
Did We Test Enough?
Functional Coverage for Post-Silicon Validation

Sebastian Pointner Robert Wille
Institute for Integrated Circuits

Johannes Kepler University Linz, Austria
Email: {sebastian.pointner, robert.wille}@jku.at

Abstract—The ever increasing complexity of modern systems
remains a challenge for semiconductor companies. Once a new
chip has been produced, it has to be ensured that it works
properly. To this end, sophisticated test environments and test
programs are applied. However, to ensure that the applied test
program indeed fully covers all important details of the produced
chip remains a big challenge. In this work, we propose a method-
ology which supports the designer by analyzing the coverage of a
given test program. To this end, we utilize accomplishments from
coverage analysis for functional verification at other abstraction
levels. A discussion of the resulting application scenario eventually
shows that this allows for an efficient coverage analysis for test
programs with basically no changes in the work-flows of test
program developers.

I. INTRODUCTION

The triumphal process of embedded systems seems unstop-
pable. While already being an essential part of our everyday
life, also upcoming applications in domains like Autonomous
Driving Vehicles or Smart Cities underline the impact of
embedded systems in our world. Within the last decade, their
complexity could be strongly enhanced (c.f. Moores Law [1])
which enabled the usage of embedded systems for a series
of entirely new applications. Due to the ever increasing com-
plexity of modern systems, designing and especially ensuring
that the new system works as intended (i.e. verification and
test) has become a very hard task. Ensuring the correct
behavior of a new system is of uttermost importance since
an unexpected behavior may end up in dangerous situations
for humans (e.g. with self driving cars) or may rise enormous
costs (c.f. Ariane V crash [2]).

In order to cope with the complexity of modern sys-
tems, an elaborated design flow emerged in the past [3].
The design flow as sketched in Fig. 1 illustrates the main
steps composed of the implementation of a new design, its
functional verification (conducted pre-silicon), as well as its
test (conducted post-silicon). The design flow starts with the
specification of the new system which is getting used in
order to implement the initial algorithmic representation of
the desired system at the Electronic System Level (ESL). This
allows to conduct simulations and, by this, provides the basis
e.g. for hardware/software partitioning. After the respectively
resulting software/hardware partitions have been extracted, the
implementation of the respectively needed Application Specific
Integrated Circuits (ASICs) starts – first conducted at the
Register Transfer Level (RTL) and synthesized afterwards to
a gate-level netlist. Eventually, final design steps, namely
placement and routing, are performed based on the gate-level
netlist.

Before the resulting descriptions of the new ASIC can
finally be sent to the wafer fabrication, a verification process
is conducted. Main task of the verification is to ensure that
the obtained description meets the specification in every detail
and that no unexpected behavior of the new system is possible.
After design and verification have finally been completed, the
resulting descriptions are eventually sent to a wafer fabrication
which realizes the desired chip. After the first samples of
the new ASIC have been produced, it has to be ensured that
those samples are working properly – motivating the so-called
post-silicon validation process.

Here, the fabricated chip (usually called Device under Test;
DUT) is employed within an Automatic Test Equipment (ATE)
which allows to apply dedicated test stimuli to the chip [4],
[5]. The stimuli are thereby generated e.g. directly from the
user or are e.g. generated from other components, sensors,
etc. Vice versa, the ATE provides an interface which maps the
output signals produced by the DUT to the corresponding user
outputs, actuators, etc. Moreover, the user’s view is limited to
the ATE for testing the DUT, as the ATE represents an entire
system. Overall, this allows to test the DUT using different
scenarios and considering internal as well as external inputs
such as sensor data, prepared data to emulate specific use cases
(e.g. corner cases), or random test data to observe the system’s
behavior.

To automate these tests, usually a test program is ap-
plied [4], [5]. A test program represents a collection of
different test methods – each of which used to test a different
part, aspect, or scenario of the DUT. Although not needed
before first silicon is available, the development of such test
programs already starts earlier in the design process as a
parallel task (c.f. Fig. 1). However, this task is non-trivial. To
some extent, a good test program requires a re-consideration
of all major aspects considered already during the design,
implementation, and verification conducted before to make
sure that all properties and characteristics of the DUT are
properly tested [6].

