
IBM’s Qiskit Tool Chain:
Working with and Developing for Real Quantum Computers

(Special Session Summary)

Robert Wille1 Rod Van Meter2 Yehuda Naveh3
1Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria

2Keio University, Japan
3IBM Research – Haifa, Israel

robert.wille@jku.at, rdv@sfc.wide.ad.jp, naveh@il.ibm.com

Abstract—Quantum computers promise substantial speedups
over conventional machines for many practical applications.
While considered “dreams of the future” for a long time, first
quantum computers are available now which can be utilized
by anyone. A leading force within this development is IBM
Research which launched the IBM Q Experience – the first
industrial initiative to build universal quantum computers and
make them accessible to a broad audience through cloud access.
Along this initiative, the tool Qiskit has been launched which
enables researchers, teachers, developers, and general enthusiasts
to write corresponding code and to run experiments on those
machines. At the same time, this provides an ideal playground
for the design automation community which – through Qiskit –
can deploy improved solutions e.g. on designing and realizing
quantum applications. This special session summary aims to
provide an introduction into Qiskit and is showcasing selected
success stories on how to work with and develop for it. In addition
to that, it provides corresponding references to further readings
in terms of tutorials and scientific papers as well as links to
publicly available implementations for Qiskit extensions.

I. INTRODUCTION

Quantum computers [20] promise substantial speedups over
conventional computers for many practical applications such
as quantum chemistry, optimization, machine learning, cryp-
tography, quantum simulation, systems of linear equations, and
many more [24]. While considered “dreams of the future”
which mainly electrified the academic community only, recent
accomplishments leading to the first real quantum computers
which can be utilized by everyone make this topic more and
more relevant for the interested mainstream. A leading force
within this development is IBM Research which launched the
IBM Q Experience in 2017 [1].

This initiative represents the first industrial approach to
build universal quantum computers and make them accessible
to a broad audience through cloud access. While the project
initially started with the 5-qubit quantum processor IBM QX2
in March 2017, today it offers a total of four available
machines, plus additional in development. As of today, IBM Q
machines have been used by more than 100,000 users, who
have run more than 6.5 million experiments, resulting in more
than 100 academic papers. Moreover, a worldwide network
of Fortune 500 companies, academic institutions, and startups
work within this initiative and collaborate to advance quantum

computing. In addition to real-hardware machines, IBM also
provides state-of-the-art simulators for simulating quantum
programs on conventional machines.

In order to write corresponding code and run experiments
on those quantum computers, IBM also launched Qiskit –
an open-source framework aimed for researchers, teachers,
developers, and general enthusiasts. For the design automation
community, this is an ideal playground. In fact, many prob-
lems in the domain of quantum computing can be addressed
perfectly by automated methods and experiences [32]. Unfor-
tunately, there is still far too little coordination between the
design automation community and the quantum community.
Consequently, many automatic approaches proposed in the
past have either addressed the wrong problems or failed to
reach the end users. Qiskit provides an ideal platform to bring
together both communities and to exploit those synergies.

This special summary aims to foster this potential by provid-
ing an introduction into Qiskit as well as showcasing selected
success stories on how to work with and develop for it. The
descriptions shall provide an entry point for the interested but
yet unexperienced reader. In combination with the references
to further readings in terms of tutorials and scientific papers as
well as links to publicly available implementations for Qiskit
extensions, this shall equip the reader to efficiently design and
execute own applications on a real quantum computer. To this
end, we will provide a brief overview of different aspects,
namely

• a short high-level description of Qiskit (covered in Sec-
tion III)

• the user’s perspective on how Qiskit can be utilized to
actually work with quantum computers and simulators
(covered in Section IV), as well as,

• the developer’s perspective on how to develop new meth-
ods for Qiskit, possibly outperforming existing state of
the art solutions by using expertise from design automa-
tion (covered in Section V).

Before that, a basic introduction into quantum computation,
IBM QX, and the corresponding QX architectures are provided
in the next section.



II. BACKGROUND

Before we start diving into Qiskit, this section first provides
a brief review on the basics of quantum computation in general
and the IBM Q project as well as the corresponding QX
architectures in particular. Note that a comprehensive review
of the wide field of quantum computation is out of scope for
this summary paper. Hence, for anyone who wishes to enter
the field, we refer to a more detailed treatment of the basics
as provided e.g. in [20].

