
Scalable Design for
Field-coupled Nanocomputing Circuits

Marcel Walter1 Robert Wille2,3 Frank Sill Torres1,3 Daniel Große1,3 Rolf Drechsler1,3

1Group of Computer Architecture, University of Bremen, Germany
2Johannes Kepler University Linz, Austria

3Cyber Physical Systems, DFKI GmbH, Bremen, Germany
{m walter, frasillt, grosse, drechsler}@uni-bremen.de, robert.wille@jku.at

Abstract—Field-coupled Nanocomputing (FCN) technologies
are considered as a solution to overcome physical boundaries of
conventional CMOS approaches. But despite ground breaking ad-
vances regarding their physical implementation as e. g. Quantum-
dot Cellular Automata (QCA), Nanomagnet Logic (NML), and
many more, there is an unsettling lack of methods for large-scale
design automation of FCN circuits. In fact, design automation
for this class of technologies still is in its infancy – heavily
relying either on manual labor or automatic methods which are
applicable for rather small functionality only. This work presents
a design method which – for the first time – allows for the scalable
design of FCN circuits that satisfy dedicated constraints of these
technologies. The proposed scheme is capable of handling around
40 000 gates within seconds while the current state-of-the-art
takes hours to handle around 20 gates. This is confirmed by
experimental results on the layout level for various established
benchmarks libraries.

I. INTRODUCTION

Field-coupled Nanocomputing (FCN) [1] is a class of
emerging technologies that conducts computations fundamen-
tally differently from conventional systems relying e. g. on
CMOS. Here, information is represented in terms of the
polarity or magnetization of nanoscale cells and can be
propagated to adjacent ones using repelling forces of local
fields [2], [3]. This results in devices that allow to represent
and process binary information without electrical current flow.
Consequently, numerous contributions on their physical real-
ization have been made in the past and several of some them
in the last three to four years, e. g. molecular Quantum-dot
Cellular Automata (mQCA) [4], atomic Quantum-dot Cellular
Automata (aQCA) [5], [6], or Nanomagnet Logic (NML) [7].

Moreover, this way of representing and processing infor-
mation is doable with highest processing performance and
remarkably low energy dissipation – as confirmed by several
theoretical and experimental studies (see e. g. [8], [9], [10]).
This makes FCN a promising alternative to conventional
integrated circuit technologies.

These endeavors put pressure on the Electronic Design
Automation (EDA) community and, in fact, more and more
requires the development of design automation for FCN – in
particular with respect to layout. At the same time, we can
conclude that the (automatic) design of FCN is still in its
infancy. In fact, the majority of FCN circuits available thus
far have been derived manually – including e. g. realizations
of arithmetic circuits [11], processors [12], or FPGAs [13].

First approaches that automate the design have been pro-
posed. However, these solutions solely focus on logic syn-
thesis [14], [15], define the actual layout problem on a quite
abstract layer [16], [17], [18], or apply rather naive heuristics
for the layout design which are severely limited with respect
to scalability [19], [20], [21].

The major reason for this rather poor state-of-the-art is
caused by inherited characteristics employed by all FCN
technologies. Regardless of how information is stored in the
different FCN implementations, they are all similar to a certain
extend and can be represented via the same abstract model
which we describe in detail in Section II.

While indeed typical functional building blocks such as
AND, OR, NOT, Majority, etc. can easily be realized in terms
of an FCN circuit, their composition is highly non-trivial in
FCN. More precisely, FCN design constraints such as the ar-
rangement of FCN structures and the appropriate consideration
of an external clocking constitute serious challenges for FCN
design (this is reviewed more thoroughly in Section II as well).

In this work, we investigate the design challenges in detail.
To this end, we first conduct a conceptual discussion which
unveils that the actual problem of generating a corresponding
FCN layout while, at the same time, satisfying dedicated FCN
design constraints constitutes an instance of an Orthogonal
Graph Drawing (OGD) problem. This has intensely been
considered in theoretical computer science in works such
as [22], [23]. We are exploiting these findings for the purposes
of FCN design and, eventually, derive an automatic design
approach that explicitly addresses the problem outlined above.

Overall, this yields a method which – for the first time –
allows for the scalable design of FCN circuits. Experimental
results on the layout level confirm the accomplishment. While
the state-of-the-art is capable of automatically realizing FCN
circuits satisfying FCN design constraints e. g. for simple
circuits with around 20 gates only, the proposed scheme easily
handles arbitrary functionality with around 40 000 FCN gates,
i. e. a 2000X improvement in terms of circuit size is achieved.
These results have been obtained for established benchmarks
libraries and can automatically be generated within seconds
where previous state-of-the-art approaches completely fail.

In the remainder of this paper, the made contributions are
described as follows. The next section provides a review of
FCN circuits and the resulting design challenge. Afterwards,
Section III describes the proposed solution to the resulting
problems by first investigating its relation to OGD followed
by the exploitation of the corresponding findings – eventually
yielding the scalable design method. The performance of the
resulting scheme is then considered in Section IV which
summarizes the conducted experimental evaluations and com-
parisons to the state-of-the-art. Finally, the paper is concluded
in Section V.