This obviously rises the question whether the test program
is covering all those important aspects of the DUT. For the
case that the test program is not covering all characteristics of
the DUT, it is very likely that badly produced chips will be
delivered to the customers. Unfortunately, it is not possible to
conduct measurements inside of the DUT, therefore it can not
be classified which parts of the DUT have already been tested
based on measurement. This causes a bottleneck in the design
flow since coverage is, thus far, evaluated solely on the basis
of experience of the involved design team [4].

ATE

DUT
Spec

ESL
(e.g. SystemC)

RTL
(e.g. VHDL)

Gate

Level
Chip

Functional Verification (Pre-Silicon)

Test

Implementation

Test

Fabrication

Pre-Silicon Post-Silicon

Test Program Development

Verification

Production

Fig. 1: Design flow.

In this work, we aim to address this problem by proposing
a framework for the analysis of the functional coverage of test
programs. To this end, we first discuss the problem and its
importance during the test program development. Then, we
review how coverage is guaranteed in other abstraction levels,
particularly during functional verification where coverage anal-
ysis has heavily been investigated in the past. Based on that, a
methodology is derived which utilizes these existing solutions
for coverage analysis for functional verification and adapt them
so that, additionally, also test programs can accordingly be
analyzed.

A discussion of the resulting application scenario even-
tually shows that this provides a promising solution for the
problem motivated above. In fact, the proposed solution allows
to analyze the coverage of test programs with the same
efficiency as coverage of the functional verification process
has been evaluated before and with basically no changes in
the work-flows of test program developers.

The remainder of this work is structured as follows: The
next section briefly reviews the development of test programs
and the correspondingly used environment. Afterwards, the
problem of test program coverage analysis is motivated and,
based on existing accomplishments for coverage for func-
tional verification, a corresponding solution is proposed in
Section III. Details of the realization of this solution are
provided in Section IV. Finally, Section V discusses the
resulting application scenario and Section VI concludes the
paper.

II. BACKGROUND

In order to keep this work self-contained, this section
briefly reviews the development of test programs as well as the
basic architecture of an Automatic Test Equipment (ATE). This
infrastructure is partially re-used later to conduct the desired
coverage analysis.

For the automation of the post-silicon test process, modern
ASICs are tested by applying so-called test programs [4],
[5] on the Device under Test (DUT). To this end, an ATE
as sketched in Fig. 2 is utilized in order to execute the test
program. The ATE executes the test program by invoking a
various number of different instruments such as a power supply
to power up the DUT or a simple measurement unit to observe
a pin’s voltage. The respective commands are realized over
a direct connection to the DUT. Moreover, the test program
controls the instruments which are embedded into the tester to
execute the intended test scenarios. To this end, test programs
are realized as part of an ATE front-end which sends it’s
requests to an ATE back-end over a static communication link,
e.g. a firm bus connection. Afterwards, the ATE forwards the
requests to the particular tester instruments, which can directly
access the DUT.

The design of a test program depends thereby on the
applied technology as well as on the requirements given by
the respectively used ATE supplier. Test programs, as they
are widely used within industry, are realized using frame-
works based on programming languages such as Visual Basic
or C++. Such frameworks extend the basic functionality of
those languages with advanced support which is needed for
industrial semiconductor testing. Examples for extensions can
be found in class libraries (e.g. for the evaluation of tests)
or additional tools (e.g. visualizations of instruments). Based
on those extensions, a comprehensive framework for the entire
test program development cycle, as well as for the test process
in the wafer fabrication is supported by the ATE supplier [7].

The design of the test program can be conducted in parallel
to the actual design of the considered ASIC (c.f. Fig. 1). The
goal is the realization of a program which (1) automatically
applies several tests on the eventually realized ASIC (after a
first silicon realization of it is available) and (2) checks weather
the intended outputs are obtained.

DUT

ATE Back-End

Power

Supply

Digital

Capture

Digital

Source

Firm Bus Connection

ATE Front-End

Workstation executing the test program

In
st

ru
m

en
ts

Fig. 2: Automatic Test Equipment (ATE).