A. Quantum Computation

Quantum computation significantly differs from the conven-
tional computation paradigm. Conventional computations and
circuits use bits as information units. In contrast, quantum
circuits perform their computations on qubits [20]. These
qubits can not only be in one of the two basis states |0〉
or |1〉, but also in a superposition of both – allowing for
the representation of all possible 2n basis states of n qubits
concurrently. This so-called quantum parallelism, together
with quantum correlations in the form of entanglement and
quantum interference effects, serve as the basis for algorithms
that are significantly faster on quantum computers than on
conventional machines.

To this end, the qubits of a quantum circuit are manipulated
by quantum operations represented by so-called quantum
gates. These operations can either operate on a single qubit,
or on multiple ones. For multi-qubit gates, we distinguish
target qubits and control qubits. The value of the target
qubits is modified in the case that the control qubits are
set to basis state |1〉. The Clifford+T library [10], which
is composed of the single-qubit gates H (Hadamard gate)
and T (Phase shift by π/4), as well as the two-qubit gate
CNOT (controlled NOT), represents a universal set of quantum
operations (i.e. all quantum computations can be implemented
by a circuit composed of gates from this library).

To describe quantum circuits, high level quantum languages
(e.g. Scaffold [9] or Quipper [13]), quantum assembly lan-
guages (e.g. OpenQASM 2.0 developed by IBM [12]), or
circuit diagrams are employed. In a circuit diagram, qubits
are represented by horizontal lines, which are passed through
quantum gates. In contrast to conventional circuits, this how-
ever does not describe a connection of wires with a physical
gate, but defines (from left to right) in which order the quantum
gates are applied to the qubits.

Example 1. Fig. 1 shows a quantum circuit described in
OpenQASM (a) as well as in terms of a circuit diagram (b).

B. IBM QX and Corresponding QX Architectures

The IBM Quantum Experience (IBM QX, [3]) is a web
portal which allows users to write quantum programs, either
in OpenQASM or through a graphical interface, and run them
on actual IBM Q hardware or on conventional simulators
of the quantum hardware. IBM Q implementation consist of
superconducting transmon qubits [17] on silicon chips. Control
and measurements are conducted through microwave pulses

OPENQASM 2.0;
include "qelib1.inc";
qreg q[4];
h q[2];
cx q[2],q[3];
cx q[0],q[1];
h q[1];
cx q[1],q[2];
t q[0];
cx q[2],q[0];
cx q[0],q[1];

(a) OpenQASM code
|q0〉

|q1〉

|q2〉

|q3〉

H

H

T

(b) Circuit diagram

Fig. 1: Descriptions of a quantum circuit

transfered into and out of dilution refrigirators, in which the
quantum chips are set at an operating temperature of around
15 mK. Communication into, out of, and among the qubits
is done through on-chip resonators. Diagrams of the various
IBM Q quatum chips can be observed in [2].

The IBM QX architectures support the elementary single
qubit operation U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) (i.e. an Euler
decomposition) that is composed by two rotations around the
z-axis and one rotations around the y-axis, as well as the
CNOT operation. By adjusting the parameters θ, φ, and λ,
single-qubit operations can be realized. For specific gates such
as H or T , direct implementations are also available.

The first backend composed of 5 qubits and called IBM QX2
was launched in March 2017. In June 2017, IBM launched
a second one called IBM QX3 which is composed of 16
physical qubits that are connected with coplanar waveguide
bus resonators [4]. In September 2017, IBM launched revised
versions of their 5-qubit and 16-qubit backends named IBM
QX4 and IBM QX5, respectively.

When executing quantum circuits or algorithms (such as
sketched in the previous section) on these architectures, cou-
pling restrictions have to be satisfied. In fact, the user first
has to decompose all non-elementary quantum operations
(e.g. Toffoli gate, SWAP gate, or Fredkin gate) to the elemen-
tary operations U(θ, φ, λ) and CNOT . Moreover, two-qubit
gates, i.e. CNOT gates, cannot arbitrarily be placed in the
architecture but are restricted to prescribed pairs of qubits
only. Even within these pairs, it is firmly defined which qubit
is the target and which is the control. These restrictions are
given by the so-called coupling-map illustrated in Fig. 2, which
sketches the layout of the IBM QX4 architecture. The circles
indicate physical qubits (denoted by Qi) and arrows indicate
the possible CNOT applications, i.e. an arrow pointing from
physical qubit Qi to qubit Qj defines that a CNOT with control
qubit Qi and target qubit Qj can be applied. These restrictions
are called CNOT-constraints and need to be satisfied in order
to execute a quantum circuit on a QX architecture.



