, 29] is available thus far. While

the solution proposed in [22] has only been thoroughly evaluated

for 5-qubit architectures and rather small circuits (and yields cir-

cuits with larger overhead than IBM’s solution for 16-qubit devices),

the approach proposed in [29] has shown significant improvements

regarding gate count, depth, and runtime—clearly outperforming

IBM’s solution e.g. on the 16-qubit architectures and for circuits

composed of thousands of gates.

This difference in quality is mainly because IBM’s solution ran-

domly searches for amapping that satisfies the physical constraints—

leading to a rather small exploration of the search space so that only

rather poor solutions are usually found. In contrast, the approach

proposed in [29] aims for an optimized solution by exploring a

2
Note that these additional SWAPs also increase the depth of the circuit and, thus, its

execution time on a quantum computer.

larger part of the search space and additionally exploiting informa-

tion of the circuit. More precisely, a look-ahead scheme is employed

that considers gates that are applied in the near future and, thus,

allows to determine mappings which constitute a local optima with

respect to the number of SWAP operations. However, this solution

is hardly suitable for the SU(4) circuits reviewed in Section 2.2,

because:

• The solution rests on the main idea to first divide the circuit

into layers of gates
3
and, afterwards, determine a permu-

tation of qubits for each layer which satisfies all physical

(architectural) constraints within this subset of gates.
4

• SU(4) circuits are composed of layers of gates which fre-

quently contain
n
2
different CNOT configurations (with n

being the number of qubits). This is basically a worst case

scenario since the more CNOT gates are employed within a

layer, the more constraints have to be satisfied by a permu-

tation of qubits.

As a consequence, the solution proposed in [29] cannot unfold

its power for determining mapped circuits with smaller overhead

than IBM’s solution when applied for SU(4) circuits as it basically

has to check all permutations within a layer until one is determined

satisfying all constraints imposed by the CNOTs. Considering that

SU(4) circuits have explicitly been provided by IBM to benchmark

compilers, this is a serious drawback and motivates a compilation

approach dedicated to this kind of circuits.

4 PROPOSED APPROACH
In this section, we describe a dedicated procedure to compile SU(4)

quantum circuits to IBM QX architectures. To overcome the limi-

tations of the approach proposed in [29], while keeping the avail-

ability of a look-ahead scheme, we break out of the layered-based

approach and consider each gate on its own. In order to deal with

the correspondingly resulting complexity, the proposed algorithm

employs a combination of three steps: a pre-process step (reducing

the complexity beforehand), a powerful search method (solving

the mapping problem), and eventually a dedicated post-mapping

optimization (exploiting further optimization potential after the

mapping).

4.1 Pre-Process: Grouping Gates
Since each gate is considered on its own, the mapping may change

after each gate (requiring much more calls of the mapping algo-

rithm). To overcome this issue, we perform a pre-processing step

where we form groups of gates, which we represent as a directed

acyclic graph (DAG). By this, the mapping algorithm has to be

called (at most) only once per group instead of once per gate. As

further advantage, this DAG representation inherently encodes the

precedence of the groups of gates and, thus, unveils important infor-

mation about which groups of gates commute—giving the degree

of freedom to choose which group shall be mapped next.

In order to group the gates, we topologically sort the circuit and

group all gates that act on pairs of logical qubits (e.g. on qubits qi
and qj ) into a group Gk . This includes single qubit gates on qi or
qj as well as CNOTs with control qi and target qj (or vice versa).
This grouping is done in a greedy fashion—until observing a CNOT

with control or target qi (qj ) that acts on a qubit different from qj
(qi ). This is possible, since gates that act on distinct sets of qubits

are commutative.

3
A layer contains only gates that act on disjoint qubits. Thus all gates of a layer can

be applied in parallel.

4
Between the respective layers, SWAP gates as shown in Fig. 3 are introduced to

establish the respective qubit permutations.
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Figure 4: DAG after grouping the gates of the circuit

Example 4. Consider again the circuit shown at the right-hand
side of Fig. 2. Since, all gates of the circuit act on qubits q0 and q1, the
grouped circuit contains a single group. By this, the mapping has to
be changed at most once in order to apply all gates.

As stated above, grouping gates has a positive effect on the

following mapping algorithm, since all gates of a group can be

applied once the physical constraints are satisfied for the involved

qubits.
5
Thus, the mapping of the gates of the circuit reduces to

mapping the groups.

Example 5. Consider the DAG shown in Fig. 4. This DAG repre-
sents a quantum circuit composed of 6 qubits, where the first layer
is composed of SU(4) gates between the logical qubits q0 and q1, q2
and q3, as well as q4 and q5, respectively. Moreover, the second layer
contains SU(4) gates between the logical qubits q1 and q2, q3 and q4,
as well as q0 and q5, respectively.

