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Abstract—Quantum computing promises substantial speedups
by exploiting quantum mechanical phenomena such as superpo-
sition and entanglement. Corresponding design methods require
efficient means of representation and manipulation of quantum
functionality. In the classical domain, decision diagrams have
been successfully employed as a powerful alternative to straight-
forward means such as truth tables. This motivated extensive
research on whether decision diagrams provide similar potential
in the quantum domain—resulting in new types of decision
diagrams capable of substantially reducing the complexity of
representing quantum states and functionality. From an imple-
mentation perspective, many concepts and techniques from the
classical domain can be re-used in order to implement deci-
sion diagrams packages for the quantum realm. However, new
problems—namely how to efficiently handle complex numbers—
arise. In this work, we propose a solution to overcome these
problems. Experimental evaluations confirm that this yields
improvements of orders of magnitude in the runtime needed
to create and to utilize these decision diagrams. The resulting
implementation is publicly available as a quantum DD package
at http://iic.jku.at/eda/research/quantum dd.

I. INTRODUCTION

Quantum computing [1] promises significant speedups for
certain problems, e.g., integer factorization [2], database
search [3], and quantum chemistry [4]. Unlike bits in a
classical computer, which can only assume one of the two
basis states 0 and 1, qubits in a quantum computer can be in an
(almost) arbitrary superposition of both. Superposition in com-
bination with other quantum phenomena such as entanglement
and phase shifts allows for an exponential speedup compared
to classical computers in the best case. Not surprisingly, this
triggered a huge interest in the utilization of quantum devices
which, recently, led to first realizations provided by large
commercial players such as IBM and Google.

These developments are currently progressing to a point
where straightforward automated approaches for, e.g., syn-
thesis, simulation, or verification, become indispensable since
corresponding quantum states as well as quantum operations
are mathematically described through state vectors and unitary
matrices which grow exponentially in size with respect to the
number of involved qubits.

In the classical domain, the design automation commu-
nity successfully addressed such challenges by introducing
decision diagrams which, in many cases, allow for a com-
pact representation of functionality. Impressive accomplish-
ments in the ’90s, e.g., with Binary Decision Diagrams
(BDDs, [5]), Binary Moment Diagrams (BMDs, [6]), or
Zero-suppressed Decision Diagrams (ZDDs, [7]), are exam-

ples of the potential of those representations. Corresponding
implementations (usually denoted DD packages) as provided
by Fabio Somenzi’s CUDD package [8], the Word-level-DD
package [9], or Donald Knuth’s BDD package [10] affect
the development of design tools and methods until today.
Motivated by that, in the past years, researchers spent con-
siderable efforts in the investigation of whether decision
diagrams can also be utilized in the quantum computing
realm. This led to several theoretical and mathematical con-
cepts of decision diagrams such as X-decomposition Quan-
tum Decision Diagrams (XQDDs, [11]), Quantum Decision
Diagrams (QDDs, [12]), Quantum Information Decision Dia-
grams (QuIDDs, [13]), or Quantum Multiple-valued Decision
Diagrams (QMDDs, [14], [15])—leading to more efficient
methods for the design tasks outlined above, i.e., synthe-
sis [16]–[18], simulation [19]–[21], or verification [11], [22],
[23].

However, besides the mathematical concepts, efficient im-
plementations of the corresponding decision diagrams for
quantum computing are needed in order to eventually utilize
them for design automation at large scale—an issue that
has not explicitly been addressed thus far. Key concepts
required for implementing DD packages—such as unique
tables, garbage collection with reference counts, or compute
tables—are already known from the classical domain (which,
also in the ’90s, have explicitly been investigated, e.g., in [24]–
[26]). While these implementation techniques can be directly
incorporated into decision diagrams addressing quantum com-
puting, the quantum realm additionally requires an efficient
handling of complex numbers. These complex numbers intro-
duce several new problems such as how to keep numerical
stability, how to efficiently store nodes in unique tables, as
well as how to store reoccurring operations in compute tables.
None of these issues have explicitly been considered thus far.