Q4 Q0

Q2

Q3 Q1

Fig. 2: Coupling map of the IBM QX4 architectures [4]

III. THE QISKIT TOOLSET

Qiskit is an end-to-end open-source software library for
quantum computing, covering the full stack from the actual
interaction with the IBM Q hardware, through simulation and
emulation, and up to application-level algorithms. The tool
itself is thereby arranged in four libraries named after the four
classical elements terra, aqua, aer, and ignis. In the following,
each library is briefly discussed.

Terra: The Terra library covers all low-level sections of
Qiskit. These include tools for specifying and manipulating
quantum circuits through the OpenQASM language [12], or at
the pulse levels through OpenPulse [19]. It provides transpilers
to make quantum circuits more optimized for running on real
hardware e.g. by minimizing occurrences of CNOT gates. This
way, the user can write a circuit which captures the required
functionality without investing much effort in optimizing for
the specific hardware, and then letting the transpiler find a
more optimized circuit while maintaining the exact functional-
ity prescribed by the user. Terra also includes infrastructure for
specifying and modeling physical noise processes. These are
especially important in order to analyze behavior of a quantum
algorithm when run on a noisy quantum computer, as is the
case with present-day hardware. Finally, Terra provides the
suitable data structures and interfaces to define the various
software constructs relevant to quantum computing, and pass
those constructs among the different Qiskit libraries, and to
the hardware.

Aqua: The Aqua library implements the other edge of the
spectrum – the high-level quantum algorithms for a multitude
of applications. Here, the user is provided with high level
interfaces he or she can use in order to be able to use
quantum hardware and simulators, but without the necessity
to learn the details of how to construct quantum circuits.
Once the user provides the structure and parameters of the
application, the actual quantum circuits are created by Aqua
using the Terra constructs. In addition, conventional flows are
constructed to build and run the quantum circuit, such that each
application is transformed into a conventional-quantum hybrid
algorithm. Those algorithms can then run on a conventional
machine which in turn calls the quantum hardware (or a
conventional simulator of the quantum hardware) in order to
implement the full application. Aqua provides solutions taken
from application domains such as chemistry and finance. Many
of those applications are based on implementations of hybrid
conventional-quantum algorithms from machine learning, op-
timization, and other underlying technologies. Most notably,
the Variational Quantum Eigensolver (VQE) algorithm [15]

is at the basis of many of Aqua’s applications. Tuning this
algorithm (e.g. specifying the optimization procedure to be
used by the algorithm) can be done by the user, or be set as
default by the Aqua application. Hence, Aqua provides the full
range from simple push-button applications, to full tunability
by the user.

Aer: Aer is expected to include a set of simulators and
emulators for running quantum circuits and applications on
conventional machines. This can serve various practices. It will
provide handy educational means to explore and experiment
with quantum circuits and algorithms without the burden of
waiting for the scarcer quantum hardware. It will also allow
the exploration of the behavior of quantum hardware under
controlled conditions e.g. by injecting specific noise processes
into the circuits and observing their effect on the results.
Finally, it will allow fast development of quantum algorithms
by again allowing for a highly-accessible way to run quan-
tum algorithm prototypes on a conventional machine. These
algorithms can be run on “clean” (noiseless) simulators in
order to observe the expected results and enable design-space
exploration. Subsequently, the algorithms can also be run on
noisy simulators in order to analyze to what extent realistic
noise levels deteriorate the results of the algorithms. The Aer
library is not yet released.

Ignis: Finally, the Ignis library will include all constructs
and implementations of methods related to quantum hardware
characterization, verification, mitigation, and correction. These
include methods of rigorously categorizing and analyzing
noise processes in the hardware through randomized bench-
marking, tomography, and multi-faceted comparisons with
simulation. It will also include pulse schemes for mitigation of
systematic gate-implementation errors, as well as a portfolio
of error correcting codes and algorithms. Also the Ignis library
is not yet released.

Taken together, the four Qiskit libraries provide the most
comprehensive back-to-back software solutions for quan-
tum computing, all seamlessly connected and communicating
through the same data structure constructs. The Qiskit software
library is complemented by a thorough tutorial library [8]
covering the full range of tutorials from novice to the ex-
pert, and from quantum theory to low-level notebook-assisted
implementations of special-purpose quantum circuits.