II. DESIGN OF FCN
Field-coupled Nanocomputing (FCN) [1] circuits are real-

ized in terms of cells that interact via local fields, and thus,
enable the realization of logic functions. In case of mQCA
and aQCA, in the remainder of this work referred to as QCA,
these cells are based on molecules [4] or dangling bonds [5].
In contrast, NML cells utilize nanomagnets [7]. A QCA cell is
composed of four quantum dots which are able to confine an
electric charge and are arranged at the corners of a square [24],
[25]. Adding into each cell two free and mobile electrons, that
are able to tunnel between adjacent dots, yields to a stable
state due to interaction (note that tunneling to the outside of
the cell is prevented by a potential barrier). More precisely,
because of the mutual repulsion, the two electrons tend to
locate themselves at opposite corners of the cell – eventually

P = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

IN 2

IN 1

IN 3

OUT

OUTIN

Clock
zone 1

Clock
zone 2

Clock
zone 3

Clock
zone 4

Clock of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

(a) States in QCA

P = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

b

a

c

f

fa

Clock
zone 1

Clock
zone 2

Clock
zone 3

Clock
zone 4

Clock of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

a

b

f

Locked to 0-state

M = +1
Binary 1

M = -1
Binary 0

b

a

c

f

(b) States in NMLP = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

b

a

c

f

fa

Clock
zone 1

Clock
zone 2

Clock
zone 3

Clock
zone 4

Clock of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

(c) QCA Majority

P = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

b

a

c

f

fa

Clock
zone 1

Clock
zone 2

Clock
zone 3

Clock
zone 4

Clock of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

a

b

f

Locked to 0-state

M = +1
Binary 1

M = -1
Binary 0

b

a

c

f

(d) NML Majority

Fig. 1: FCN realizations of basic operations

leading to two possible cell polarizations (namely P = −1
and P = +1 which can be defined as binary 0 and binary 1,
respectively).

A NML cell is a single domain nanomagnet that can
assume only the two stable magnetization states M = −1 and
M = +1, which can represent the binary values 0 and 1 [1].

Example 1. Fig. 1a shows two QCA cells with their four quan-
tum dots (denoted by circles) and two electrons (illustrated
by black dots). Due to the electrostatic Coulomb interaction,
those are the only stable states which the QCA cell can
assume. Usually, the state shown in the left-hand side of
Fig. 1a is defined as binary 0, while the state shown in the
right-hand side of Fig. 1a is defined as binary 1.

In contrast, Fig. 1b depicts two NML cells where the arrow
indicates the current magnetization of each cell. Commonly,
the magnetization perpendicular to down direction is defined
as binary 0, while magnetization to the opposite direction is
is defined as binary 1.

When composing several FCN cells next to each other, field
interaction also causes the polarization or magnetization of
one cell to influence the polarization or magnetization of the
others. This allows to realize Boolean functions such as AND,
OR, NOT, Majority, etc.

Example 2. Fig. 1c shows the QCA realization of the Majority
function with, where e. g. a binary 0 from input a competes
with two binary 1s coming from inputs b and c. The output
follows the majority of the input values, which is a binary 1
in this case. Locking one of the three inputs the to the 0-state
turns this cell into an AND cell, while locking one of the inputs
to the 1-state results into an OR cell. In a similar fashion, the
structure in Fig. 1d depicts the NML implementation of the
Majority function where the inputs a, b and c compete with
each other.

Following these principles, the design of FCN circuits
might seem rather straight-forward at a first glance. In fact,
the function to be realized simply needs to be decomposed
into Boolean functions, using methods for conventional logic
or majority logic synthesis such as [26] and [15], [14].
Afterwards, the resulting description has to be mapped to
the corresponding FCN realizations (denoted FCN gates in
the following) by using a given technology-depended gate
library. However, although FCN cells allow for the realization
of respective gates, their composition is highly non-trivial.
This follows from the requirement that FCN cells have to
enter a neutral state before assuming a new polarization or
magnetization in order to avoid metastability [27], [7]. For
the same reason, it has to be ensured that data is only passed
from one FCN structure to the next if the source structure

remains in a stable state, while the receiving structure is able to
change its polarization or magnetization. To this end, external
clocks are employed which regulate the ability of FCN cells
to change its polarization or magnetization [28], [29]. Usually,
these clocks have 3 (NML) or 4 phases (QCA), depending on
the applied FCN technology. For fabrication purposes, cells
are usually grouped in clock zones – typically having square
or rectangular shape – such that all cells within a clock zone
are controlled by the same external clock [30], [31], [1]. These
clock zones are organized as a grid and each clock zone may
contain structures that form a gate.

Example 3. Fig. 2a shows possible groupings of QCA cells
into clock zones. Each square shape represents a clock zone,
in which QCA cells realizing a gate may be placed (possible
cell positions are hinted in each clock zone). Each clock zone
is related to one of the four external clocks (denoted by the
numbers in the bottom-right corners and a corresponding
coloring), which control all QCA cells within the respective
clock zone.