In this work, we provide details on how to efficiently
implement a DD package for quantum computing addressing
these problems. Established concepts known from decision
diagrams in the classical domain are re-used where applicable,
while new implementation techniques for handling complex
values efficiently are described in detail. Experimental results
confirm that these efficient implementation techniques yield
improvements of orders of magnitude with respect to runtime
compared to the best known implementations available today.
An implementation of the resulting DD package is publicly
available at http://iic.jku.at/eda/research/quantum dd.



The remainder of this paper is structured as follows: Sec-
tion II briefly reviews the basics of quantum computing and
applicable decision diagrams. In Section III, we recapitulate
implementation techniques used for classical DD packages
before discussing problems related to the extension of them
into the quantum domain. Based on that, Section IV describes
in detail how the corresponding problems can efficiently
be handled—yielding an efficient implementation of a DD
package for quantum computing. Eventually, the contributions
of this work have been incorporated into an implementation
of a DD package for quantum computing whose performance
is evaluated and compared to the state of the art in Section V.
Finally, the paper is concluded in Section VI.

II. BACKGROUND

In this section, we review the basics of quantum computing
and decision diagrams for representing quantum functionality.

A. Quantum Computing

Computations in the quantum realm use qubits, which can
assume more states than the basis states (here, written as |0〉
and |1〉 using Dirac-notation) used in classical computations.
A quantum state |ψ〉 is given by α · |0〉 + β · |1〉 with
complex-valued amplitudes α, β. Following this description,
|α|2 and |β|2 are the probabilities to measure the base state
|0〉 or |1〉, respectively, and, therefore, their sum |α|2 + |β|2
has to be equal to 1.

Manipulation of a quantum state is achieved by a sequence
of “simple” quantum operations (also denoted quantum gates)
that are described by unitary matrices acting on one or
more qubits each. Such sequences of quantum operations are
represented by circuit diagrams that indicate (from left to right)
which operations are applied to which qubits.

Example 1. Common operations performed on single qubits
are the NOT operation X, the Hadamard operation H to set a
qubit into superposition, and the phase shift operation T. The
corresponding unitary matrices are defined as

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, and T =

[
1 0

0 e
iπ
4

]
.

In addition to the single qubit operations, there are also
controlled operations such as the controlled NOT (CNOT)
operation shown in the right-hand side of the quantum circuits
depicted in Figure 1a (next to the Hadamard operation). Here,
the qubit q1 will only be negated iff q0 is in the |1〉 state. Due
to the superposition introduced by the Hadamard operation,
both qubits become entangled, i.e., a measurement of one qubit
affects the quantum state of the other qubit as well.

The overall functionality of a quantum circuit is determined
by successively multiplying all gate matrices of the circuit.
Hence, all gate matrices must have a dimension of 2n × 2n

(assuming an n-qubit system). If a gate matrix operates on
a subset of the qubits only, the 2 × 2 identity matrix I2 is
assumed for the other qubits. Forming the Kronecker product
of these matrices results again in a matrix of size 2n × 2n

(assuming an n-qubit quantum system).

|q0〉

|q1〉

H

(a) Circuit with H and CNOT gate

|q0〉

|q1〉

H

(b) Single Hadamard operation

Fig. 1: Quantum circuits

B. Decision Diagrams for Quantum Computing

Since the unitary matrices representing quantum function-
ality grow exponentially with respect to the number of qubits,
i.e., the size of the quantum system, representations based on
two-dimensional arrays quickly become infeasible. However,
the structure of many explicitly used matrix instances offers
the potential to exploit redundancies and, by this, allow for a
drastically more compact representation (while still preserving
an efficient manipulation). As in the classical realm, this is
exploited by decision diagrams such as [11]–[15]. These deci-
sion diagrams represent the matrix as a directed acyclic graph,
where identical sub-matrices are combined in a shared graph
structure. Further potential for redundancies can be achieved
by sharing (sub-)graphs which are structurally equivalent and
only differ by a common factor (to be annotated as a weight
to the corresponding edges). The following example illustrate
the main ideas:

Example 2. Figure 2 shows different representations of the
quantum functionality shown in Figure 1b, i.e., described
by the Kronecker-product H ⊗ I2. In Figure 2a, the corre-
sponding unitary matrix is shown, while Figure 2b shows
a corresponding decision diagram structure. In this graph,
the root node labeled q0 represents the whole matrix, while
the four outgoing edges point to nodes that represent the
top-left, top-right, bottom-left, and bottom-right sub-matrices
(from left to right, hinted in the matrix by dashed lines). These
2 × 2 sub-matrices (representing functionality with respect
to q1 only and, hence, represented by nodes labeled q1) are
further decomposed—yielding single complex values (or 1×1
sub-matrices) represented by terminal nodes. As shown in
Figure 2a, the top-left, top-right, and bottom-left sub-matrices
are identical and, therefore, are represented by the same node
in Figure 2b (the leftmost node labeled q1).

Furthermore, the bottom-right sub-matrix is structurally
equivalent to the other sub-matrices and only differs by a com-
mon factor, namely −1. Hence, the matrix can be represented
even more compactly as shown in Figure 2c. Here, additional
edge weights are employed while the eventual matrix entry is
determined by multiplying all edge weights from the root node
to the terminal.1 This does not only allow to share the node
representing the bottom-right sub-matrix, but also to boil down
the number of required terminals to one (the actual complex
values are now determined as product of the edge weights). As
an example, the matrix element highlighted bold in Figure 2a
is determined by multiplying all weight on the bolded path in
Figure 2c. Eventually, this yields a substantially more compact
representation as originally given by the matrix.

1For the sake of readability, edge weights 1 are omitted and weights 0 are
depicted as stubs.
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Fig. 2: Representations for U = H ⊗ I2.

The compaction can be further improved by normalizing
the nodes of the decision diagram (such as described in [27]).
This is commonly achieved by using the leftmost non-zero
weight of the outgoing edges as a normalization factor. All
outgoing edges of the corresponding node are then divided by
this factor, which is propagated towards the incoming edges to
ensure products on all paths do not change. This normalization
scheme further provides a canonical, i.e., unique, representa-
tion of unitary matrices (as proven in [15]).

III. IMPLEMENTING
DECISION DIAGRAMS FOR QUANTUM COMPUTING

In this section, we discuss how to implement DD packages
for the quantum domain in an efficient fashion. To this end,
we utilize concepts such as unique tables, dedicated garbage
collection, or compute tables which are already taken for
granted in DD packages for the classical domain [8]–[10].
In addition to that, we show that just adopting those concepts
is not sufficient for a highly efficient quantum DD package
and additional implementation techniques are required which
allow for efficiently handling complex numbers and sub-
factors thereof (essential for the edge weights discussed in
the previous section).

A. Established Implementation Techniques
The key concepts required for implementing DD packages

for the classical domain in an efficient fashion have been in-
troduced in the ’90s [24]–[26] and leveraged the development
of efficient packages such as [8]–[10] (which served as basis
for efficient methods for verification or synthesis). Many of
these concepts can be directly re-used decision diagrams in
the quantum domain, namely:
• Unique tables which store the nodes of the decision dia-

gram and allow to efficiently detect redundancies in the
structure. The unique table is realized as two-dimensional
hash table (one for each variable in the decision diagram),
where each bucket of the table contains a linked list
of DD nodes with an equal associated hash value for
each variable. Before any new DD node is inserted, it is
checked whether the node already exists in the unique
table.2 A DD node is returned by means of a pointer to
the respectively allocated memory to allow dereferencing
in constant time. Hence, it can be denoted as strong
canonical form [25], i.e., a unique representation.

2The hash function should distribute the nodes equally to the buckets to
reduce the number of collisions at lookup.

