
Matrix-Vector vs. Matrix-Matrix Multiplication:
Potential in DD-based Simulation of Quantum Computations

Alwin Zulehner Robert Wille
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

alwin.zulehner@jku.at robert.wille@jku.at
http://iic.jku.at/eda/research/quantum/

Abstract—The simulation of quantum computations basically
boils down to the multiplication of vectors (describing the
respective quantum state) and matrices (describing the respective
quantum operations). However, since those matrices/vectors are
exponential in size, most of the existing solutions (relying on
arrays for their representation) are either limited to rather small
quantum systems or require substantial hardware resources. To
overcome these shortcomings, solutions based on decision dia-
grams (DD-based simulation) have been proposed recently. They
exploit redundancies in quantum states as well as matrices and,
by this, allow for a compact representation and manipulation.
This offers further (unexpected) potential. In fact, simulation
has been conducted thus far by applying one operation (i.e. one
matrix-vector multiplication) after another. Besides that, there
is the possibility to combine several operations (requiring a
matrix-matrix multiplication) before applying them to a vector.
But since, from a theoretical perspective, matrix-vector multipli-
cation is significantly cheaper than matrix-matrix multiplication,
the potential of this direction was rather limited thus far. In this
work, we show that this changes when decision diagrams are
employed. In fact, their more compact representation frequently
makes matrix-matrix multiplication more beneficial—leading
to substantial improvements by exploiting the combination of
operations. Experimental results confirm the proposed strategies
for combining operations lead to speed-ups of several factors
or—when additionally exploiting further knowledge about the
considered instance—even of several orders of magnitudes.

I. INTRODUCTION

Quantum computations utilize quantum mechanical effects
like superposition and entanglement of so-called quantum bits
(qubits) [1], that serve as basis for the so-called quantum
parallelism. Computations that exploit these concepts to solve
certain tasks significantly faster than conventional machines
include the famous algorithms by Shor [2] (for integer fac-
torization) and Grover [3] (for database search), as well as
recently developed algorithms for quantum chemistry, machine
learning, or solving large systems of linear equations [4].

Besides these theoretical algorithms, there has also been a
huge process towards the physical realization of quantum com-
puters. These achievements are not only driven by academia
(cf. [5], [6], [7]), but also by large companies like IBM [8],
Google [9], and Rigetti [10]—leading to a race for building
the first quantum computer that is able to show quantum
supremacy [11], [12]. Since all these realizations still suffer
from the limited number of available qubits, a rather low
fidelity (i.e. large error rates when applying operations), and
small coherence time (i.e. how long a qubits state persists),
researchers in this field still rely on simulators running on
conventional machines.

Here, Schrödinger-style simulation is popular in which the
respective computations are basically boiled down to the
multiplication of vectors (describing quantum states) and ma-
trices (describing quantum operations). Since both, vectors and
matrices, are exponential in size with respect to the number
of qubits, most of the existing solutions (relying on arrays
for their representation) focus on tackling the underlying
exponential complexity with massive hardware resources [13],

[14], [15], [16], [17]. But even then, simulating arbitrary
quantum computations with 46 qubits is today’s limit [15].

To overcome these shortcomings, simulators based on de-
cision diagrams (DDs) have been proposed recently [18],
[19]. They aim for a more compact representation of the
quantum states and operations by exploiting redundancies in
the corresponding state vectors and operation matrices. While
the worst case complexity still remains exponential, it has been
shown for several practically relevant cases that they yield
substantial performance improvements [19]—many instances
that could not have been simulated before can be handled by
DD-based simulation.

However, using DDs rather than e.g. arrays changes how
the respective operations should actually be conducted. Thus
far, quantum simulation has been conducted by multiplying
a series of unitary matrices Mi (representing the quantum
operations) to a vector v0 (representing the initial state of the
quantum system)—yielding a series of matrix-vector multipli-
cations. Besides that, there is the possibility to combine several
operations (requiring a matrix-matrix multiplication) before
applying it to a vector. But since, from a theoretical perspec-
tive, matrix-vector multiplication is significantly cheaper than
matrix-matrix multiplication, the potential of this direction was
rather limited thus far (approaches such as proposed in [14],
[20] used similar techniques but, after all, suffer from the
limitations of array-based simulations as discussed above).