Example 1. Consider the realization of an Arithmetic Logic
Unit (ALU) to be tested which possesses over a parallel inter-
face and handles data with a bit-width of 8. The ALU supports
the four basic arithmetical operators (addition, subtraction,
multiplication, and division). During post-silicon validation,
the chip has to be tested with respect to both, functional
(correct execution of the arithmetic) as well as non-functional
parameters (e.g. expected power consumption). For the test
process itself, the test program generates particular test stimuli
which are getting applied to the DUT and, afterwards, their
response is getting analyzed. A typical test for the considered
DUT (i.e. the ALU) could e.g. be the execution of all four
arithmetic operations.

III. MOTIVATION & GENERAL IDEA

In this section, we first motivate the need for methods for
coverage analysis of test programs. Afterwards, we discuss
how coverage is currently analyzed on other abstraction levels
of the design flow. This eventually yields the general idea
which is investigated in this work, namely conducting coverage
for post-silicon validation by utilizing existing (corresponding)
schemes from those abstraction levels.

A. Motivation
Post-silicon validation utilizing an ATE and test programs

as reviewed in the previous section is an established method
which is used in order to check whether first silicon of
the design (i.e. the DUT) indeed has been fabricated as in-
tended [4], [5]. But while test programs and the corresponding
DUT communication flow enabled by the ATE usually provide
a powerful infrastructure to thoroughly conduct these tests,
uncertainties frequently remain about whether the DUT has
indeed completely been tested or whether some corner cases
have been missed.

Example 2. Consider again the scenario of the ALU and
the discussion of a corresponding test program conducted
in Example 1. While, using the test program sketched there,
the designer can validate e.g. the correct realization of basic
calculations. However, the behavior of the DUT for non-
obvious cases which go beyond a straight-forward application
e.g. of the four arithmetic operations are frequently missed.
For example, ALUs usually come with a zero flag or a carry
flag whose test for correct functionality can easily be forgotten.

Now, a test program designer of course can easily add
further scenarios to consider into the test program. But, in
this process, the main challenge is not the addition of further
cases to be considered, but to become an understanding in
the first place what cases presumably may have been missed.

Of course, in a naive approach to completely test a chip, the
test program can be extended to cover every possible state
of the chip at least once – obviously leading to complexity
issues and becoming infeasible already for very small devices.
Beyond that, however, very few methods (e.g. [8]–[10]) for
post-silicon validation exist yet which address the simple but
rather serious question: Did we test enough?

In this work, we are addressing this problem by utilizing
existing methods for coverage analysis from other abstraction
levels of the design flow. To this end, we first briefly review
those schemes in the following and discuss how to utilize them
in order to address the problem motivated here. Based on that,
the remainder of this work describes how to realize these ideas
towards a coverage analysis for post-silicon validation.

B. Coverage in Functional Verification
Functional verification as a pre-silicon task and testing as a

post-silicon task both aim for ensuring that the chip finally be-
haves as it is supposed to behave. However, the methodologies
which have emerged for functional verification are far beyond
what is possible nowadays in post-silicon validation. In fact,
verification engineers command over a wide range of tools
and methodologies which can be applied in order to observe
the designs behavior and to ensure that the design has been
comprehensibly verified [11]–[13]. While the post-silicon vali-
dation of the new design is entirely based on simulation, design
verification engineers can apply simulation-based verification
as well as formal verification techniques. Simulation based
verification techniques like Constraint-Random-Verification
(CRV) [14], [15] are applied in functional verification in
order to achieve highest possible verification coverage [16].
Since simulation-based verification approaches are often not
sufficient standalone, formal verification techniques such as
formal equivalence checking [12], model checking [17], or
symbolic execution [18], [19] are applied for the functional
verification.