IV. USER’S PERSPECTIVE: WORKING WITH QISKIT

Using Qiskit, anyone can easily define and execute desired
quantum computations, through cloud access, all the way
down to the actual quantum computer. To this end, proper
description means and methods e.g. for simulation or mapping
to corresponding architectures are provided. In the following,
we illustrate that by a quick run-through how to install and
how to make the first steps with the tool. By this, we provide
a brief glimpse into the user’s perspective of Qiskit.



Qiskit can be downloaded through https://qiskit.org/ and
the links to corresponding github-repositories provided there.
After downloading the tool, it can be installed by executing:

$ mkdir qiskit/
$ cd qiskit/
$ python3 -m venv .qiskitvenv
$ source .qiskitvenv/bin/activate
[within .qiskitvenv]$ pip install qiskit

For the hardware backends (i.e. the access to the QX ar-
chitectures), additionally a registration at IBM QX is required
which yields a token to be deposited.1 Afterwards, you can
load the QX architecture you would like to work with by
running a Python script with:

from qiskit import IBMQ
IBMQ.load_accounts()
ibmqx4 = IBMQ.get_backend(’ibmqx4’)

In this example, this loads the QX4 architecture whose corre-
sponding coupling map is shown in Fig. 2.

Having that, any desired quantum circuit to be executed
on this architecture can be defined; either directly in Python
or through one of the available languages such as the
OpenQASM. For example, the quantum circuit depicted in
Fig. 1b can be defined in Python by:

from qiskit import QuantumCircuit, QuantumRegister,
ClassicalRegister

q = QuantumRegister(4, ’q’)
circ = QuantumCircuit(q)
circ.h(q[2])
circ.cx(q[2], q[3])
circ.cx(q[0], q[1])
circ.h(q[1])
circ.cx(q[1], q[2])
circ.t(q[0])
circ.cx(q[2], q[0])
circ.cx(q[0], q[1])

Alternatively, the quantum circuit can be defined in
OpenQASM as shown in Fig. 1a and, afterwards, loaded into
Qiskit using the command load_qasm_file.

Then, as reviewed in Section II-B, every circuit has to
be properly mapped for the respective architecture, i.e. the
coupling restrictions sketched by the coupling map shown
in Fig. 2 have to be satisfied. Qiskit offers corresponding
methods for this compiling process (in the community, this
is also often referred to as mapping process). More precisely,
the circuit considered here can be made compatible for the
QX4 architecture using:

from qiskit import compile, qobj_to_circuits
qobj = compile(circ, ibmqx4)
compiled_circ = qobj_to_circuits(qobj)[0]

The resulting circuit eventually can be executed on a real
quantum computer. To this end, however, some measurements
should be defined to make clear what outputs are of interest. If
we are interested in the result of all qubits after the execution,
this can be set up by:

1Details on this are provided at https://qiskit.org/documentation/install.html.

from qiskit import execute, Aer
c = ClassicalRegister(5, ’c’)
measurement = QuantumCircuit(q, c)
measurement.measure(q, c)
measured_circ = circ + measurement

This can then be simulated e.g. by executing:

from qiskit.tools.visualization
import plot_histogram

job = execute(measured_circ,
backend=Aer.get_backend(’qasm_simulator’))

result = job.result()
plot_histogram(job.result().get_counts())

If the simulation shows the intended result (visualized by a
plot generated by the last line), an execution on a real quan-
tum device can be triggered by changing the backend from
“qasm_simulator” to the previously loaded backend “ibmqx4”
in the execute-command. In contrast to the simulation, this
eventually yields results that have indeed be generated by a
real quantum computer.

The run-through from above of course only provided a
glimpse of Qiskit’s functionality. However, Qiskit provides an
extensive documentation which can be found at https://qiskit.
org/documentation/ and provides a more detailed treatment.
Furthermore, several tutorials (in terms of Jupyter Notebooks)
are available at [8]. Using them provides an easy entry point
to working with real quantum computers.