In this work, we re-visit this direction for DD-based sim-
ulation. To this end, we investigate how DDs perform during
simulation. Our observations show that, despite the theoreti-
cal complexity, their more compact representation frequently
makes matrix-matrix multiplication more beneficial. This of-
fers (unexpected) potential which has not been exploited yet
for DD-based simulation of quantum computations. Motivated
by this, we are proposing several strategies that combine oper-
ations (using matrix-matrix multiplication) before a simulation
step (using matrix-vector multiplication) is conducted. Experi-
mental results confirm that this allows to accelerate DD-based
simulation of quantum computations by several factors or, by
additionally exploiting application-specific knowledge when
combining operations, even several orders of magnitudes.

This paper is structured as follows. We recapitulate the main
ideas of quantum computations and their DD-based simulation
in Section II. In Section III, we analyze current DD-based
simulation approaches and discuss their open potential that
can be unveiled by combining operations. In Section IV,
we propose strategies how to combine operations in order
to exploit the available potential of DD-based simulation.
Experimental evaluations summarized in Section V confirm
that the proposed strategies indeed significantly improve the
state of the art while Section VI concludes the paper.

II. BACKGROUND

In this section, we review the basics of quantum computa-
tions and their DD-based simulation.



|q0〉 = |0〉 H •

|q1〉 = |1〉

Fig. 1: Quantum circuit

A. Quantum Computations

In contrast to bits used in conventional computations, qubits
cannot only be in one of the two basis states (denoted |0〉
and |1〉 using Dirac notation), but also in an (almost) arbitrary
superposition of both, i.e. |ψ〉 = α · |0〉+ β · |1〉. Measuring a
qubit causes the superposition to collapse into one of the basis
states |0〉 or |1〉 (with probabilities |α|2 and |β|2). Extending
this concept for n qubits, a quantum system results that is
represented by 2n complex amplitudes (one for each basis
state) that form the so-called state vector. To satisfy the
normalization constraint, their squared magnitudes have to
sum up to 1.

The state of a quantum system can be modified by applying
quantum operations, whose functionality are described by
unitary matrices. Commonly used quantum operations acting
on a single qubit are negation (X =

[
0 1
1 0

]
), phase shift

(S =
[

1 0
0 i

]
), or a so-called Hadamard operation which sets

a qubit in superposition (H = 1√
2

[
1 1
1 -1

]
).

Quantum operations may be controlled by other qubits.
Then, the operation is only conducted on the target qubit if the
controlling qubits are in basis state |1〉. Otherwise, the identity
is applied. One commonly used operation is the controlled
X (CX) operation, whose functionality is represented by the
unitary matrix

CX =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Quantum computations are often described by circuit dia-
grams, where qubits are represented by so-called circuit lines
that are passed through a cascade of gates (representing the
quantum operations). The gates indicate (from left to right) the
order in which quantum operations are applied to the qubits.

Example 1. The quantum circuit shown in Fig. 1 represents
a quantum system composed of two qubits q0 and q1 with the
initial state |ψ〉 = |01〉. First, a Hadamard gate is applied to
qubit q0, then a CX gate with q0 as controlling qubit (denoted
by •) and q1 as target qubit (denoted by ⊕) is applied.

Simulating quantum computations (i.e. determining the re-
sulting state vector) requires to successively multiply the
unitary matrices of the corresponding quantum gates to the
state vector of the underlying quantum system.

Example 1 (continued). Since the first gate of the circuit
acts only on qubit q0, we assume the identity for qubit q1. To
adjust the size of the unitary matrix representing the quantum
operation to the size of the state vector, one has to determine
the Kronecker product H ⊗ I2. Since the size of the CX gate
already matches the size of the state vector, the quantum circuit
shown in Fig. 1 can be simulated by computing

|ψ′〉 =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
︸ ︷︷ ︸

CX

× 1√
2

[
1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

]
︸ ︷︷ ︸

H⊗I2

×

[
0
1
0
0

]
︸︷︷︸
|01〉

=
1√
2

[
0
1
1
0

]
.
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Fig. 2: Representation for quantum states

B. DD-based Simulation of Quantum Computations
Since both, the size of the state vector as well as the size

of the unitary matrices, grow exponentially with respect to
the number of qubits,1 researchers came up with approaches
based on decision diagrams (DDs), which aim to gain a more
compact representation by exploiting redundancies [18], [19].
In many cases, this leads to smaller memory consumption and
faster simulation (cf. [18], [19]).