• Dedicated garbage collection which frequently removes
unused DD nodes from the unique table and, by this,
allows for a fast insertion of new nodes as well as for
keeping the memory usage low. Here, reference counting
is used to keep track which node shall be kept in the
unique table. In order to avoid recurring memory allo-
cations and deallocations, free DD nodes (i.e., allocated
nodes that are currently not stored in the unique table)
are stored in a list and corresponding memory is allocated
en block.3 Nodes that are removed from the unique table
are appended to this list. To reduce the overhead caused
by the lists (the list of free nodes as well as the lists in
the buckets of the unique table), DD nodes themselves
contain a pointer to the next element in the list.

• Compute tables which cache the results of operations that
are repeatedly conducted on the same DD nodes. Since
decision diagrams exploit redundancies by using shared
nodes, this proves very beneficial as many operations
are frequently repeated and, hence, do not have to be
recomputed. Compute tables are realized as hash tables,
where the DD nodes denoting the operands (and possibly
the type of operation) are used to determine the hash
key [25]. The entries in the hash table might contain a
single result that may be overwritten, or linked lists to
store all computations with the same hash key to increase
the hit rate (e.g., with an LRU strategy as proposed
in [26]). Note that the compute tables have to be (par-
tially) invalidated/cleared after garbage collection, since
operands (referenced by a pointer) may be overwritten
after the respective nodes have been removed from the
unique table.

In fact, all these concepts can be (and have been) directly
incorporated into implementations of decision diagrams for
quantum computing reviewed in Section II-B. However, DD
packages for quantum computing additionally have to handle
the frequently occurring complex numbers. This constitutes
the major obstacle towards an efficient implementation of
a fully-fletched DD package for the quantum domain as
discussed in the next section.

B. Handling Complex Numbers

As discussed in Section II, weights that are attached to
DD nodes offer the possibility for further compaction. In the
classical domain, having such edge weights does not constitute
an issue from the implementation perspective, since they are
(tuples of) integers [5]–[10]—again, a strong canonical form
(a unique representation). This allows to use the efficient
concepts outlined above, since computing unambiguous hash
keys for DD nodes (containing weights attached to outgoing
edges) is still possible.

In the quantum domain, however, weights are formed out
of complex numbers. From a mathematical perspective, this
does not causes problems since complex numbers also pro-
vide a strong canonical form. However, it introduces severe

3Whenever the list is empty, we allocate enough memory to instantiate
several new DD nodes.



challenges from an implementation perspective where ma-
chine accuracy is limited and, hence, complex numbers are
approximated—yielding to numerical errors in computations.
In fact, changing one complex number attached as weight
to an outgoing edge by a tiny fraction (e.g., by flipping the
least significant bit of the mantissa of the real or imaginary
part) may yield a completely differently computed hash key.
Accordingly, redundancies might remain undetected by the
DD package since the node is searched in the wrong bucket
of the unique table—causing a substantially larger decision
diagrams even though redundancies are actually present. Ad-
ditionally considering that weights represent sub-factors of
complex numbers further increase the possibilities of corre-
sponding numerical instabilities.4

To overcome this issue, one can represent complex num-
bers as two quadratic irrational numbers of the form
a+b
√
2

c with a, b, c ∈ Z for the real and imaginary part [29],
[30]—severely limiting the number of possible complex num-
bers and, thus, not allowing for representing arbitrary quantum
functionality. Alternatively, one can use an additional table
to store complex numbers, where an edge weight is then
represented by an index of this table holding the corresponding
number [30], [31]. The table is then maintained in a fashion
that numbers that do not differ by more than a tolerance value ε
share an entry in this table.5

However, while using a lookup table for complex numbers
indeed allows for representing arbitrary quantum functional-
ity, it introduces several new problems when aiming for an
efficient implementation. Thus, rather straightforward imple-
mentations of the respective DD concepts are available only.
In the remainder of this paper, we identify arising difficulties
and propose new implementation techniques which, for the
first time, explicitly allow for implementing complex-valued
edge weights in an efficient fashion.