Now, in order to provide a proper data transfer between FCN
gates, it has to be ensured that the output value of one gate is
only applied to the input of a following gate at exactly the time
when the following gate is able to accept a new value, i. e. to
change its polarization or magnetization. Therefore, all inputs
of an FCN gate must be fed by structures that are located in
a preceding clock zone, e. g. a gate of clock zone 2 receives
its data from gates of clock zone 1. Consequently, the gates
need to be accordingly located onto the grid.1 This becomes
even more complex when the inputs of a gate originate from
paths with different lengths. Then, additional wires (which can
easily be realized by a simple cascade of FCN cells) have to
be added so that the respective signals are extended and all
arrive in the same clock zone.

Example 4. Consider the multiplexer function with three
variables f(a, b, s) = a · s̄+ b · s which shall be realized as a
QCA circuit. To this end, f is decomposed into gates for which
QCA realizations are available (e. g. as proposed in [32]).
Next, all gates have to be located on a grid of unassigned clock
zones, i. e. clock zones are still not numbered. To this end, we
need to consider that all inputs of a gate must come from
structures located in a preceding clock zone. Fig. 2b shows
a possible solution, in which this is ensured for all gates. As
discussed above, this solution requires a wire (located at the
bottom center of the circuit shown in Fig. 2b) which extends
a signal so that all inputs of the OR gate (located at the
bottom-right of the circuit shown in Fig. 2b) arrive from the
same clock zone.

Overall and more precisely, this leads to the following
main challenge in the design of FCN circuits as considered
in this work: Once a function to be implemented has been
decomposed into proper gates (for which QCA and NML
realizations are available), how to locate these elements (as
well as possibly needed wires) while, at the same time,
satisfying the following FCN design constraints:

1) (Unique): Each gate must be located in a unique clock
zone (except for wires, which are allowed to cross other
wires within the same clock zone, but must not cross
other gates).

2) (Adjacent): Gates which are connected must be either
located in adjacent clock zones or be interlinked by
wires.

3) (Clock zone): Each clock zone must be assigned an
identifier between 1 and C, where C is the maximum

1Note that, at the beginning, the number of each clock zone is not fix and
can actually be assigned during the design process.

g3

1 2 3

2 3 4

f

s

4

3

g2

g3

s

a

1 2 3

4 3 2

3 4 1

a

s

a f

b

g2

b

f

1 2 3

2 3 4

s

a f

b

wire

fanout

1 2 3

2 3 4

2 31

2 3 4

(a) Grid of clock zones with
arrows indicating allowed data
flows and possible QCA cell
positions

g3

1 2 3

2 3 4

f

s

4

3

g2

g3

s

a

1 2 3

4 3 2

3 4 1

a

s

a f

b

g2

b

f

1 2 3

2 3 4

s

a f

b

wire

fan-out

1 2 3

2 3 4

2 31

2 3 4

(b) QCA circuit implementing function
f(a, b, s) = a · s̄ + b · s

Fig. 2: QCA circuit design

clock number, i. e. 4 for QCA and 3 for NML, such
that paths through consecutive clock zones (i. e. 1 is
neighbored by 2, or C is neighbored by 1, etc.) are
possible.

Besides that, it is usually desired that the length of all paths
leading to any multi-input gate (counted in the number of
passed clock zones) differs by not more than 3 (QCA) or 2
(NML) clock zones. If this is the case, the FCN circuit can
process new primary inputs with the frequency of the external
clocks. Otherwise, primary input signals must be hold constant
until all gates received the respective data. Since this only
affects the performance (but not the general applicability), this
is considered an optional FCN design constraint (named Path
length).2

As already discussed in Section I, previous works simplified
these constraints or ignored them at all (i. e. generated QCA
designs with a corrupted data flow; see e. g. [16], [17]),
addressed this challenge in a manual fashion (resulting in a
time-consuming and error-prone process which only works for
small designs; see e. g. [30], [33], [31], [34]), or relied on
automatic solutions which are hardly scalable (i. e. they can
handle functions to be synthesized composed of not more than
10 inputs; see e. g. [19], [20], [35]). Furthermore, it is assumed
that respecting all FCN design constraints while layouting a
circuit, is an NP-complete problem. Because of these reasons,
no scalable design of FCN circuits which assures that all
required constraints are satisfied exists yet.

III. SCALABLE FCN DESIGN

In this work, we propose a solution, which addresses the
main challenge reviewed above and allows for an automatic
and scalable FCN design. To this end, we first conduct a
conceptual discussion in which we unveil that the actual prob-
lem of generating an FCN circuit satisfying all FCN design
constraints constitutes a dedicated instance of the Orthogonal
Graph Drawing problem. Based on these insights, we propose
a general approach which exploits findings from orthogonal
graph drawing for the purposes of FCN design. The details
of the correspondingly resulting implementations are finally
provided in the end of this section.

A. Relation to Orthogonal Graph Drawing
Orthogonal Graph Drawing (OGD) is a special case of

general graph drawing and has intensively been studied over
the years (for an overview see e. g. [22]). Due to its application
in the design of information systems (e. g. UML diagram
representation) and VLSI layout, the problem has gained
theoretical and practical attention. In general, it is defined as
follows:

2For this work, we decided to respect this constraint – leading to a design
method gaining highest throughput.