In DD-based simulation, state vectors are decomposed over
their qubits. Consider the most significant qubit q0 of a
quantum state. All basis states with most significant qubit
q0 = |0〉 are located in the upper half of the state vector,
whereas all basis states with q0 = |1〉 are located in the
lower half. Decomposing the vector into these two halves is
represented by a DD node labeled q0 with a left and a right
successor (representing the upper and the lower half of the
state vector, respectively). This decomposition is recursively
applied until a single complex value is reached (represented
by a terminal node holding the corresponding number). A
compact representation is gained in many cases, since equal
sub-vectors are represented by shared DD nodes.2

Example 2. Fig. 2a shows the state vector of a quantum
system composed of three qubits (q0, q1, and q2). Fig. 2b
shows the corresponding DD, which contains a terminal node
(denoted by squared boxes) for each of the three different
values in the state vector (0, − 1

2 , and 1
2 ). The path from the

root node to the terminal with value − 1
2 highlighted in bold

determines the amplitude for basis state |q0q1q2〉 = |011〉.
To further increase sharing, the approach described in [19]

utilizes weights that are attached to the edges of the DD.3 This
allows for extracting common factors, which are propagated
upwards in the DD. By this, sub-vectors that are multiples of
each other can be represented by the same DD node. The an
entry of the state vector is then determined by the product of
all edge weights on the corresponding path from the root node
to the terminal.

Example 2 (continued). Fig. 2c shows the DD after adding
weights to the edges. As can be seen, this leads to a more
compact representation. For simpler graphical visualization
of DDs, we denote zero vectors (i.e. vectors composed of 0-
entries only) with 0-stubs in the DD and we omit edge weights
that are equal to one. The path highlighted in bold again
represents the amplitude of basis state |q0q1q2〉 = |011〉, which
is now determined by computing 1

2 · 1 · (−1) · 1 = − 1
2 .

1Note that usually the matrices are not constructed explicitly since for many
qubits the identity is assumed. Instead, smaller matrices applied exponentially
many times to disjoint sub-vectors.

2Additionally, machine accuracy has to be taken into account as discussed
in [21].

3A representation similar to Quantum Multiple-valued Decision Diagrams
(QMDDs [22], [23]) results.
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Fig. 4: Addition of state vectors

The idea described above can easily be extended—by
adding a second dimension—to a description means for unitary
matrices. This leads to four possibilities for the most signif-
icant qubit q0—describing the four quadrants of the unitary
matrix. Therefore, a DD node has four successor nodes which,
from left to right, represent the left upper quadrant M00,
the right upper quadrant M01, the left lower quadrant M10,
and the right lower quadrant M11. Like for state vectors,
edge weights allow to use shared nodes for representing sub-
matrices that are multiples of each other—further reducing the
overall number of DD nodes.

The multiplication of a vector and a matrix can then be
conducted directly (and, thus, efficiently) on the DD represen-
tation by employing

M×v =

[
M00 M01
M10 M11

]
×
[
v0
v1

]
=

[
M00 × v0
M10 × v0

]
+

[
M01 × v1
M11 × v1

]
.

Fig. 3 sketches this: First, the four sub-products M00 · v0,
M01 ·v1, M10 ·v0, and M11 ·v1 are recursively determined (the
respective sub-matrices and sub-vectors can easily be obtained
by taking the pointers from the respective DD node). From
these sub-products, two intermediate state vectors x and y are
formed by adding DD nodes labeled with qi (shown on the
right hand side of Fig. 3). Finally, their sum is determined
which eventually yields the final state vector. This addition is
similarly conducted by employing

x+ y =

[
x0
x1

]
+

[
y0
y1

]
=

[
x0 + y0
x1 + y1

]
as sketched in Fig. 4. Again, the resulting sub-sums x0 + y0
and x1 + y1 are determined recursively and combined by a
new DD node.