4.2 Solving the Mapping Problem
After grouping the gates, the physical constraints of the target

architecture given by the coupling map are satisfied by a mapping

algorithm that determines a dynamically changing mapping of

the logical qubits to the physical ones. In theory, the mapping

can change (by inserting SWAP gates) after each group—resulting

in a huge search space since m! possibilities exist for each such

intermediate mapping. To cope with this enormous search space

we use an A* search algorithm to find a solution that is as cheap as

possible.

For the mapping strategy presented in this paper, we choose an

arbitrary initial mapping such that the physical constraints are sat-

isfied for all groups in the DAG that do not have any predecessors

(i.e. the corresponding logical qubits are mapped to physical ones

that are connected in the coupling map). By this, we can immedi-

ately add the gates of these groups to the (initially empty) compiled

circuit.
6

Example 6. Consider again the DAG in Fig. 4, which describes the
gate groups to be mapped. Assume that the circuit shall be compiled
for the IBM QX5 architecture, whose coupling map is depicted in
Fig. 1c. One possible initial mapping is Q1 � q0, Q0 � q1, Q2 � q4,
Q15 � q2, Q3 � q5, and Q14 � q3 (i.e. the logical qubits are mapped
to the six left-most physical qubits). Using this initial mapping, the
gate groups in the first layer (i.e. G0, G1, and G2) can be applied
since the involved logical qubits are mapped to physical ones that are
connected in the coupling map for each of the groups.

After determining an initial mapping, the actual mapping proce-

dure is composed of two alternating steps that are employed until

all groups are mapped.

The first step adds all groups to the compiled circuit, whose

parents in the DAG are already mapped and whose logical qubits

are mapped to physical ones that are connected in the coupling

map.

5
Note that the direction of the CNOTs might have to be adjusted (which is rather

cheap since only Hadamard gates have to be added).

6
Note that the qubits have to be relabeled according to the mapping and that the

direction of some CNOTs might be adjusted.

Example 6 (continued). The initial mapping additionally allows
to add gates of group G3 to the compiled circuit, since the its parents
in the DAG (i.e. the groups G1 and G2) are already mapped and the
physical constraints are also satisfied (since Q0 � q1 and Q15 � q2).

The second step determines the set of groups Gnext that can be

applied next according to their precedence in the circuit, i.e. the set

of groups whose parents in the DAG are already compiled. Then,

the task of the mapping algorithm is to determine a new mapping

(by inserting SWAP gates) such that the physical constraints are

satisfied for at least one of the gate groups in Gnext .

Example 6 (continued). One possibility is to incorporate a SWAP
operation on the physical qubits Q15 and Q2 since this “moves” the
logical qubits q3 and q4 towards each other and, thus, allows to add
the gates from gate groupG4 to the compiled circuit. Finally, inserting
another SWAP operation between the physical qubitsQ1 andQ2 allows
to add the gates of the group G5 to the compiled circuit. Overall, two
SWAP gates were inserted during the mapping procedure of the circuit.

Another solution would be to incorporate a SWAP operation on the
physical qubits Q2 and Q3. Since this “moves” the logical qubits q0
and q5, as well as the logical qubits q3 and q4 towards each other, the
gate groups G4 and G5 can be applied by inserting a single SWAP
operation during the compilation procedure.

Among the solutions found by the mapping algorithm, we aim

for determining the mapping that yields the lowest cost. Since there

arem! different mappings of the physical qubits, we utilize an A*

search to avoid exploring the whole search space. The general idea

of the A* search algorithm is to reach a goal state from an initial
state such that the costs for reaching this state is the minimum

(with respect to a certain heuristic). To this end, all successor states

of the cheapest state are added to the explored search space (i.e. the

cheapest state is expanded) until a goal state is reached. The costs
c(x) = f (x) + h(x) are thereby defined as the sum of the fix costs
f (x) (i.e. the costs for reaching the state x from the initial state)

and the heuristic costs h(x) (i.e. an estimation for reaching a goal

state from state x ).
This general description of the A* search algorithm has been

adjusted for the considered mapping problem. More precisely, the

initial state is the current mapping of the logical qubits to the phys-

ical ones. A goal state is any state that describes a mapping where

the physical constraints are satisfied for at least one of the groups

groups. Expanding a state is conducted by applying one SWAP op-

eration between two physical qubits which results in a successor

mapping. Given that, the corresponding cost functions f (x) and
h(x) have to be determined. The fix cost f (x) of a state is given by

the number of SWAP operations that have been added (starting from

the current mapping). For the estimation of the remaining costs

h(x), the utilized heuristic employs a look-ahead scheme, which

allows to significantly reduce the costs of the compiled circuit.