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

1 2 3

3 4 1

42 3

(a) Graph G with
4 vertices and as-
signed position la-
bels

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

1 2 3

3 4 1

42 3

(b) Orthogonal
representation of
G with a grid
overlay

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

2 3

3 4 1

42 3

o3

o2

o1

o3

o2

o1
2

2

o1 o2

o3

o4

o6o5

s s

ee

e

? ?

o1 o2

o3

o4

o6o5

s

s

ee

e

s e

d1 d2

s

e

(c) Assignment of
clock zone nu-
meration and re-
sulting conflict

Fig. 3: Naive application of OGD for FCN design leading to
a conflict

Definition 1. Given a graph G = (V,E), OGD searches for
an assignment of unique integer tuples (x, y) (with 1 ≤ x < X
and 1 ≤ y < Y representing positions on a rectangular
X × Y -grid with X,Y ∈ N) to the vertices v ∈ V so
that they can be drawn in an orthogonal fashion on the grid.
Here, orthogonal means that the edges e ∈ E connecting the
vertices must be drawn as sequences of horizontal and vertical
segments arranged in a 90° fashion. Besides that, the edges
must not cross any vertex.

Example 5. Consider Fig. 3a which depicts a graph to be
drawn orthogonally. A possible assignment of unique positions
to the vertices via OGD is shown as annotation to each vertex
in the figure. This results in an orthogonal graph drawing as
depicted in Fig. 3b (including an adumbrated grid).

One can notice that OGD possesses several similarities to
the FCN design problem reviewed in Section II. In fact, for
FCN design, building blocks have to be located on a grid.
This is, to some extend, equivalent to placing vertices of a
graph onto a 2-dimensional grid – as done by OGD. The
only additional issue is the required consideration of the FCN
design constraints reviewed in Section II. An example shall
illustrate the similarities and limitations.

Example 6. Let’s assume that the graph in Fig. 3a does not
represent an arbitrary graph, but a netlist of a function f
composed of four operations o1 to o4. Then, an initial FCN
circuit could easily be generated by simply solving the OGD
problem as described above, i. e. for each vertex a unique
position is determined – resulting in the arrangement as
already discussed by means of Fig. 3b. Now, clock zones
have to be assigned to the grid so that all the FCN design
constraints are satisfied. Fig. 3c shows a possible attempt.
However, this assignment of clock zone numeration leads to a
conflict at position (2, 3). Here, a wire is supposed to receive
data from o3 and pass it to o4. This requires a consecutive
clock zone to o3 and a preceding clock zone to o4. Since
both neighboring clock zones assume clock zone 3, though,
constraint 3 (Clock zone) is violated.

Overall, OGD already covers a significant part of the FCN
design problem considered here by satisfying constraints 1
(Unique) and 2 (Adjacent). Since OGD has heavily been in-
vestigated (see e. g. [36], [23]), several algorithms are already
available which can readily be applied to determine an initial
arrangement of the FCN design. The next session describes
how these solutions are extended, such that additionally the
clock zones are assigned correctly and paths lengths are equal,
i. e. such that constraints 3 (Clock zone) and the optional one
(Path length) are satisfied.

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

2 3

3 4 1

42 3

o3

o2

o1

o3

o2

o1
2

2

o1 o2

o3

o4

o6o5

s s

ee

e

? ?

o1 o2

o3

o4

o6o5

s

s

ee

e

s e

d1 d2

s

e

(a) Connection of local-
ized vertices using Manhat-
ten distance

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

2 3

3 4 1

42 3

o3

o2

o1

o3

o2

o1
2

2

o1 o2

o3

o4

o6o5

s s

ee

e

? ?

o1 o2

o3

o4

o6o5

s

s

ee

e

s e

d1 d2

s

e

(b) Resulting assignment of
clock zone numeration

Fig. 4: Generation of valid solutions via Manhattan distance

B. Addressing FCN Design Constraints

Plenty of work has been conducted in the area of OGD over
the years – leading to several algorithms as well as proved
bounds (see e. g. [36], [23]).

Due to its efficient runtime behavior and closeness to known
optimal area bounds, we utilize the solution proposed by Biedl
(i. e. [36]) in the following. Here, the OGD is considered for
3-graphs, i. e. graphs that solely consists of vertices which
have at most degree 3. Since it is possible to decompose
each function into a graph exclusively composed of 2-AND/2-
OR/NOT operations (making it a 3-graph), this does not
constitute a limitation to our solution.

To conduct the arrangement and, at the same time, ad-
dressing the FCN design constraints (including the optional
one), we employ a topological order onto the graph. A linear
ordering is called topological if and only if for every directed
edge (u, v) ∈ E from vertex u to vertex v, u comes before v
in the ordering. This step is required since the existing OGD
algorithm is defined on undirected graphs, while the imple-
mentation of logic functions requires to respect the data flow
of its operations. Hence, we must enforce a particular direction
of each edge in the graph and sort the vertices topologically.
The resulting order also defines the processing sequence of
the vertices, i. e. in which order the operations related to each
vertex are located on the grid by the algorithm. This way, it can
be guaranteed that all predecessors of the currently considered
vertex have been already processed, and hence, the locations
of the respective operations can be considered when placing
the operation of the current vertex.