III. POTENTIAL IN DD-BASED SIMULATION

DD-based simulation approaches [18], [19] often allow to
represent state vectors and matrices with much lower memory
consumption (by exploiting redundancies as reviewed above)
and, thus, allow to conduct simulation significantly faster.
While state-of-the-art solutions introduced before (e.g. those
proposed in [13], [14], [15], [16], [17]) required days and/or
supercomputers for certain simulations, the DD-based simula-
tors can handle those instances within minutes on a regular
Desktop machine. However, in this section, we discuss in
detail that there is still further potential which has not been
exploited yet.

In general, the task of conducting a simulation of a quantum
computation boils down to multiplying a series of unitary
matrices Mi with 1 ≤ i < g (representing a total of g quantum
operations) to a vector v0 (representing the initial state of
the quantum system). That is, typically the resulting state
vector vg is determined by conducting a series of matrix-vector
multiplications:

vg = (Mg × (Mg−1 × · · · × (M1 × v0) · · · )) (1)

This simulation could also be done in a different fashion by
rearranging parenthesis in Eq. 1 (since matrix-matrix multi-
plication is associative), but requires to also multiply matrices
with each other. Then, a resulting state vector vg is determined
by conducting a series of matrix-matrix multiplications prior
to a matrix-vector multiplication, i.e.

vg = (Mg ×Mg−1 × · · · ×M1)× v0. (2)

However, conventionally conducting a matrix-matrix multi-
plication turns out to be computationally more complex than
conducting a matrix-vector multiplication, since even the best
known algorithm specialized for multiplying square matrices
(cf. [24]) has a complexity of O(m2.373), while matrix-vector
multiplication has a complexity O(m2).4 Because of this,
typically the scheme sketched in Eq. 1 is followed.

But this should change when simulations are con-
ducted using DDs as they offer further potential. Although
matrix-matrix multiplication in DDs also requires to recur-
sively compute more sub-products and sub-sums per node
compared to matrix-vector multiplication (as sketched before
in Fig. 3 and Fig. 4), it has additionally to be taken into
account that DDs representing elementary operations usually
require significantly fewer nodes. This is because elementary
operations work on one or two qubits only, while the remaining
qubits just realize the identity I which can be represented
by a single node for each qubit (i.e. in a linear fashion).5
In contrast, vectors are usually rather complex after the
first operations have been applied—leading to rather large
DDs. This frequently leads to situations where, using DDs, a
matrix-matrix multiplication is cheaper than a matrix-vector
multiplication, although more steps per node are required
(since re-occurring sub-products only have to be computed
once). Thus, multiplying some small (with respect to the
number of nodes) matrices first and multiplying the resulting
product to a large vector only once (i.e. partially following
Eq. 2) may be cheaper than sequentially multiplying a large
vector to a sequence of small matrices (i.e. following Eq. 1).

Example 3. Fig. 5 shows the DDs representing an inter-
mediate state vector vi as well as two elementary oper-
ations Mi+1 and Mi+2 (taken from a run simulating a
circuit proposed by researchers from Google to demonstrate
quantum supremacy [11]) as well as the intermediate re-
sults when conducting a corresponding simulation following
Eq. 1 (depicted in Fig. 5a) and following Eq. 2 (depicted in
Fig. 5b).6 As can clearly been seen, following the established
simulation flow with the supposedly cheaper matrix-vector
multiplications, rather large DDs (i.e. the intermediate state
vectors vi and vi+1) have to be processed in both of the

4Note that, when considering quantum simulation as done here m = 2n

(where n is the number of qubits).
5Details on how to efficiently construct such DDs are provided in [25].
6Note that, for the purpose of this example, it is not essential to provide

all the details of the DDs (which is hard due to space constraints), but it is
sufficient to get an intuition of the size of them.
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(a) Conducting vi+2 = Mi+2 × (Mi+1 × vi) (i.e. following Eq. 1)
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(b) Conducting vi+2 = (Mi+2 ×Mi+1)× vi (i.e. following Eq. 1)

Fig. 5: Computational effect of rearranging parenthesis when computing vi+2 =Mi+2 ×Mi+1 × vi

two multiplications. In contrast, conducting the supposedly
more expensive matrix-matrix multiplication first to combine
the two rather small DDs requires to operate on a large DD
(representing the vector) only once—significantly reducing the
overall computational cost.

