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Abstract—With the advancement of Internet of Things, the
cost of System-on-Chips (in terms of area, performance, etc.)
becomes increasingly relevant for realizing affordable as well as
performant devices. Although System-on-Chips are very diverse
with respect to specifications and requirements, some components
are ubiquitous. One of them is the Hardware/Software Interface,
which serves for controlling communication and interconnected
functionalities between Hardware and Software. Motivated by
their common use, the implementation of optimized interfaces to-
wards certain costs (in terms of area, performance, etc.) becomes
a central problem in the design of embedded systems. In this
work we introduce a novel optimization method for minimizing
the cost of Hardware/Software Interfaces using Convolutional
Neural Networks coupled with Evolutionary Algorithms.

Index Terms—Hardware/Software Interface Optimization, Ma-
chine Learning, Deep Learning, Evolutionary Algorithms

I. INTRODUCTION AND MOTIVATION

Hardware/Software Interfaces (HSIs) are particularly rele-
vant for the System-on-Chips (SoCs) design process due to
their role of regulating Hardware/Software interactions. These
are mostly defined by the use of bitfields (data access), which
regulate the intercommunication of Hardware and Software for
peripheral devices of the SoC. For designing an HSI instance,
the engineer is provided with several options concerning how
to realize a system. In particular, the displacement of the
bitfields offers many degrees of freedom in the HSI realization.
The choice of a specific bitfields configuration results in a
different HW/SW logic inside the HSI, which in turn changes
the costs of different HSIs design configurations (concerning
Hardware usage and Software metrics).

To determine an optimal bitfields position, methods for HSI
cost optimization are frequently applied in industrial practice.
However, currently used methods are manual, do not scale
to the increasing complexity of modern SoCs, and do not
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take into account the cost of an HSI instance. In fact, they
are mostly based on design experience and fixed-rules. In this
work, we address the problem of finding an optimal position
for a given set of bitfields, in order to minimize the cost of
the corresponding HSI instance. To be more specific, we are
interested in minimizing

• the area, denoted by Logic Units Tables (LUTs) and Slice
Registers (SRs) which are needed to realize the HSI on
an FPGA board

• the size of the compiled binary file SW code size (SS)
as well as the number of cycles needed by the CPU to
execute the SW program (SCs).

From now on, with the term design cost, we refer to the
four objectives LUTs, SRs, SS, and SCs. With this in mind,
our task can then be formalized as follows: given an HSI x
containing L bitfields {bi}Li=1, we are interested in optimizing
(i.e. minimizing) the design cost, which highly depends on the
spatial allocation of the bi on x [6]. In other words, x can be
seen as a board on which the bis are placed as objects and
the optimization aims to find a placement for the bi on x such
that the design cost C(x) is minimized.

In [5], a similar problem (3D bin packing) has been suc-
cessfully approached through Machine Learning (ML) opti-
mization methods. The success of their approach on a similar
allocation task is a strong motivation towards data-driven
methods for nearing this problem class. Consequently, there
is more room than just for greedy methods.

In the same spirit, we borrow and re-adapt solutions based
on ML, in particular, Deep Learning (DL) and Evolutionary
Algorithms (EA). Based on these, an approach is proposed
which outperforms existing methods for cost optimization.
Experimental evaluations within an industrial context show
that the proposed method can optimize on average 9, 83%



on the LUTs objective, 7, 82% on the SS and 8, 85% on the
SCs values w.r.t. existing methods. In addition, we argue that
our approach outperforms existing methods for decrease in
computational time and manual effort.

As for the structure of this work, in section II we briefly
review related works in the fields concerning our proposed
solution. In section III we describe the proposed method for
combining EA and DL in order to optimize HSIs. The imple-
mentation details and experimental results are then presented
in section IV. Finally, in section V, we enlist the outcomes
and introduce ideas for future work. Our contribution could
be summarized as follows:
• We propose a novel method that combines DL and EA

for the purpose of HSI optimization towards HW and
SW metrics. To the best of our knowledge, this is the
first non-greedy/manual method for HSI optimization.