Here, a similar problem as sketched above emerges: Did
we verify enough? But in contrast to post-silicon validation,
coverage issues, i.e. how to make sure that a design has
completely been verified, was intensely been investigated in the
past years (see e.g. approaches proposed in [11], [12]). Here,
functional verification benefits from the fact that verification
can be seen as a white box process (i.e. the implementation
can be used in order to obtain coverage information) compared
to the post-silicon validation which is based on a black box
process (i.e. the implementation is not accessible, only the
inputs and outputs are usable).

In the following, we focus on coverage metrics as reviewed
e.g. in [16] for structural coverage information as well as
coverage metrics for assertion coverage or functional cover-
age [11] – both providing good representatives for measuring
the coverage.1 Structural coverage metrics focus on the struc-
ture of the design in terms of how the system/circuits has been
executed. In contrast to that, functional coverage metrics focus
on the application of the design itself.

1Note that the concepts proposed in this work can also utilize other coverage
metrics.

Basic structural metrics are e.g. (1) line-coverage which
gives the verification engineer feedback if a particular line
of the code has been executed or not, (2) branch coverage
which gives the verification engineer feedback if a branch has
been taken during an execution or not or, (3) toggle coverage
which monitors if every single bit of a signal has been at least
flipped once. While those metrics are easy to obtain for a given
circuit, they are obviously rather simple and, hence, limited
in terms of their applications. In contrast, assertion coverage
monitors the status of particular signals or internal conditions
and gives the verification engineer feedback what percentage of
those assertions could have been positively evaluated. While
assertion coverage does already takes care about conditions,
functional coverage is directly based on the functionality of the
new design as it is specified in the specification documents.
Moreover, by applying functional coverage it is possible to
directly map use cases as described in the documentation and
observe if these cases have been executed or not.

Example 3. Consider again an ALU design. As discussed
above, they usually come with commands where a zero-flag
states whether a result yielded zero and a carry-out flag states
whether the calculation yielded an overflow (i.e. the result can
not be represented with 8 bit anymore). In order to evaluate
e.g. whether such an overflow case has been triggered at
least once, a designer can define a metric where ld(input a
+ input b) > 8 has to be satisfied. Corresponding coverage
methods as reviewed above can keep track about what has
been verified yet and whether this particular case has already
been covered or not.

All of the discussed coverage metrics are capable for
delivering coverage information and are widely applied within
the industry. In the following, we are now discussing how those
accomplishments in functional coverage can be utilized to also
be able to evaluate the coverage of a test program and, by this,
the coverage of the post-silicon validation process. We are as-
suming thereby that, during the design process, the considered
system has been completely verified (with completely being
defined by the designer e.g. through corresponding metrics as
discussed above).

C. Utilizing Functional Coverage for Post-Silicon Validation

Utilizing coverage metrics as discussed above to evaluate
whether a test program for post-silicon validation indeed
completely covers the considered DUT sounds promising.
However, a direct application of the solutions employed in
higher levels of abstraction on a functional design description
to a first silicon DUT integrated within an ATE as reviewed
in Section II is a non-trivial task.

In order to obtain coverage information for test programs in
a similar fashion as conducted during functional verification,
first the actual DUT is replaced by an alternative represen-
tation of the design. Here, utilizing the correspondingly used
descriptions from the higher abstraction levels (e.g. a SystemC
or SystemVerilog description which is available anyway) is an
obvious choice2. But besides that it is necessary to establish a
link between the test program and the verification environment.

2In fact, the same idea has been applied for testing test programs even
before first silicon is available (see [6]).

This is because, as reviewed in Section II and illustrated in
Fig. 2, the test program is not directly communicating with the
design but with a bus connection. Hence, the communication
flow between the test program and the verification environment
has to be re-arranged accordingly. Moreover, the instruments
which are getting controlled by the test program and are
eventually controlling the DUT have to be modified in order to
forward the generated stimuli to the verification environment
rather than the DUT.

At the other end of the communication channel, i.e. at
the verification environment, the commands which are sent
from the test program have to be processed accordingly as
well. Moreover, when the test program is applying a particular
value to a pin, the stimuli generating part of the verification
environment has to do the same. Every time when the test
program would process an interaction with the DUT, this
interaction has to be routed over the verification environment
realized in terms of an identical behavior onto the design.