More precisely, for each group, we determine the distance of the

physical qubits in the coupling map where the respective logical

qubits are mapped to, and sum these distances up for all groups

in Gnext .
7
By this, we do not only focus on one of these groups,

but additionally try to optimize the mapping for groups that are

applied in the near future.

Example 6 (continued). The look-ahead scheme determines the
goal node reached by conducting a SWAP operation between the
physical qubits Q2 and Q3, since from the two solutions resulting
in a goal state with costs 1 (inserting a single SWAP gate; as discussed
above), the solution with the lower look-ahead costs was chosen.
7
Note that the heuristic is not admissible and, hence, may not lead to a locally optimal

solution. However, locally optima are not desired anyways, since these often yield to

globally larger overhead.



4.3 Post-Mapping Optimization
After satisfying the physical constraints given by the target archi-

tecture, we finally apply a dedicated post-mapping optimization in

order to further reduce the costs of the compiled circuit. To this

end, we regroup the gates of the compiled circuit as described in

Section 4.1, since the mapping algorithm has added several SWAP

gates to the compiled circuit. Then, we traverse the resulting DAG

and optimize each group individually.

The key idea of the proposed optimization is that the functional-

ity of the gates in a groupGi can be represented by a single matrix

from SU(4). Hence, we can easily build up this matrix by multi-

plying the unitary matrices representing the individual gates and,

again, use KAK-decomposition [23] to determine another group

G ′
i with 3 CNOTs and 7 single qubit gates that realizes the same

functionality (cf. Section 2.2). If the gates in G ′
i have lower costs

than the gates in the original group Gi , we replace Gi with G ′
i in

the DAG. This especially works well, when applying a SWAP gate

to two qubits, to which a gate from SU(4) has been applied right

before.

Example 7. Consider again the KAK-decomposition shown in
Fig. 2 with its 3 CNOTs and 7 single qubit gates. Furthermore, assume
that immediately afterwards a SWAP operation is applied to the phys-
ical qubits currently holding the logical qubits q0 and q1—yielding a
group Gi with 6 CNOTs and 11 single qubits. However, representing
the overall functionality of this group as a unitary matrix from SU(4)
and applying KAK-decomposition again yields another groupG ′

i with,
again, 3 CNOTs and 7 single qubit gates. Hence, the SWAP operation
can be conducted “for free”.

Note that the knowledge of this post-mapping optimization can

be used to improve the mapping algorithm itself. More precisely,

knowing that SWAP operations directly applied after a gate from

SU(4) are “for free” can be included in the costs function f (x) of the
fix costs by setting the costs of the respective SWAP operation to 0.

Finally, a similar (but simpler) optimization can be applied for

optimizing subsequent single qubit gates within a group. Such gates

may e.g. occur when swapping the direction of a CNOT by inserting

Hadamard gates. Again, the 2 × 2 unitary matrices describing the

individual gates can be multiplied. Afterwards, the Euler angles of

the rotations around the z and y axis are determined.

Example 8. Consider again the KAK-decomposition shown in
Fig. 2. To change the direction of the center CNOT gate, Hadamard
gates are inserted to each qubit before and after the CNOT—yielding
to subsequent single qubit gates that are applied to q0 and q1, respec-
tively. Again, this sequence of e.g.U3 and H can again be represented
by one single qubit gate.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed approach

and compare it to the compiler available in IBM’s SDK QISKit [5].8
To this end, we implemented the proposed methodology in Cython

(available at http://iic.jku.at/eda/research/ibm_qx_mapping) and

used the scripts provided by IBM to conduct the evaluation (these

scripts are available at [4]). Since the fidelity of CNOT gates is

approximately 10 times lower for IBM QX architectures than the

8
Note that no experimental comparison is reported for the approach pre-

sented in [29] since, as discussed in Section 3, the SU(4) circuits represent a

worst case for them and, hence, this method is not feasible for those bench-

marks. In fact, running the publicly available implementation (taken from

http://iic.jku.at/eda/research/ibm_qx_mapping/) confirms that this method frequently

times out for those benchmarks. For the same reason, also no results for the approach

presented in [22] is presented which is applicable for a rather tiny number of qubits

only, respectively.

fidelity of single qubit gates (cf. [3]), the provided cost function

assigns a cost of 10 for each CNOT as well as a cost of 1 for sin-

gle qubit gate.
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All evaluation have been conducted on a 3.8 GHz

machine with 32GB RAM.