V. DEVELOPER’S PERSPECTIVE: IMPROVING QISKIT

Although Qiskit is a powerful tool, it still offers much room
for improvement. In fact, many problems to be addressed
by Qiskit are solved in a rather straight-forward fashion
and provide potential for enhancement. In this section, we
exemplify that by the two representative functions introduced
previously in Section IV: simulation and compilation (called
mapping in the following). More precisely, we sketch how
simulation can be improved by utilizing a dedicated data-
structure (in terms of decision diagrams) and how the mapping
procedure can be improved by utilizing different heuristics.
Afterwards, we briefly discuss how improvements like this
can be incorporated into Qiskit. By this, we provide a brief
glimpse into the developer’s perspective of Qiskit.

A. Improving Simulation

Simulation takes a given quantum state (usually denoted
by |ψ〉) and determines its transformation when a sequence
of quantum operations is applied to it. This requires a proper
mathematical description of both quantum states and quantum
operations.

Usually, the state of a single qubit is described by
|ψ〉 = α0 · |0〉+ α1 · |1〉, where α0, α1 ∈ C denote the am-
plitudes which indicate how much the qubit is related to the
basis states |0〉 and |1〉, respectively.2 If a quantum system is

2Note that the amplitudes of a quantum state |ψ〉 must satisfy the normal-
ization constraint |α0|2 + |α1|2 = 1.



composed of multiple, i.e. n > 1, qubits, the description can
accordingly be extended to

|ψ〉 =
∑

x∈{0,1}n
αx·|x〉 , where

∑
x∈{0,1}n

|αx|2 = 1 and αx ∈ C.

Such states can be also represented by a column vector
ψ = [ψi] with 0 ≤ i < 2n and ψi = αx, where nat(x) = i.

In turn, quantum operations are described by unitary ma-
trices, i.e. complex square matrices whose inverse is their
conjugate transposed. Prominent examples (working on single
qubits) include e.g.

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, and Z =

[
1 0
0 −1

]
,

where X complements the current state of the qubit, H adjusts
the state of superposition of the qubit, and Z changes the phase
of the qubit. Besides that, an operation involving two qubits
is e.g. defined by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
and performs a so-called controlled inversion.

Having both, a description of a quantum state and a quantum
operation in terms of a state vector and a unitary matrix,
respectively, the transformation executed by that can easily be
described through matrix-vector multiplication. For example,
applying a CNOT operation to a two qubits system which
currently is in state |ψ〉 = |11〉 yields a successor state defined
by 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

·


0
0
0
1


︸︷︷︸
ψ

=


0
0
1
0

 ≡ |10〉 .

Accordingly, simulating a quantum circuit conceptually boils
down to a sequence of matrix-vector multiplications using a
given input quantum state as well as the matrices provided by
the operations defined in the circuit.

However, a serious obstacle in the simulation of quantum
circuits is that the corresponding descriptions (the vectors
and matrices) grow exponentially with respect to the number
of qubits. This poses a limit to simulation techniques –
including the one used in Qiskit. In order to address that,
many researchers are investigating alternative approaches in
order to optimize simulation. The spectrum includes solutions
utilizing parallelization (as done e.g. in [16], [29]), emulation
(as done e.g. in [14], [30]), or decision diagrams [31], [40].

In the following, we briefly review the approach based on
decision diagrams (as this has also been integrated into Qiskit).
Using decision diagrams allows for a much more compact rep-
resentation of the exponentially large matrices and vectors and
already led to substantial improvements e.g. for synthesis [21],
[23], [41] or verification [22], [33]. The main idea is briefly

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 0 1
2

0 1
2

0 i
2

0 −i
2

001 1
2

0 1
2

0 −i
2

0 i
2

0

010 1
2

0 −1
2

0 −i
2

0 −i
2

0

011 0 −1
2

0 1
2

0 −i
2

0 −i
2

100 0 −i
2

0 −i
2

0 −1
2

0 1
2

101 −i
2

0 −i
2

0 1
2

0 −1
2

0

110 −i
2

0 i
2

0 1
2

0 1
2

0

111 0 i
2

0 −i
2

0 1
2

0 1
2

(a) Matrix

x0

x1 x1

x2 x2 x2 x2

1

1
2

i−i
−1

−1 −1−1

0 0 0 0
−1

0
−1

0 0 0

(b) Decision diagram

Fig. 3: Matrix and decision diagram of a 3-qubit computation

sketched by means of Fig. 3 which shows the matrix and a
functionally equivalent decision diagram comprised of a 3-
qubit quantum operation. Here, the 2n×2n matrix (represented
by the top node) is split into four sub-matrices of dimension
2n−1×2n−1 (represented by the top node’s successors). Doing
this recursively eventually yields a “sub-matrix” which is
composed of a single entry only. When additionally sharing
(structurally) equivalent sub-matrices by the same node (as it
is e.g. the case for the top-left and bottom-left sub-matrix in
Fig. 3a which only differ by the factor −i), a representation
may result which is much more compact than the exponentially
large matrix representation. The difference in the factor is
represented by corresponding edge weights (−i in case of the
third successor; if no edge weight is annotated, the factor of 1
is assumed).