Once all this is established, we can obtain a fully con-
figured environment for functional coverage analysis for free
by simply taking the existing state of the art reviewed in
Section III-B.

IV. REALIZATION

In this section, we describe how the general ideas discussed
above and, by this, how a coverage analysis framework for
post-silicon validation can actually be realized. To this end,
we utilize the same idea which has recently been proposed for
testing test programs before first silicon is available (see [6]).
Here, a DUT is represented by a SystemC description (which
is available anyway in the considered development flow as
seen in Fig. 1). This methodology does not only allow for
testing a test program but, additionally using frameworks such
as the Universal Verification Methodology (UVM, [20]), for
analyzing the coverage of a test program.

In the following, details of the proposed solutions are
presented. First, the UVM framework is briefly reviewed.
Based on the structure of the UVM, we are then going to
connect the test program in such an order that the test program
controls the verification environment and can actually execute
all tests and instrumentations so that the coverage tools from
the verification environment can eventually analyze whether
the test program is “complete”.

A. The Universal Verification Methodology (UVM)
The Universal Verification Methodology (UVM, [20]) has

become a well established methodology for design verifica-
tion [21]. The UVM which has basically been introduced
within the SystemVerilog High Level Verification (HLV) lan-
guage provides all the infrastructure which is needed for a
comprehensive design verification [12]. In order to create
a powerful verification environment, UVM is based on the
idea of reusable components and an object-orientated design.
Moreover, UVM provides the needed basic classes which can
directly be extended using object-orientated derivation.

Design under Verification (DUV)

Driver Monitor

Sequencer

Verification
Sequence

Scoreboard
Subscriber for

Functional Coverage

Test
Program

Sequence

Verification
Scoreboard

Test
Program

Scoreboard

TCP/IP

ATE Front-End

Workstation executing the test program

ATE Back-End

D
e
si

g
n
 V

er
if

ic
a
ti

o
n

 E
n
v
ir

o
n

m
en

t

Fig. 3: Realization of Coverage Analysis for Test Programs.

A simplified version of the UVM as it is used in this
work is sketched at the right-hand side of Fig. 33. As can
be seen in the figure, the model to be verified, (here usually
called the Design under Verification, DUV) is embedded into
the verification environment and can be assessed writable
from the driver and readable from the monitor. The driver
gets the stimuli to be applied from the sequencer which gets
a verification sequence and executes it. In order to verify
the behavior of the DUV for particular stimuli, the monitor
reads the response which, afterwards, is getting evaluated by
the scoreboard using a corresponding verification scoreboard.
Furthermore, so-called Subscribers can be used in order to
collect additional information. Referring again to Fig. 3, a
subscriber is used in this figure in order to collect functional
coverage information.

B. Connecting the Test Program to the UVM
Having the UVM as basis, the desired coverage environ-

ment for test programs can now be realized. More precisely,
the proposed environment is composed of two components as
shown in Fig. 2: (1) The test program which is used to generate
the stimuli and to check the corresponding behavior of the chip
(sketched at the left-hand side of Fig. 3 and basically identical
to the ATE front-end reviewed before in Section II and Fig. 2)
as well as (2) the chip itself which, as described above, is now
integrated into the UVM (as sketched at the right-hand side of
Fig. 3).

What is left, however, is the connection between both
components (recall, the test program and the front-end are
are still generating and receiving data for/from the ATE back-
end). Hence, in order to embed the test program’s stimuli
requests for reading or writing a certain pin to the UVM,
we added a TCP/IP connection between the existing front-
end and the newly added verification environment. To this
end, we needed to add particular sequence and scoreboard
classes which receive and apply requests from the test program
which covers the test programs read request, respectively.
This can be realized by extending the UVM with according

3Note that the shaded boxes do not belong to the original UVM framework
but have been added in order to realize the coverage analysis for test programs.
This is described in the following subsection and can be ignored here.

classes as illustrated by the shaded boxes in Fig. 3. They
basically provide an interface to the TCP/IP connection and,
by this, to the test program (c.f. [6]). All the other classes
(including e.g. the subscribers for functional coverage) can
remain unchanged and, indeed, used for coverage analysis (but
now for the stimuli generated by the test program).