IV. EFFICIENT HANDLING OF COMPLEX EDGE WEIGHTS

As discussed above, handling complex-valued edge weights
(and complex numbers in general) in an efficient fashion is a
key to a fully-fletched DD package for quantum computing.
To this end, we propose such techniques in this section—
covering arising issues like numerical instabilities caused by
ε, how to realize an efficient lookup of complex numbers that
considers ε (thus, providing a strong canonical form), as well
as how operations on DDs can be handled efficiently.

A. Obtaining Numerical Stability

Design tasks for quantum computing (like synthesis, ver-
ification, or simulation) heavily rely on multiplying unitary
matrices either with each other or with vectors. From a
numerical perspective, these operations are not critical, since
the multiplication with a unitary matrix is a well conditioned
operation—even when the individual entries of the matrix
are determined as product of several factors (as done in an
edge-valued decision diagram). However, this changes when

4A more detailed discussion of this issue is provided in [28].
5Note that, in [30], this ε is a relative tolerance value, while it is absolute

in [31].

introducing the tolerance value ε as discussed above to detect
redundancies. More precisely, some factors of an entry in the
unitary matrix might be significantly rounded.

This problem becomes evident when using a normalization
scheme (to gain canonicity of DD nodes) as described in [32].
Here, all weights of outgoing edges are simply divided by
the leftmost non-zero outgoing edge weight while propagating
this extracted factor to the parent nodes (cf. Section II)—edge
weights in the decision diagrams are likely to become either
rather large or rather small. If the real and the imaginary part
of an edge weight are now close to 0 (in the interval [−ε, ε]),
the weight is rounded to 0. By this, a sub-tree of the decision
diagram is possibly pruned by setting several entries in the
matrix to zero—ending up with a huge round-off error and
numerical instabilities.

A much better numerical stability is reached by changing
the utilized normalization scheme. We propose to divide all
weights of the outgoing edges of a DD node by the weight
with the largest absolute value. If several outgoing edges have
attached weights with equal absolute values (as can be seen
in Figure 2c for the node labeled q0), we divide by the
leftmost of these weights to preserve canonicity. With this
normalization scheme, it is guaranteed that all edge weights in
the decision diagram have an absolute value between 0 and 1
(and, thus, also the absolute values of the real and imaginary
parts are between 0 and 1)—making it less likely that a factor
unintendedly rounds to 0. While this indeed helps to increase
numerical stability, one can additionally exploit the knowledge
that all occurring complex numbers are either on or inside the
unit circle to store them efficiently. This is discussed in the
next section.

B. Looking up Complex Numbers

As discussed in Section III-B, hashing complex numbers is
usually not possible for many quantum functions due to round-
ing errors caused by the limited machine accuracy. Hence,
different methods are required that allow for a unique and
efficient lookup of complex numbers while still considering
the tolerance value ε.

The general idea for an efficient lookup is to exploit the
fact that numbers can be sorted. Since there does not exist
a total order for complex numbers, we split them into their
real and imaginary parts. These real-valued parts are then
stored separately in a lookup-table.6 A complex number is
then represented by a pair of pointers to elements in the
lookup-table—a strong canonical form. Moreover, we store
only the absolute value of the real and imaginary part and
“hide” the sign bit in the pointer to the respective entry of
the table. This additionally allows to conduct operations like
multiplication with constants like −1, i, or −i, as well as
computing the complex conjugate just by flipping bits and/or
swapping pointers.

6Note that a separate insertion of the real and imaginary part may also
reduce the overall numbers to be stored since the same number might occur
as real/imaginary part in several complex numbers.



To realize a lookup table for real-valued entries, we exploit
the knowledge of the normalization scheme discussed above.
In fact, it is guaranteed that all numbers of the table are within
the interval [0, 1].7 To allow for an efficient lookup, we split
this interval into N equally distributed chunks.8 These chunks
are represented by entries in an array of size N , where each
entry initially contains an empty list for occurring numbers in
the respective interval (similar to the buckets in a hash table).
When a new real number r shall be inserted, the corresponding
bucket is traversed. If one of the numbers in this list is equal to
r (considering the tolerance value ε), a pointer to the respective
number is returned. Otherwise, r is inserted into the bucket.