By further restricting the operations of new vertices to
be located only south or east to already placed ones, we
gain several advantages: (1) constraint 1 (Unique) is satisfied,
i. e. each operation (gate) is uniquely located, (2) connections
become easily realizable (supporting to satisfy constraint 2,
Adjacent), and (3) the data flow and, therefore, the later
assignment of clock zone numeration is well-defined (sup-
porting to satisfy constraint 3, Clock zone). Besides that, the
optional constraint (Path length) can trivially be satisfied by
exploiting the so called Manhattan distance between an already
located operation and its predecessors. This means, when new
operations can only be located in south-east direction, all
direct paths from the operation’s output to any newly located
operation have the same Manhattan distance, i. e. pass the same
number of clock zones. This is illustrated by the following
example.

Example 7. Consider the graph shown in Fig. 4a. Operation
o3 in the bottom right corner has dependencies to both
other operations o1, o2. By restricting the arrangement of
o3 to south and/or east of the already placed operations
and by applying wires/paths along the Manhattan distance
as described above, the assignment of clock zone numeration
as sketched in Fig. 4b evolves naturally by the data flow.

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

2 3

3 4 1

42 3

o3

o2

o1

o3

o2

o1
2

2

o1 o2

o3

o4

o6o5

s ?

ee

e

o1 o2

o3

o4

o6o5

s

ee

e

s e

h1

s

es e

(a) Conflicting direction
assignment

o1 o2

o3 o4

o1
1

2
o3

3

o2
2

o4
3

?

o1

o3

o2 o4

(1,1) (1,2)

(2,2) (1,3)

o1

o2

o3 o4

o1
1 2

o4
3

o2
2

o3
3 ?

o1

o4o2

o3

(1,1)

(2,2)

(1,2)

(1,3)

o1

o3

o2 o4

2 3

3 4 1

42 3

o3

o2

o1

o3

o2

o1
2

2

o1 o2

o3

o4

o6o5

s ?

ee

e

o1 o2

o3

o4

o6o5

s

ee

e

s e

a1

s

es e

(b) Problem solved by sub-
dividing edge (o2, o6)

Fig. 5: Direction assignment to graph edges

Additionally, the resulting paths will always be of the same
length (as respectively shown in black and blue in Fig. 4b)
and, therefore, trivially meet the optional design constraint
(Path length).

Motivated by this, we pre-assign directions (south/east) to
the graph edges such that the following two requirements are
fulfilled: (R1) all incoming edges to every vertex are supposed
to assume the same direction, and that (R2) all outgoing edges
of every vertex are supposed to assume different directions.
This is necessary in order to prevent conflicting assignments
of the clock zone numbering. Unfortunately, enforcing such
a scheme is not always possible for each and every graph as
highlighted by the following example.

Example 8. Consider Fig. 5a where a graph is given together
with a partial direction assignment (e denoting east and s
denoting south). For this example, it is impossible to assign
directions to this graph as described above. Operation o3’s
incoming edges were assigned correctly with east each as
stated by the requirement R1 and o1’s as well as o4’s outgoing
edges were also assigned correctly with both east and south
– meeting the requirement R2. The edge (o2, o6), however,
should then both be labeled south (because of the requirement
R2 at operation o2) but also east (to meet the requirement R1
at o6) – obviously a contradiction.

However, this problem can be resolved by subdividing the
conflict edge and adding an auxiliary vertex in between. More
precisely, the proposed solution is to replace the conflict edge
by a new vertex and two accordingly connected edges.

Example 9. A solution to the problem illustrated in Example 8
is depicted in Fig. 5b. The edge (o2, o6) has been replaced by a
new vertex a1 and two additional edges (o2, a1) and (a1, o6).
This enables the determination of a valid result, as south can
be assigned to edge (o2, a1) and east to (a1, o6). Auxiliary
vertices contain no operation and will be handled as normal
wires.

Overall, this leads to a scheme as described in Algorithm 1.
We assume that the netlist synthesized in line 1 is a 3-graph.
An empty FCN layout is initialized in line 2. The variables
x and y are used as the grid’s current size which increases
dynamically when needed throughout the process. The afore-
mentioned edge assignment and subsequent topological vertex
ordering are performed in lines 3 and 4, respectively.

Afterwards, the operations are processed, i. e. located on
the grid, consecutively. The actual arrangement depends on
the predecessors of the currently considered operation. For
operations that lack any predecessor, one new row and one
new column are added to the grid and the operation is placed

Algorithm 1: Scalable FCN design
Input: Boolean function f
Output: FCN layout L

1 Synthesize netlist N = (O,W) from f
2 L← empty FCN layout of size (x = 0)× (y = 0)
3 Generate direction assignment d : W → {east, south}

and subdivide edges if necessary
4 Compute topological ordering o1, . . . , on ∈ O
5 for o ∈ o1, . . . , on do
6 if indeg(o) = 0 then
7 Add one row and one column to L
8 Locate o at position (x, y)
9 else at most two incoming edges e1, e2 to o