IV. EXPLOITING THE POTENTIAL
FOR MORE EFFICIENT DD-BASED SIMULATION

Thus far, the fact that matrix-matrix multiplication might
be cheaper than matrix-vector multiplication has not been
exploited in DD-based simulation. At the same time, naively
relying on matrix-matrix multiplication only (i.e. completely
following Eq. 2) does not necessarily yield to an improvement
(since, after all, the resulting representation of the intermedi-
ate matrices will grow as well). Accordingly, a compromise
between the extreme cases (completely following Eq. 1 or
Eq. 2) is required. This leaves the question how many and
what operations shall be combined (by matrix-matrix multi-
plication) before another simulation step (i.e. matrix-vector
multiplication) is applied.

In this section, we are presenting solutions to this question.
To this end, we are proposing general strategies utilizing
the potential motivated in Section III as well as strategies
which additionally take further knowledge about the quantum
computation to be simulated into account. Experimental eval-
uations summarized afterwards in Section V demonstrate the
substantial impact of exploiting the discussed potential with
these strategies.

A. General Strategies for Combining Operations
First, we propose general strategies that utilize the potential

observed above. To decide how many operations shall be
combined, the respective efficiency of DD-based simulation is
taken into account. This efficiency usually depends on (1) the
fact that the size of a DD representing a product of operations
usually grows with the number of its factors (i.e. the number
of combined operations) and (2) the fact that the costs of a
multiplication heavily depends on the size of the DD repre-
senting the matrices and vectors. These observations motivate
the following two strategies for combining operations:
• The first one (denoted k-operations in the following),

forms the product of k operations before multiplying the
resulting unitary matrix to the state vector. This directly
takes the first observation into account. However, the size
of the resulting product might be very small for one
sequences of k operations, but huge for another sequence
of k operations.

• The second strategy (denoted max-size in the following)
avoids this problem and combines operations with respect
to the size of the resulting DD. More precisely, operations
are combined until their product exceed a certain size

Diffusion operator

|0〉 / H⊗n
U

H⊗n 2 |0n〉 〈0n| − In H⊗n · · ·
︷ ︸︸ ︷

|1〉 H · · ·︸ ︷︷ ︸
Repeated O(2n/2) times (Grover Iteration)

Fig. 6: Quantum circuit sketching Grover’s Algorithm

(defined by a parameter smax). Then, the resulting matrix
is multiplied to the state vector. Accordingly, parametriza-
tion is not with respect to just the pure number of op-
erations but with respect to how large the corresponding
DD get.

Overall, both strategies aim for reducing the number of
matrix-vector multiplications at the expense of increasing
the number of matrix-matrix multiplications. For simulations,
where the intermediate state vectors are composed of a large
number of DD nodes, we expect a reduction of the time
required to simulate quantum computations since these large
DDs is not involved in all multiplications.

B. Strategies Utilizing Further Knowledge
The two strategies proposed above ignore the actual quan-

tum computation to be simulated and completely rely on
general parameters. Besides that, further potential can be
realized if knowledge about the quantum computation to be
simulated is taken into account.

For example, there exist several quantum algorithms where
identical sub-circuits are repeated several times. Grover’s al-
gorithm for database search where a so-called Grover Iteration
is conducted several times is a well-known example for this.
Fig. 6 sketches the respective procedure in terms of quantum
circuit notation. Here, a database U is concurrently queried
with 2n inputs (achieved by setting n qubits in superposition
using an H-operation) and, afterwards, a diffusion operator is
repeatedly applied to increase the probability of the desired
database entry (the Grover Iteration). To maximize the proba-
bility of getting the desired database entry, one has to repeat
the Grover iteration 2n/2 times—leading to a quadratic speed-
up compared to a conventional algorithm.