Overall, this allows for a much faster simulation of quantum
computations as described and evaluated in detail in [40]. On
top of that, further optimizations are possible with respect to
the precision of the simulation (c.f. [38]) or the run-time per-
formance (c.f. [43]). As briefly sketched later in Section V-C,
such improvements can be (and have been) integrated into
Qiskit.3

B. Improving the Mapping to QX Architectures

Besides simulation, mapping a given quantum circuit to
the desired QX architecture constitutes another important step
of the Qiskit tool-chain (see the compilation step discussed
in Section IV). Recall that, here, it has to be ensured that
every two-qubit operations is performed on qubits which are
adjacent in the coupling map of the considered architecture
and that the respective positions of control and target qubits
are in-line (as defined e.g. in the coupling map illustrated
in Fig. 2 and discussed in Section II-B). This may require
the mapping of qubits to change during the execution of a
quantum circuit. To this end, Hadamard (H) and SWAP gates
(implemented as three alternating CNOT gates) can be applied

3More details on that, including an open-source implementation is available
at http://iic.jku.at/eda/research/quantum_simulation/.



|q0〉 → Q0

|q1〉 → Q1

|q2〉 → Q2

|q3〉 → Q3

Q4

H

H

H H

H

H

T

H

H H

H

(a) Mapped circuit obtained by Qiskit
|q3〉 → Q0

Q1

|q2〉 → Q2

|q0〉 → Q3

|q1〉 → Q4

H

H

T

H

H

H

H

(b) Optimized circuit

Fig. 4: Mapping to QX4 architectures

to flip the direction of control and target qubits and to change
the mapping of the logical qubits, respectively.

For example, consider again the quantum circuit shown in
Fig. 1. Just mapping all qubits qi to corresponding physical
qubits Qi (i.e. conducting a 1:1 mapping) does not work since
the QX4 architecture prohibits e.g. the interaction between q2
as a control and q3 as a target in the second gate (only the
opposite is allowed) or between q0 as a control and q1 as
a target in the third gate. This can be resolved by adding
additional H gates as shown in Fig. 4a. This circuit results
when applying the command compile in the corresponding
compilation step discussed before in Section IV.

However, inserting the additional gates to satisfy the con-
straints imposed by the coupling graph may drastically in-
creases the number of gates – which in turn significantly
increase the probability of errors during the computation.
Hence, minimizing the number of added H and SWAP gates is
a primary objective (this is similar to optimizations for nearest
neighbor quantum architectures as considered e.g. in [25]–
[27], [34]–[37]). Unfortunately, this is an NP-hard problem
(as recently proved in [11]) and, hence, requires efficient
methods. Triggered by call for solutions from the Qiskit team,
many researchers were motivated to work on improvements.
In very short time, this already led to approaches such as
presented in [7], [18], [28], [39], [42]. Moreover, even com-
petitions seeking the best possible solution for this problem
have been conducted in order to further trigger development
in this area (see [6]). They have yielded results as e.g. shown
in Fig. 4b, which introduced improved mapping, together with
the application of H gates only before and after the seventh
gate is applied.4 This eventually led to a more efficient overall
map of the given input circuit to the QX4 architecture.

4An implementation of the method generating this result is available at
http://iic.jku.at/eda/research/ibm_qx_mapping/.

C. Integrating into Qiskit

Qiskit is a Github-based open source software project. This
makes contributing advanced algorithms and methods partic-
ularly easy. The regular structure for contributions typically
involves creating your own fork of the Qiskit repository,
implementing and testing your contributions, and then creating
a pull request with the contribution back into Qiskit. This pull
request will typically include a description of the contribution
and its benefits and drawbacks. In many cases, discussions
with the community is a highly effective method to improve
your algorithm and make it fit in the general Qiskit framework.
Such discussions are most easily evoked by openning an issue
in the Qiskit Github space before or during development of
the new feature.