Finally, it has to be ensured that the instrumentation of
the test program is correctly translated. Recall that the test
program can explicitly call certain instruments of the ATE
back-end which are not available in the UVM environment
anymore. However, all these instruments can be emulated
here by simply translating the respective instrumentation to
corresponding stimuli4.

More precisely, instead of sending the original requests
(e.g. read or write pin) to the ATE back-end and, by this, to an
instrument, we altered the communication to the verification
environment. If the test program now applies any operation
(e.g. sets the opcode of the ALU to 0x3), this request gets
accordingly translated to the proper verification sequence of
the UVM environment and will be properly applied to the
DUV.

V. APPLICATION SCENARIO

The coverage analysis method for test programs introduced
above has prototypically been implemented as described in
Section IV. To this end, UVM-SystemC [22] has been utilized
as verification environment and CRAVE 2.0 [14] was used to
implement the functional coverage analysis5. In this section,
we finally sketch the application of the resulting analysis
environment using again the ALU considered before as an
example.

First, we assume that the ALU has been designed in a
similar fashion as discussed before by means of Fig. 1. For
the functional verification, also UVM-SystemC [22] has been

4Note that this of course only works for functional instruments. However,
as stated in the beginning of this work, we are focusing on functional coverage
of test programs for now. How to analyze coverage of non-functional behavior
is a significantly more complex task and left for future work.

5CRAVE 2.0 offers coverage analysis as an additional feature for the current
version of UVM-SystemC and, hence, provides a suitable candidate for this
purpose.

utilized and the corresponding completeness of the verification
process has been checked with CRAVE 2.0 as well. To this
end, a total of 82 cover-points has been defined and analyzed.
Each cover-point represents a specific use case which has to be
covered. The verification environment then generated a total of
105 stimuli and coverage analysis confirmed that those cover
all 82 cover-points.

In parallel to all these endeavors, the development of the
test program started (c.f. Fig. 1). Once this has been completed,
the coverage analysis method for test programs proposed above
can be utilized. Applying the resulting test program (developed
by an experienced designer) to the solution described in
Section IV and sketched in Fig. 2 eventually generated a
total of 90 stimuli6. However, the proposed coverage analysis
eventually showed that this does not fully cover all the cover-
points considered before. In fact, only 61 cover-points out of
82 cover-points (a coverage of 75%) has been achieved – the
test program obviously is not complete.

This feedback now significantly helps the test program
developer as it shows that further cover-points need to be
triggered by the test program. By extending the test program
and re-evaluating the coverage of it, eventually a test program
with 100% coverage has been developed. The finally resulting
test program eventually generates a total number of 117 stimuli
and triggers all cover-points.

Overall, in order to achieve full coverage for the post-
silicon test program the following costs/benefits arise:
• with the same efficiency as coverage of the functional

verification process has been evaluated (this is because
the same tool-chain is utilized for this purpose) and

• with no changes in the front-end, i.e. the test program
developer neither has to adapt nor suddenly requires
additional expertise about functional verification (ev-
erything needed from functional verification is re-used
from the corresponding functional verification team
and hided behind interfaces).

Overall, this allows for the evaluation of the functional
completeness of a test program, which significantly reduces
the risk of errors slipping through during the test process and,
as a consequence, the risk of shipping a faulty product to the
customer.

VI. CONCLUSION

In this paper, we proposed a test coverage methodology
for the development of post-silicon validation test programs.
To this end, we revisited the basic concept of test programs
and discussed how coverage is handled at other abstraction
layers, e.g. during functional verification. In contrast to the
existing development for test programs which is entirely based
on the experience of the test engineer, the proposed approach
is capable to give the designer feedback in form of coverage
information. We discussed the resulting application scenario
and the benefits obtained by it. In fact, the proposed approach
allows to check the coverage of test programs with the same
efficiency as coverage of the functional verification process
has been evaluated before and with basically no changes in
the front-end.