Besides the circuits, IBM also provides several coupling maps for

architectures with 5, 16, and 20 qubits, respectively. These archi-

tectures include the existing quantum devices IBM QX2, IBM QX4,
and IBM QX5, as well as other architectures where the qubits are
arranged in a linear, circular, or rectangular fashion. For these ar-

chitectures, the direction of the arrows in the coupling maps are

chosen randomly by IBM (or connections are missing at all) to

provide a realistic basis for the evaluation. For each number of

qubits in the architectures (5, 16, or 20), we use 10 circuits, which

we compile to each architecture with the corresponding number

of qubits. Eventually, this results in a setting which is also used

by IBM to evaluate compilers submitted to the QISKit Developer

Challenge [4]. The resulting costs are visualized by means of scatter

plots in Fig. 5.

Each of the plots in Fig. 5 shows the cost of the compiled circuits

when using the QISKit compiler on the x-axis, as well as the cost

of the compiled circuit when using the proposed solution on the

y-axis. Each point represents one SU(4) circuit that is compiled for a

certain architecture. Hence, a point underneath the main diagonal,

indicates the proposed solution yields a circuit with lower cost

(which is the case for all evaluated circuits and architectures). The

larger the distance to themain diagonal, the larger the improvement.

We additionally added horizontal and vertical lines that indicate

the cost of the original circuits (i.e. the cost before compilation).

As can be seen in Fig. 5a, circuits compiled by the proposed

methodology may be cheaper than the original circuit (despite the

fact that SWAP gates are added during the compilation process).

This is possible since, in some cases, two SU (4) gates are subse-

quently applied to the same two qubits. By using our post-mapping

optimization (cf. Section 4.3), these gates can be combined to a

single gate from SU (4). Overall, we achieve an average improve-

ment by a factor of 1.54 compared to IBM’s own solution for the

5-qubit architectures. For the 16 and 20 qubit architectures, the

probability that two subsequent SU (4) gates are applied to the

same qubits is almost zero. But although this does not allow as

much post-mapping optimization as for the 5-qubit architectures,

we still observe significant improvements of a factor of 1.26 and

1.22 on average, respectively. The precise improvements for each

architecture are listed in Table 1.

Besides the average improvement in terms of the provided cost

function, the proposedmethod is also significantly faster than IBM’s

solution. While IBM’s solution requires more than 200 seconds for

mapping some of the circuits composed of 20 qubits, the proposed

method was able to map each of the circuits within 10 seconds. On

average, we obtain an improvement of the runtime by a factor of

5.68, 16.42, and 21.90 for the architectures with 5, 16, and 20 qubits,

respectively (cf. Table 1).

Overall, the evaluation using the scrips, circuits, and coupling

maps provided by IBM shows that the dedicated compile methodol-

ogy proposed in this paper significantly outperforms IBM’s own

solution regarding the provided cost function (which estimates fi-

delity) as well as runtime. Moreover, the solution proposed in this

paper has been declared winner of the QISKit Developer Challenge.

According to IBM, it yields compiled circuits with at least 10% better

costs than the other submissions while generating them at least 6

times faster.

9
Note that a single qubit gate U (0, 0, λ) has cost 0 since no pulse is applied to the

respective qubit in this case.

http://iic.jku.at/eda/research/ibm_qx_mapping
http://iic.jku.at/eda/research/ibm_qx_mapping/
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Figure 5: Cost of the compiled circuits

Table 1: Average improvement factors
5 qubits 16 qubits 20 qubits

architecture cost time architecture cost time architecture cost time

IBM QX2 1.55 5.96 IBM QX3 1.25 14.85 Random Linear 1.15 14.64

IBM QX4 1.54 5.84 IBM QX5 1.23 12.87 Regular Circle 1.19 14.25

Regular Linear 1.58 5.40 Random Linar 1.19 11.52 Regular Rectangle 1.24 32.67

Random Linear 1.57 5.43 Random Rectangle 1.24 20.99 Random Rectangle 1.27 33.95

Random Circle 1.49 5.81 Defect Rectangle 1.39 25.80 Defect Rectangle 1.25 21.78

avg 1.54 5.68 avg 1.26 16.42 avg 1.22 21.90

6 CONCLUSIONS
In this paper, we presented a dedicated method for compiling cir-

cuits composed of SU (4) gates to IBM QX architectures. By using

a preprocessing-step that groups the gates in order to reduce the

complexity, a mapping algorithm based on an A* search with a

look-ahead scheme, as well as a dedicated post-mapping optimiza-

tion, we were able to overcome the shortcomings of previously

proposed approaches. Our evaluation using tools provided by IBM

clearly shows that the proposed approach significantly outper-

forms the compiler available in IBM’s SDK QISKit regarding a cost

function that estimates the fidelity of the compiled circuit as well

as runtime. Moreover, it has been declared winner of the QISKit

Developer Challenge. An implementation is publicly available at

http://iic.jku.at/eda/research/ibm_qx_mapping.
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