However, one has to be careful since, by allowing a toler-
ance value of ε, a sufficiently close number might be located in
one of the neighboring buckets. More precisely, if r−ε or r+ε
exceeds the border of the considered interval (represented by a
bucket), one has to additionally look for a number sufficiently
close to r in the the corresponding neighboring bucket. For
performance reasons, we propose to return the first value found
which deviates less than ε from r. Alternatively, to improve
numerical stability, one can continue searching for a value that
is even closer to r.9

We employ the implementation techniques used for the
unique table (for storing DD nodes) also for the lookup table
(for storing real numbers) to allow for an efficient realization.
This includes reference counting to keep track which entries
are still required to be in the lookup table, a list of “free”
numbers, as well as a procedure to allocate memory for several
new entries at once. Whenever garbage collection is conducted
on the unique table, we additionally run a garbage collection
routine on the lookup table to remove entries (appending
them to the list of free entries) with a reference count of 0.
Moreover, numbers can easily be dereferenced, since pointers
are returned.

By using a lookup table as discussed above, inserting a
value r has complexity O(1) if N is chosen suitably and the
(inserted) numbers are distributed equally in the interval [0, 1]
(avoiding long collision chains). However, like a hash table,
a worst-case complexity of O(n) results when all n entries
in the table are stored in the same bucket. As alternative to
a table, one can also use a self-balancing binary tree like an
AVL tree [33] or a red-black tree [34] to store the real numbers.
Then, the lookup of a number r requires O(log n), where n
is the number elements in the tree. This is again possible,
since real numbers can be totally ordered, but additionally
requires overhead for re-balancing the tree. Eventually, a
combination of both—a lookup table where all entries stored
in one bucket are realized as a self-balancing binary tree—
provides a compromise of both ideas from a complexity-
theoretic consideration.

However, even with an efficient implementation of a lookup

7Note that this also holds for the real and imaginary part of the complex
weight attached to the edge pointing to the root node, since we deal with
unitary matrices.

8Note that other strategies for splitting the interval [0, 1] are possible.
9Note that there exist at most two numbers in the lookup table that are

closer than ε to r.

for complex (real) numbers, several other issues have to be
considered when conducting operations on decision diagrams.
These are discussed in the following section.

C. Conducting Operations on Decision Diagrams
In this section, we discuss how to efficiently handle

complex-valued edge weights when conducting operations on
decision diagrams. To this end, we first analyze arising issues
(from using a lookup table for complex numbers) that might
impair efficiency, namely:
• Each intermediate computation on complex numbers re-

quires to perform a lookup in the table and, additionally,
may cause rounding. Such intermediate values occur
before normalizing a DD node.

• Sub-results might contain complex numbers with absolute
value larger than 1 (before normalizing a DD node).

The first issue may affect the efficiency since the number of
entries in the lookup table grows significantly (by inserting
intermediate values that are not used anymore afterwards).
Moreover, intermediate computations are not conducted as ac-
curately as possible (by performing a lookup that considers ε).
The second issue even prohibits the use of a lookup table as
introduced above, since it is not guaranteed that all entries are
in within interval [0, 1]. However, both issues can be resolved
by introducing a cache for complex numbers that are used
for storing intermediate results. Entries are taken from this
cache whenever intermediate results are computed, and fed
back when normalizing a newly computed DD node (before
looking it up in the unique table).

In general, the efficiency of operations on decision diagrams
results from a recursive formulation. Repeatedly re-evaluating
the same (sub-)operation is avoided by using a compute table.
Since each recursive call returns an already normalized DD
node, cached complex numbers are only required for the
current recursion level. Moreover, also the recursion levels
above the current one may hold some cached complex numbers
representing sub-results from other recursive calls (at most one
for each other outgoing edge). From this, we can infer that
a cache size linear to the number of variables is sufficient.
Even more, by fixing the maximum number of variables in
the decision diagram beforehand, a cache with fixed size for
complex numbers (which is allocated at initialization of the
package) is sufficient.