10 if d(e1) = d(e2) = east then
11 Add one column to L
12 yp ← max. y-position of o’s predecessors
13 Locate o at position (x, yp)
14 else edges are labelled south
15 Add one row to L
16 xp ← max. x-position of o’s predecessors
17 Locate o at position (xp, y)
18 end
19 Draw wires to connect o with its predecessor(s)

accordingly
20 end
21 end
22 return L

at the bottom right corner (lines 6 to 8).3 Operations cannot
have more than two incoming edges e1, e2. Their arrangement
is conducted with respect to edge annotation. Note that we
have requested direction assignments to be identical for all
incoming edges of any vertex by requirement R1. If those
are labeled east, one column is added to the grid and the y-
position for the newly arranged operation is determined by
the maximum y-position of its predecessors while choosing
the freshly inserted column as x-value (lines 10 to 13). This
way, wire connections can be drawn with at most one bend
(if the currently considered operation had two predecessors),
while assuring the avoidance of any conflicts. If all incoming
edges are labeled south instead, one row is added to the grid
and the x-position of the current operation to be located on the
grid is determined by the predecessors maximum x-position
analogously (lines 14 to 17).

In summary, we have introduced an algorithm for scalable
design of FCN circuits. Inspired by findings on the orthogonal
graph drawing problem, we devised an algorithm which satis-
fies the three main FCN design constraints (Unique, Adjacent,
Clock zone) when generating an FCN layout. Furthermore, we
also assured that the generated designs gain highest throughput
by additionally meeting the optional constraint (Path length).
In the next section, we provide a corresponding experimental
evaluation.

IV. EVALUATION

In this section, the performance of the proposed design
approach is evaluated and compared to the state-of-the-art.
To this end, we implemented the algorithm described in
the previous section in C++ for the fiction framework [37]
and measured its performance in terms of runtime and the
resulting size of the FCN layouts when applying it to common
benchmarks taken from [38], [39], [20]. Additionally, we
compared the obtained results to QCA designs generated by
the approach presented in [20] (considered state-of-the-art thus

3Note that adding one row and one column to an empty grid results in
adding a single clock zone.

far)4 as well as a method that implements an FCN layout
with minimal number of clock zones (obtained by [35]). All
experiments have been conducted on an Intel Xeon E5-2630 v3
machine with 2.40 GHz (up to 3.20 GHz boost) and 64 GB of
main memory running Fedora 22. For verification purposes,
circuits with up to 30 gates have been exported to the tool
QCADesigner [40] and simulated using the coherence vector
engine. Exhaustive simulation of more complex circuits was
not possible due to tool limitations.

The results are summarized in Table I. The gate count
(column #Gates) refers to the number of 2-AND, 2-OR, and
NOT gates as well as fan-outs used to represent the respective
functions as 3-graphs. Column I / O provides information
about the benchmark’s number of primary inputs and out-
puts. The following columns list, for each considered design
technique, the resulting Dimension in terms of clock zones,
which have the size of 5×5 cells, and the respectively needed
Runtime (in CPU seconds). Note that design processes which
could not have been completed within a timeout of 10 hours
are dashed in Table I. The considered benchmarks are divided
into three sets: First, we considered some basic logic functions
which have, thus far, been considered by the state-of-the-art.
Afterwards, results obtained from larger functions taken from
the ISCAS85 library [38] and the EPFL library [39] are listed,
which have been considered in order to evaluate the scalability
of the proposed approach.

The results clearly confirm that the proposed method satis-
fies the objectives of this work. First, the proposed approach
is capable of automatically implementing the desired FCN
circuits, while, at the same time, satisfying all FCN design
constraints. At the same time, it addresses the main drawback
of other automatic solutions proposed thus far (such as [20]):
the poor scalability. More precisely, while the state-of-the-art
is capable to realize rather small functions with up to four
primary inputs and not more than two dozens of gates only,
the solutions proposed in this work can generate functions with
thousands of gates. At the same time, the resulting quality does
not decrease. In fact, the sizes of the generated FCN designs
are within the same ranges as the state-of-the-art solutions.
Overall, the proposed method allows to automatically realize
FCN designs for large and complex functionality.

V. CONCLUSION

This work focused on one of the essential challenges for the
advancement of Field-coupled Nanocomputing (FCN) circuits
– an automatic design method. The approach presented herein
allows – in contrast to the state-of-the-art – for the scalable
design of FCN circuits that satisfy the FCN design constraints
which have mainly been ignored or led to automatic solu-
tions which are poorly scalable thus far. Experimental results
confirmed that the proposed approach is capable of handling
functions to be synthesized with around 40 000 gates – without
decreasing the quality of the resulting designs. This provides
the basis for an automatic FCN design scheme for large and
complex functionality. Future work will include optimizing the
resulting designs, particularly with respect to wires which, as
observed in [41] constitute a severe cost factor in FCN.

ACKNOWLEDGMENTS

The research reported in this paper has partially been
supported by the German Research Foundation DFG, as part
of Collaborative Research Center (Sonderforschungsbereich)
1320 EASE – Everyday Activity Science and Engineering,
University of Bremen (http://www.ease-crc.org/). The research
was conducted in subproject P04.

4Thanks to the authors for providing us their source code.