When simulating such a quantum algorithm, the repeating
sequence of operations obviously does not have to be con-
sidered completely from scratch each and every time. Instead,
this constitutes a perfect sequence to be utilized for combining
operations. More precisely, rather than consider elementary
operations in each iteration, we combine all operations of a
single iteration first (yielding a DD representing the entirety
of a single iteration). Then, for each further iteration only the
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Fig. 7: Quantum circuit realizing Shor’s algorithm

current state vector has to be multiplied with this combined
matrix representation. This does not only save computation
efforts because of the effects discussed above (by means of
Example 3 and Fig. 5), but also because a sequence can—once
it is pre-computed for the first iteration—be easily re-used
for all further iterations—without the need of conducting any
further matrix-matrix multiplications to combine operations.
In the following, this strategy is denoted DD-repeating.

Moreover, even if a certain sequence of operations only
occurs once, knowledge about the nature of the considered
quantum computation still can help. In fact, many quantum al-
gorithms include large Boolean parts (also denoted oracles) for
which several different variations of sequences of (elementary)
operations exist. Choosing and combining those operations in a
fashion which suits DD-based simulation (and not in a fashion
given by the quantum algorithm) can lead to further speed-ups.

Shor’s algorithm [2] is a good example for that. This
algorithm translates the problem of factorizing an n-bit num-
ber N to the problem of determining the multiplicative or-
der r of another number a that is co-prime to N , i.e. r
shall satisfy ar ≡ 1 mod N . To solve this problem on a
quantum computer, one can use the circuit shown in Fig. 7,
where modular exponentiation is performed conditionally on
an n-qubit register (the Boolean components Ua2

i

compute
x × 2a

i

mod N for an input x). Eventually, an inverse
Quantum Fourier Transform (QFT) is conducted in order to
determine r with high probability.7

When executing this algorithm on a real quantum computer,
the Boolean components are decomposed into elementary
quantum operations. This yields rather complex sequences
of elementary operations and even requires the addition of
further so-called working (or ancillary) qubits. For example,
the realization proposed in [26] requires n + 1 such working
qubits—resulting in a total number of 2n + 2 qubits for
factoring an n-bit number. Instead, without breaking down
the oracles, no working qubits and, hence, only n+ 1 qubits
are required. Since it makes no difference for the quality
of simulation whether the original functionality of Boolean
components or the decomposed version is considered, com-
bining their operations and additionally realizing them in a
fashion which is suited for DD-based simulation is a promising
strategy. In fact, constructing the DD for this functionality
not through elementary operations but in a direct fashion
allows to significantly reduce the number of matrix-matrix
multiplications but also leads to a less number of qubits to
be considered (yielding exponential improvements). In the
following, this strategy is denoted DD-construct.8

7Note that the inverse QFT can also be conducted on a single qubit by
using intermediate measurements [26], [27].

8Note that a similar scheme called emulation has been conducted in [20]
for simulation approaches not relying on DDs.

V. EXPERIMENTAL RESULTS

The strategies proposed above for exploiting further po-
tential of DD-based simulation of quantum computation has
been implemented on top of the state-of-the-art DD-based
simulator [19]. Afterwards, we compared the respectively
obtained results to those from the original implementation.9
As benchmarks, we used established quantum computations,
i.e. several instances of Shor’s Algorithm [2] (using the
implementation provided by Beauregard [27]) and Grover’s
Algorithm [3], as well as circuits proposed by researchers
from Google to demonstrate quantum supremacy [11].10 In
this section, we summarize the findings of those evaluations.

First, we consider the results obtained by applying the
general strategies as proposed in Section IV-A. Fig. 8 and
Fig. 9 provide the speed-ups obtained when following strategy
k-operations and strategy max-size compared to the original
DD-based simulation, respectively. Here, the x-axis indicates
the respective values chosen for the parameters k and smax
(c.f. Section IV-A), while the y-axis indicates the respectively
obtained speed-up. Colors indicate the respective benchmark
and the line shows the average speed-up obtained for each
value of k/smax.

These results confirm the discussions conducted in Sec-
tion III: Doing simulation using only matrix-vector multi-
plications (i.e. following Eq. 1) does not fully utilize the
possible potential. Instead, combining operations (using the
supposedly more expensive matrix-matrix multiplications) to
a certain extent (i.e. setting k or smax to a value which
allows for a combination of operations) improves the run-
time significantly. The results, however, also confirm that
combining all operations (i.e. completely following Eq. 2) still
is not a suitable option. At some point, the benefits sketched
in Example 3 and Fig. 5 disappear and the DD representing
the resulting matrix gets too large. Overall, speed-ups of up
to a factor of 3 (for k-operations) and 4.5 (for max-size) can
be observed in the best cases.