We implement this cache as list of real numbers and thereby
utilize the same data structure as for entries in the lookup table
discussed above. This allows to use entries from the lookup
table and the cache interchangeably when computing, e.g., the
product of two complex numbers. Cached complex numbers
are allocated by taking two real numbers from the front of the
list representing the cache. Before feeding them back to the
cache when normalizing the computed DD node, we insert
them into the lookup table (if no suitable number has been
inserted yet). This is necessary since the lookup in the unique
table requires a strong canonical form for the weights attached
to the outgoing edges to detect redundancies. Since we look
up complex numbers as late as possible, all computations
are conducted with maximal precision. Intermediate results



are not inserted into the lookup table for complex numbers,
which keeps the number of entries in this table low and avoids
repeated rounding (caused by ε) during computations.

On the downside, having a cache for complex numbers
affects the compute tables that store sub-results. In fact,
depending on the considered operation, an operand’s weight
(i.e., a DD edge weight) is either stored in the cache or in the
lookup table. For complex numbers stored in the cache, we
again have the problem that they do not necessarily preserve
a strong canonical form. Hence, a completely different hash
key may result from two slightly different complex numbers.
This is not as critical as in the unique table, since it only
may decrease the hit rate of the compute table. However, our
internal evaluation has shown that the hit rate is hardly affected
when rounding the complex numbers before computing the
hash key.

V. RESULTING DD PACKAGE

In this section, we describe the resulting DD package
for quantum computing when utilizing the implementation
techniques introduced above. As representative of a partic-
ular decision diagram type, we chose QMDDs as introduced
in [15], since this type incorporates all state-of-the-art concepts
of decision diagrams for quantum computing reviewed in
Section II-B.

As basis for our implementation served the QMDD
package provided at http://informatik.uni-bremen.de/agra/eng/
qmdd.php, which already utilizes the implementation tech-
niques common for DD packages in the classical domain such
as unique and compute tables, as well as garbage collection
with reference counters. However, complex numbers are han-
dled in a straightforward and inefficient fashion, namely:
• Complex numbers are stored within an array of fixed size.
• The array is linearly traversed at each lookup, i.e., in-

serting a new number requires traversing the complete
array.

• Complex numbers are inserted into the array at each
step (causing rounding of intermediate results which may
affect numerical stability).

• The normalization scheme does not consider numerical
implications caused by ε.

All these shortcomings make the original QMDD package
a proof of concept implementation (handling only small in-
stances efficiently) rather than a fully-fletched DD package
for quantum computing.

The contributions of this paper, i.e., the implementation
techniques for an efficient handling of complex values, address
these shortcomings and, hence, have been implemented on top
of this package in C. The resulting DD package is now publicly
available at http://iic.jku.at/eda/research/quantum dd.

To demonstrate the improved efficiency, we took established
quantum functionality and generated the corresponding deci-
sion diagrams with the improved package. More precisely,
we considered the Quantum Fourier Transform (QFT [35])
and the functionality of quantum circuits proposed by Google
for quantum supremacy experiments [36]. Since building the
decision diagrams representing the respective functionalities is

TABLE I: Efficiency of the proposed techniques
name q #op size #complex toriginal tproposed
Supremacy 16 50 80 238 0.00 0.00
Supremacy 16 70 6278 18 803 4.04 0.06
Supremacy 16 75 36 161 225 560 1 147.14 0.57
Supremacy 16 80 1 195 979 – >3 600.00 65.18
Supremacy 20 70 455 3534 0.06 0.01
Supremacy 20 80 899 8010 0.26 0.02
Supremacy 20 89 71 105 97 942 1 453.63 2.52
Supremacy 20 95 1 742 795 – >3 600.00 912.11
Supremacy 25 100 912 6151 0.15 0.02
Supremacy 25 110 1751 12 851 0.46 0.03
Supremacy 25 119 58 939 96 647 1 282.28 2.63
Supremacy 25 120 365 643 – >3 600.00 3.51
QFT 15 120 32 767 32 785 3.98 0.39
QFT 16 136 65 535 65 554 17.48 0.86
QFT 17 153 131 071 131 091 67.02 1.64
QFT 18 171 262 143 262 164 295.48 3.50
QFT 19 190 524 287 524 309 1 269.35 8.38
QFT 20 210 1 048 575 – >3 600.00 22.96