TABLE I: Comparison to State-Of-The-Art

Benchmark S-o-t-a heuristic [20] S-o-t-a exact [35] Proposed approach
Name #Gates I / O Dimension CP t in s Dimension CP t in s Dimension CP t in s
2:1 MUX 5 3 / 1 4 × 5 5 9 3 × 3 5 < 1 4 × 2 5 < 1
XOR 6 2 / 1 4 × 7 7 11 3 × 3 5 < 1 5 × 3 7 < 1
XNOR 8 2 / 1 6 × 6 8 13 4 × 4 8 2 6 × 4 9 < 1
Half adder 10 2 / 2 7 × 6 8 55 5 × 5 10 13 7 × 5 11 < 1
ParGen 14 3 / 1 9 × 10 14 27 7 × 6 14 791 10 × 7 16 < 1
ParCheck 21 4 / 1 10 × 14 14 3014 4 × 12 16 1140 15 × 10 24 < 1
4:1 MUX 18 4 / 1 11 × 8 19 9612 7 × 7 22 5130 12 × 7 18 < 1

c17 15 5 / 2 10 × 6 13 15 4 × 6 16 56 12 × 4 14 < 1
c432 551 36 / 7 — — TO — — TO 426 × 161 584 < 1
c499 963 41 / 32 — — TO — — TO 690 × 306 995 < 1
c1355 1515 41 / 32 — — TO — — TO 1243 × 369 1611 < 1
c1908a 2043 33 / 25 — — TO — — TO 1540 × 536 2077 < 1
c2670a 2455 155 / 64 — — TO — — TO 1756 × 760 2511 < 1
c3540a 3588 50 / 22 — — TO — — TO 2523 × 1111 3639 1
c5315a 5478 177 / 123 — — TO — — TO 3857 × 1751 5577 2
c6288 6928 32 / 32 — — TO — — TO 5714 × 1246 6957 2

ctrl 498 7 / 25 — — TO — — TO 356 × 149 495 < 1
router 658 60 / 3 — — TO — — TO 488 × 231 717 < 1
int2float 699 11 / 7 — — TO — — TO 514 × 196 708 < 1
i2c 3508 133 / 127 — — TO — — TO 2515 × 1123 3632 1
bar 8592 135 / 128 — — TO — — TO 6547 × 2180 8724 6
sin 14314 24 / 25 — — TO — — TO 10549 × 3828 14374 14
voter 39476 1001 / 1 — — TO — — TO 30542 × 9935 40476 10

#Gates Gate count as given by the number of 2-AND/2-OR/NOT gates plus fan-outs CP Critical path I / O Number of primary inputs / outputs
Dimension Occupied area in clock zones (i. e. 5 × 5 QCA cells building blocks) t in s Time in seconds TO Timeout of 10 hours reached

REFERENCES

[1] N. G. Anderson and S. Bhanja, Field-coupled Nanocomputing:
Paradigms, Progress, and Perspectives, 1st ed. New York: Springer,
2014.

[2] C. S. Lent and P. D. Tougaw, “A device architecture for computing with
Quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557,
1997.

[3] D. Giri, G. Causapruno, and F. Riente, “Parallel and serial computation
in nanomagnet logic: An overview,” TVLSI, pp. 1–11, 2018.

[4] C. S. Lent et al., “Molecular Cellular networks: A non von neumann
architecture for molecular electronics,” in ICRC, Oct 2016, pp. 1–7.

[5] S. Bohloul, Q. Shi, R. A. Wolkow, and H. Guo, “Quantum transport
in gated dangling-bond atomic wires,” Nano Letters, vol. 17, no. 1, pp.
322–327, 2017.

[6] T. R. Huff, H. Labidi et al., “Atomic white-out: Enabling atomic circuitry
through mechanically induced bonding of single hydrogen atoms to a
silicon surface,” ACS Nano, vol. 11, no. 9, pp. 8636–8642, 2017.

[7] X. K. Hu, H. Dey, N. Liebing, G. Csaba, A. Orlov, G. H. Bernstein,
W. Porod, P. Krzysteczko, S. Sievers, and H. W. Schumacher, “Edge-
mode resonance-assisted switching of nanomagnet logic elements,”
IEEE Trans. Magn., vol. 51, no. 11, pp. 1–4, Nov 2015.

[8] J. Timler and C. S. Lent, “Power gain and dissipation in Quantum-dot
Cellular Automata,” J. Appl. Phys., vol. 91, no. 2, pp. 823–831, 2002.

[9] J. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, “Tunnel coupled
dangling bond structures on hydrogen terminated silicon surfaces,” JCP,
vol. 134, no. 6, 2011.

[10] F. S. Torres, R. Wille, P. Niemann, and R. Drechsler, “An energy-aware
model for the logic synthesis of Quantum-dot Cellular Automata,” in
TCAD, 2018.

[11] S. Perri and P. Corsonello, “New methodology for the design of efficient
binary addition circuits in QCA,” TNANO, vol. 11, no. 6, pp. 1192–1200,
2012.

[12] E. Fazzion, O. L. Fonseca, J. A. M. Nacif, O. P. V. Neto, A. O. Fer-
nandes, and D. S. Silva, “A Quantum-dot Cellular Automata processor
design,” in SBCCI, 2014.