Moreover, both strategies even allow to simulate bench-
marks (namely some of the shor-benchmarks) which could not
been simulated using the state-of-the-art DD-based simulation
within a time-limit of 2 CPU hours. Since those results
cannot be presented in Fig. 8/Fig. 9 (the speed-up cannot be
determined in case of a time-out), they are separately listed in
the first three columns of Table II (the first column provides
the name of the benchmarks, the second one the “run-time”
of the state-of-the-art approach, and the third one the results
obtained by the best choice of k/smax). As can be seen, just
by utilizing the general strategies presented in Section IV-A,
the run-time for these benchmarks can be reduced from more
than 2 hours to a couple of minutes.

In a second series of experiments, we evaluated the im-
provements gained by utilizing further knowledge as proposed
in Section IV-B. As discussed there, this is applicable for
the grover-benchmarks (in case of strategy DD-repeating) and
the shor-benchmarks (in case of DD-construct). Table I and
Table II list a representative subset of the correspondingly
obtained results (in addition to the first three columns already
described above, the forth column additionally gives the re-
quired run-time when the respective strategy is applied).

9For a comparison of DD-based simulation in general to other simulation
approaches (e.g. [13], [14], [15], [16], [17]), we refer to [19].

10In the following, those benchmarks are denoted by shor, grover, and
supremacy, respectively, followed by a number indicating the number of
qubits in the computation. For Shor’s algorithm, the name also includes the
number N to be factored as well as the number a co-prime to N , since these
numbers significantly affect the simulation time. That is, those benchmarks
have the form shor_N_a_qubits. Similarly, Google’s benchmarks have the
form supremacy_depth_qubits.



Fig. 8: Speed-up for strategy k-operations Fig. 9: Speed-up for strategy max-size
TABLE I: Results for grover-benchm. (strategy DD-repeating)

Benchmark tsota tgeneral tDD−repeating
Grover_23 13.77 4.83 2.78
Grover_25 31.63 11.77 6.23
Grover_27 72.95 26.84 14.25
Grover_29 169.05 67.82 30.87

TABLE II: Results for shor-benchm. (strategy DD-construct)
Benchmark tsota tgeneral tDD−construct
shor_1007_602_23 84.74 19.72 0.12
shor_1851_17_25 94.99 31.08 0.13
shor_2561_2409_27 317.098 74.53 0.23
shor_7361_5878_29 159.48 49.41 0.14
shor_5513_3591_29 >7 200.00 217.20 0.66
shor_8193_1024_31 53.53 20.24 0.04
shor_11623_7531_31 >7 200.00 1423.56 3.05

As can be seen, the strategies discussed in Sec-
tion IV-B yield substantial improvements. In case of the
grover-benchmarks (additionally re-using a DD representing
a combined sequence of operations after the first iteration),
further speed-ups up to a factor of 2 can be achieved. In case of
the shor-benchmarks (additionally utilizing a more suited DD
construction and particularly less qubits to represent), further
speed-ups of several orders of magnitudes can be achieved.
More precisely, this strategy frequently allows to boil down
the run-time from over 2 CPU hours to just very few seconds
or even less.

Overall, for a DD-based simulation approach (which already
has shown its advantages compared to other established sim-
ulators such as [13], [14], [15], [16], [17]) substantial further
potential could be identified and utilized.

VI. CONCLUSION

In this work, we unveiled further potential of DD-based sim-
ulation of quantum computations. More precisely, we utilized
the fact that matrix-matrix multiplication is not necessarily
more expensive than matrix-vector multiplication when using
DDs for their representation (which is contrary to simulation
approaches using array-based representations). Exploiting this
observation allows to develop strategies for combining oper-
ations before applying them to the state vector—leading to
speed-ups of several factors or, when additionally exploiting
further knowledge, even of several orders of magnitude com-
pared to the state of the art. An implementation of the proposed
strategies is publicly available at http://iic.jku.at/eda/research/
quantum_simulation.
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