Once implementation is done and a pull request was cre-
ated, the Qiskit community will proceed to review, test, and
further analyze your contribution. This process may result in
interesting technical discussions which again may evoke ways
of making your contribution even more powerful. Eventually,
after all discussions have concluded and the code is at its best,
it may be pulled into Qiskit and become an itegral part of it.

For more holistic contributions, for example a full software
tool such as a new simulator, the Qiskit team has created
another way of contributing. Here, the aim is to provide wide
access to the tool through the Qiskit package, while retaining
the tool’s holistic functionality. In order to do that, the tool
must first conform to the look and feel of the Qiskit code, and
especially support the same interfaces as Qiskit. This allows
the wide community using Qiskit to also use the new tool
out of the box, minimizing any educational pain in using
it. Once this stage is done, a new repository can be created
under the general Qiskit repository. Then, the entire code of
the new tool can be deposited in this repository. This way,
the tool’s functionality is retained in whole, while benefiting
from the wide dissemination and simplicity of use brought by
Qiskit. A prime example of such a full-scale contribution to
Qiskit is the decision-diagram based simulator described in
Section V-A [5].

Whether a simple improvement or a full-fledged tool, any
contribution into Qiskit reaches a vast community of enthusi-
asts in the field. There is no better way for this contribution to
create the impact it is intended for on the future of quantum
computing.

VI. CONCLUSIONS

This special session summary provided a brief glimpse into
IBM’s Qiskit which allows researchers, teachers, developers,
and general enthusiasts to write code for and to run experi-
ments on real quantum computers. We covered both the user’s
perspective as well as the developer’s perspective. We hope
this triggered further interest. In this case, we are referring
to further tutorials and references as cited above for a more
detailed treatment on the respective issues, as well as to
personal interaction with the Qiskit team.



VII. ACKNOWLEDGMENTS

We thank the full team of Qiskit developers for enabling
this special session summary. We also thank Stefan Hillmich,
Alexandru Paler, and Alwin Zulehner for their specific contri-
butions to the work presented here. We acknowledge the use
of IBM Q for this work. The views expressed are those of the
authors and do not reflect the official policy or position of IBM
or the IBM Q team. This work has partially been supported
by the European Union through the COST Action IC1405 and
the Google Research Award Program.

REFERENCES

[1] IBM Q. https://www.research.ibm.com/ibm-q/.
[2] IBM Q Devices. https://www.research.ibm.com/ibm-q/technology/

devices.
[3] IBM Quantum Experience. https://quantumexperience.ng.bluemix.net/

qx/editor.
[4] IBM QX backend information. https://github.com/QISKit/

ibmqx-backend-information.
[5] JKU Qiskit Addon Simulator. https://github.com/Qiskit/

qiskit-jku-provider.
[6] QISKit Developer Challenge. https://qx-awards.mybluemix.net/

#qiskitDeveloperChallengeAward.
[7] QISKIT SDK. https://qiskit.org/.
[8] Qiskit Tutorials. https://nbviewer.jupyter.org/github/Qiskit/

qiskit-tutorial/blob/master/index.ipynb.
[9] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati,

C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong. Scaffold: Quantum
programming language. Technical report, 2012.

[10] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits. IEEE
Trans. on CAD of Integrated Circuits and Systems, 32(6):818–830, 2013.

[11] A. Botea, A. Kishimoto, and R. Marinescu. On the complexity of
quantum circuit compilation. In Symposium on Combinatorial Search,
2018.

[12] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[13] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron.
Quipper: a scalable quantum programming language. In Conf. on
Programming Language Design and Implementation, pages 333–342,
2013.

[14] T. Häner, D. S. Steiger, M. Smelyanskiy, and M. Troyer. High
performance emulation of quantum circuits. In Int’l Conf. for High
Performance Computing, Networking, Storage and Analysis, page 74,
2016.

[15] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,
and J. M. Gambetta. Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets. Nature, 549(7671):242,
2017.

[16] N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels. QX:
A high-performance quantum computer simulation platform. In Design,
Automation and Test in Europe, 2017.

[17] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-
insensitive qubit design derived from the cooper pair box. Physical
Review A, 76(4):042319, 2007.

[18] G. Li, Y. Ding, and Y. Xie. Tackling the qubit mapping problem for
NISQ-era quantum devices. arXiv preprint arXiv:1809.02573, 2018.

[19] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop,
J. Chen, J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp, et al. Qiskit
backend specifications for OpenQASM and OpenPulse experiments.
arXiv preprint arXiv:1809.03452, 2018.