[13] M. Kianpour and R. Sabbaghi-Nadooshan, “A novel Quantum-dot Cel-
lular Automata CLB of FPGA,” J. Comput. Electron., vol. 13, no. 3, pp.
709–725, 2014.

[14] K. Kong, Y. Shang, and R. Lu, “An optimized majority logic synthesis
methodology for Quantum-dot Cellular Automata,” TNANO, vol. 9,
no. 2, pp. 170–183, 2010.

[15] M. G. A. Martins, V. Callegaro, F. S. Marranghello, R. P. Ribas, and
A. I. Reis, “Majority-based logic synthesis for nanometric technologies,”
in IEEE-NANO, 2014, pp. 256–261.

[16] M. Bubna, S. Roy, N. Shenoy, and S. Mazumdar, “A layout-aware
physical design method for constructing feasible QCA circuits,” in
GLSVLSI, 2008, pp. 243–248.

[17] R. Ravichandran, S. K. Lim, and M. Niemier, “Automatic cell placement
for Quantum-dot Cellular Automata,” Integration, vol. 38, no. 3, pp.
541–548, 2005.

[18] W. J. Chung, B. Smith, and S. K. Lim, “Node duplication and routing al-
gorithms for Quantum-dot Cellular Automata circuits,” IEE Proceedings
– Circuits, Devices and Systems, vol. 153, no. 5, pp. 497–505, 2006.

[20] A. Trindade, R. S. Ferreira, J. A. M. Nacif, D. Sales, and O. P. V.
Neto, “A placement and routing algorithm for Quantum-dot Cellular
Automata,” in SBCCI, 2016.

[19] R. K. Nath, B. Sen, and B. K. Sikdar, “Optimal synthesis of qca logic
circuit eliminating wire-crossings,” IET-CDS, vol. 11, no. 3, pp. 201–
208, 2017.

[21] F. S. Torres et al., “Exploration of the synchronization constraint in
quantum-dot cellular automata,” in DSD, pp. 642–648.

[22] M. Eiglsperger, S. P. Fekete, and G. W. Klau, “Orthogonal graph
drawing,” in Drawing Graphs. Springer, 2001, pp. 121–171.

[23] T. C. Biedl and G. Kant, “A better heuristic for orthogonal graph
drawings,” Computational Geometry, vol. 9, no. 3, pp. 159–180, 1998.

[24] W. Liu, E. E. Swartzlander Jr, and M. O’Neill, Design of semiconductor
QCA systems. Artech House, 2013.

[25] P. D. Tougaw and C. S. Lent, “Logical devices implemented using
Quantum Cellular Automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1818–
1825, 1994.

[26] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

[27] M. Taucer, F. Karim, K. Walus, and R. A. Wolkow, “Consequences
of many-cell correlations in clocked Quantum-dot Cellular Automata,”
TNANO, vol. 14, no. 4, pp. 638–647, 2015.

[28] K. Hennessy and C. S. Lent, “Clocking of molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[29] D. Giri, M. Vacca, G. Causapruno, W. Rao, M. Graziano, and M. Zam-
boni, “A standard cell approach for magnetoelastic nml circuits,” in
2014 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), July 2014, pp. 65–70.

[30] C. A. T. Campos, A. L. P. Marciano, O. P. V. Neto, and F. S. Torres,
“USE: A universal, scalable, and efficient clocking scheme for QCA,”
TCAD, vol. 35, no. 3, pp. 513–517, 2016.

[31] J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi,
“Tile-based QCA design using majority-like logic primitives,” JETC,
vol. 1, no. 3, pp. 163–185, 2005.

[32] D. A. Reis, C. A. T. Campos, T. R. Soares, O. P. V. Neto, and F. S.
Torres, “A methodology for standard cell design for QCA,” in ISCAS,
2016, pp. 2114–2117.

[33] M. Janez, P. Pecar, and M. Mraz, “Layout design of manufacturable
Quantum-dot Cellular Automata,” Microelectroics Journal, vol. 43,
no. 7, pp. 501–513, 2012.

[34] V. Vankamamidi, M. Ottavi, and F. Lombardi, “Two-dimensional
schemes for clocking/timing of QCA circuits,” TCAD, vol. 27, no. 1,
pp. 34–44.

[35] M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler, “An exact
method for design exploration of Quantum-dot Cellular Automata,” in
DATE, 2018, pp. 503–508.

[36] T. C. Biedl, “Improved orthogonal drawings of 3-graphs,” in CCCG,
1996, pp. 295–299.

[37] M. Walter, “fiction – field-coupled technology-independent open
nanocomputing,” https://github.com/marcelwa/fiction, 2018.

[38] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in ISCAS. IEEE
Press, 1985, pp. 677–692.

[39] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Int’l Workshop on Logic Synth., 2015.

[40] K. Walus and G. A. Jullien, “Design tools for an emerging SoC
technology: Quantum-dot Cellular Automata,” Proceedings of the IEEE,
vol. 94, no. 6, pp. 1225–1244, 2006.

[41] F. S. Torres, R. Wille, M. Walter, P. Niemann, D. Große, and R. Drech-
sler, “Evaluating the impact of interconnections in Quantum-dot Cellular
Automata,” in DSD, 2018, pp. 649–656.