6Note that, since those stimuli are now generated by the test program and
not by the verification environment, i.e. they may be completely different to
the 105 stimuli generated during functional verification.

ACKNOWLEDGEMENTS
The authors would like to thank Oliver Frank for making

this contribution possible.
This work has partially been supported by the LIT Secure

and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] Schaller, Robert R., “Moore’s Law: Past, Present, and Future,” IEEE

Spectrum, pp. 52–59, 1997.
[2] M. Dowson, “The Ariane 5 Software Failure,” SIGSOFT Software

Engineering Notes, pp. 84–84, 1997.
[3] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification: A

Prescription for Electronic System Level Methodology. San Francisco,
USA: Morgan Kaufmann Publishers Inc., 2007.

[4] M. Burns and G. W. Roberts, An Introduction to Mixes-Signal IC Test
and Measurement. New York, USA: Oxford University Press, 2001.

[5] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for
digital, memory and mixed-signal VLSI circuits. New York, USA:
Kluwer Academic, 2002.

[6] S. Pointner, O. Frank, C. Hazott, and R. Wille, “Test Your Test Programs
Pre-Silicon: A Virtual Test Methodology for Industrial Design Flows,”
in IEEE Annual Symposium on VLSI, Miami, USA, 2019.

[7] Teradyne. (2019) IG-XL Test Software.
http://www.teradyne.com/products/semiconductor-test/ig-xl-software.
accessed: 29.05.2019.

[8] K. Balston and M. Karimibiuki and A. J. Hu and A. Ivanov and S. J. E.
Wilton, “Post-silicon code coverage for multiprocessor system-on-chip
designs,” IEEE Transactions on Computers, pp. 242–246, 2013.

[9] E. E. Mandouh and A. Gamal and A. Khaled and T. Ibrahim and A.
G. Wassal and E. Hemayed, “Construction of coverage data for post-
silicon validation using big data techniques,” in Int’l Conference on
Electronics, Circuits and Systems, Batumi, Georgia, 2017.

[10] T. Bojan and M. Aguilar Arreola and E. Shlomo and T. Shachar, “Func-
tional coverage measurements and results in post-silicon validation of
core 2 duo family,” in Int’l High Level Design Validation and Test
Workshop, Irvine, USA, 2007.

[11] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verifica-
tion: The Complete Industry Cycle (Systems on Silicon). San Francisco,
USA: Morgan Kaufmann Publishers Inc., 2005.

[12] E. Seligman, T. Schubert, and M. V. A. K. Kumar, Formal Verification:
An Essential Toolkit for Modern VLSI Design. San Francisco, USA:
Morgan Kaufmann Publishers Inc., 2015.

[13] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. M. Le, J. Seiter,
M. Soeken and R. Wille, “Completeness-Driven Development,” in Int’l
Conference on Graph Transformations, Bremen, Germany, 2012.

[14] H. Le and R. Drechsler, “CRAVE 2.0: The next generation constrained
random stimuli generator for SystemC,” in Design and Verification
Conference and Exhibition Europe, Munich, Germany, 2014.

[15] R. Wille, D. Große, F. Haedicke, and Rolf Drechsler, “SMT-based
Stimuli Generation in the SystemC Verification Library,” in Forum on
Specification and Design Languages, Sophia Antipolis, France, 2009.

[16] A. Piziali, Functional Verification Coverage Measurement and Analysis.
New York, USA: Springer, 2004.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, USA: MIT Press, 1999.

[18] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, pp. 385–394, 1976.

[19] P. Gonzalez-de Aledo, N. Przigoda, R. Wille, R. Drechsler, and
P. Sanchez, “Towards a Verification Flow Across Abstraction Levels
Verifying Implementations Against Their Formal Specification,” IEEE
Trans. on CAD, vol. 36, no. 3, 2017.

[20] R. Salemi, The UVM Primer: A Step-by-Step Introduction to the
Universal Verification Methodology. Boston, USA: Boston Light
Express, 2013.

[21] Universal Verification Methodology 1.2 User’s Guide, Accellera, 2015.
[22] UVM-SystemC Language Reference Manual, Accellera, 2017.