q: number of qubits #op: number of operations
size: size of the QMDD #complex: number of occurring complex values
toriginal : time when using the original QMDD package [15]
tproposed : time when incorporating the techniques proposed in this paper

conducted by successively multiplying the individual quantum
operations (also represented in terms of decision diagrams),
this serves as a representative case study on the efficiency of
the package (after all, design automation methods heavily rely
on matrix multiplication).

The obtained results are provided in Table I which lists the
number of qubits q, the number of quantum operations #op,
the size (i.e., the number of DD nodes) of the resulting deci-
sion diagram, as well as the number of occurring #complex
values throughout the computation.10 Moreover, we list the
runtime for building the decision diagram representing the
respective functionality when using the originally available
implementation (denoted toriginal ) as well as when using the
improved DD package utilizing the implementation techniques
proposed in this work (denoted tproposed ).11

The obtained results clearly show that the proposed tech-
niques allow to handle complex numbers much more effi-
ciently than the original implementation. For example, con-
sider the functionality of quantum circuits proposed for quan-
tum supremacy experiments (proposed by researchers from
Google [36]) with 16 qubits. Building the decision diagram
representing the quantum functionality given by the first 50
operations can be handled by both packages in a fraction of a
second. Considering the first 70 operations already results in
a decision diagram with more than 6 000 nodes and requires
to deal with close to 20 000 complex numbers. Even though
these are not large numbers for decision diagrams, the original
package already requires several seconds to build the decision
diagram. When considering the first 75 operations, dealing
with more than 36 000 DD nodes and with approximately
225 000 complex values requires almost 20 minutes—a task
that can be solved in less than a second by the DD package
resulting from this work. In fact, the limiting factor is not only
the number of nodes, but also the number of complex values to
deal with. Hence, the proposed implementation allows to build

10Note that the number of occurring complex values can only be determined
for the original package since all of them remain in an array during the
computation.

11Note that we had to slightly adjust the original package to allow storing
more than 10 000 different complex values. This, however, did not affect the
runtime performance of the package.



up the functionality of the first 80 operations—a rather large
decision diagram with almost 1.2 million nodes—in a bit more
than one minute, whereas the original implementation fails to
do that within an hour.

Overall, improvements in the performance of several or-
ders of magnitude can be observed. Hence, the evaluation
demonstrates that complex values (especially when used as
edge weights) can be handled much more efficiently by using
the implementation techniques described in this paper. It is
assumed that this performance improvement can directly be
utilized in design automation methods relying on decision
diagrams (such as those presented in [11], [16]–[23]) just by
replacing the currently used DD packages with the package
proposed here (which is publicly available at http://iic.jku.at/
eda/research/quantum dd).

VI. CONCLUSIONS

In this paper, we proposed implementation techniques for
efficiently handling complex numbers in decision diagrams
for quantum computing—especially when occurring as edge
weights of the respective decision diagram. By this, we
leverage—in joint consideration of implementation techniques
for decision diagrams in the classical domain developed
decades ago—the development of a fully-fletched DD pack-
age for the quantum domain (publicly available at http://iic.
jku.at/eda/research/quantum dd). The experimental evaluation
showed that this package is indeed capable of handling com-
plex numbers much more efficiently and allows constructing
decision diagrams for established quantum functionality in
significantly less runtime (up to several orders of magnitude).
This performance boost is expected to be can passed to
design automation methods utilizing decision diagrams just
by incorporating this new package.
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