[20] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[21] P. Niemann, R. Wille, and R. Drechsler. Efficient synthesis of quantum
circuits implementing Clifford group operations. In Asia and South
Pacific Design Automation Conf., pages 483–488, 2014.

[22] P. Niemann, R. Wille, and R. Drechsler. Equivalence checking in multi-
level quantum systems. In Int’l Conf. of Reversible Computation, pages
201–215, 2014.

[23] P. Niemann, R. Wille, and R. Drechsler. Improved synthesis of Clif-
ford+T quantum functionality. Design, Automation and Test in Europe,
2018.

[24] J. Preskill. Quantum computing in the NISQ era and beyond. arXiv
preprint arXiv:1801.00862, 2018.

[25] M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum circuits for
linear nearest neighbor architectures. Quantum Information Processing,
10(3):355–377, 2011.

[26] A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quantum circuits
for interaction distance in linear nearest neighbor architectures. In
Design Automation Conf., pages 41–46, 2013.

[27] A. Shafaei, M. Saeedi, and M. Pedram. Qubit placement to minimize
communication overhead in 2D quantum architectures. In Asia and
South Pacific Design Automation Conf., pages 495–500, 2014.

[28] M. Siraichi, V. F. Dos Santos, S. Collange, and F. M. Q. Pereira.
Qubit allocation. In International Symposium on Code Generation and
Optimization, pages 1–12, 2018.

[29] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik. qHiPSTER:
The quantum high performance software testing environment. CoRR,
abs/1601.07195, 2016.

[30] D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an open
source software framework for quantum computing. arXiv preprint
arXiv:1612.08091, 2018.

[31] G. F. Viamontes, I. L. Markov, and J. P. Hayes. High-performance
QuIDD-based simulation of quantum circuits. In Design, Automation
and Test in Europe, page 21354. IEEE Computer Society, 2004.

[32] R. Wille, A. Fowler, and Y. Naveh. Computer-aided design for quantum
computation. In Int’l Conf. on CAD, 2018.

[33] R. Wille, D. Große, D. M. Miller, and R. Drechsler. Equivalence
checking of reversible circuits. In Int’l Symp. on Multi-Valued Logic,
pages 324–330, 2009.

[34] R. Wille, O. Keszöcze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler. Look-ahead schemes for nearest neighbor optimization
of 1D and 2D quantum circuits. In Asia and South Pacific Design
Automation Conf., pages 292–297, 2016.

[35] R. Wille, A. Lye, and R. Drechsler. Exact reordering of circuit lines
for nearest neighbor quantum architectures. IEEE Trans. on CAD of
Integrated Circuits and Systems, 33(12):1818–1831, 2014.

[36] R. Wille, N. Quetschlich, Y. Inoue, N. Yasuda, and S. Minato. Using
πDDs for nearest neighbor optimization of quantum circuits. In Int’l
Conf. of Reversible Computation, pages 181–196, 2016.

[37] A. Zulehner, S. Gasser, and R. Wille. Exact global reordering for nearest
neighbor quantum circuits using A∗. In International Conference on
Reversible Computation, pages 185–201. Springer, 2017.

[38] A. Zulehner, P. Niemann, R. Drechsler, and R. Wille. Accuracy and
compactness in decision diagrams for quantum computation. In Design,
Automation and Test in Europe, 2019.

[39] A. Zulehner, A. Paler, and R. Wille. An efficient methodology for
mapping quantum circuits to the IBM QX architectures. IEEE Trans.
on CAD of Integrated Circuits and Systems, 2018.

[40] A. Zulehner and R. Wille. Advanced simulation of quantum computa-
tions. IEEE Trans. on CAD of Integrated Circuits and Systems, 2018.

[41] A. Zulehner and R. Wille. One-pass design of reversible circuits:
Combining embedding and synthesis for reversible logic. IEEE Trans.
on CAD of Integrated Circuits and Systems, 37(5):996–1008, 2018.

[42] A. Zulehner and R. Wille. Compiling SU(4) quantum circuits to IBM
QX architectures. In Asia and South Pacific Design Automation Conf.,
2019.

[43] A. Zulehner and R. Wille. Matrix-vector vs. matrix-matrix multiplica-
tion: Potential in DD-based simulation of quantum computations. In
Design, Automation and Test in Europe, 2019.