• We re-adapt novel Neural Networks architectures popular
in Computer Vision towards the estimation of HW and
SW metrics.

• We apply the proposed method in an industrial context,
providing therefore experimentation details on real-world
data.

II. RELATED WORK

In this section, we briefly summarize previous approaches
for the design process and the related flow in our industrial
environment. Successively, we refer to the existing work in the
fields that relate to HSI optimization and the proposed method.

A. Hardware Software Interfaces Design and Optimization

The MetaRTL framework, originally proposed in [8], pro-
vides an environment for Hardware design generation (in this
specific case, HSIs). MetaRTL allows to define abstractions
and properties for each Hardware component and generates
the design based on a chosen configuration. The automation
and abstraction of the design process leads to an increase in
productivity and to a rapid workflow. For this reason, such
model-based generation approach (also thoroughly described
in [4], [17]), is adopted in our industrial environment. Thanks
to this, the designer instantiates a particular configuration
of the component through an instance of the meta-model
following the design requirements. In particular, the process
of specification for an HSI meta-model, shown in Fig. 1,
is inspired by [6]. This configuration would then trigger the
generation of RTL as well as Software code. Finally, the cost
concerning Hardware and Software metrics is obtained from
the synthesis/compilation of the previously generated code.
The obtained cost would then guide the designer towards a
suitable implementation of Hardware together with Software
on an FPGA board. This same procedure applies to a set of
Hardware components, including HSIs. A complete descrip-
tion of this meta-model is available in an online appendix [7].

Given the HSI meta-model, appropriate configurations have
to be chosen such that the intended behavior is realized (e.g.
enabling proper access to peripheral devices) while satisfying
specified cost constraints. This motivated existing work, such

as [11], [14], [16], [21], to find faster design cost estimation
methods that support the designer decisions. Furthermore,
these recent methods of cost estimation have been paving
the road to an ML-aided design optimization. In fact, ML-
driven optimization methods tasks have been proposed in
different fields such as placement and routing [13] and logic
optimization [10]. However, to the best of our knowledge, this
is the first work that optimizes HSI configurations with an ML-
based method.

Fig. 1. Example of HSI meta-model

B. Deep Learning for Computer Vision

Computer Vision (CV, [1]) is a discipline which focuses
on the analysis and interpretation of images. CV is able to
perform several tasks (e.g. object detection, segmentation,
classification) by an automated processing features contained
in the images. Before the advent of Deep Learning (DL, [9]),
the state-of-the-art algorithms would use manually retrieved
features for applying processing algorithms [15].

Current DL algorithms can instead utilize pixel-based repre-
sentations as an input of the ML algorithms [2], [9]. This hap-
pens through the implementation of Neural Networks (NNs,
[2], [9]) (i.e. ML architectures which are motivated by the
functioning of biological neurons), which can exploit effi-
ciently raw features in form of pixel data, reaching the state-of-
the-art in several CV tasks. To be able to elaborate efficiently
raw features and utilize many consecutive processing layers,
some specific architectures encourage features sharing and
gradient propagation. One of the most famous NN with these
characteristics, which is of particular relevance for this work,
is DenseNet [12].

C. Evolutionary Algorithms for Optimization

EA optimization methods are inspired by biological selec-
tion and evolution. They became recently popular and have
been applied in several fields, such as NASA optimal Antenna



Design and Optimal Floor-Plan Design, as described in [19].
One of their main characteristics, besides the biological link,
is that they are a gradient-free method, i.e. they do not require
to compute derivatives. This feature distinguishes them from
other more complex recent approaches such as Reinforcement
Learning [20]. Generally, in EA, a set G = {xi}Ni=1 of indi-
viduals, i.e. possible solutions for the considered optimization
problem, is created. We call this set a generation. The elements
are evaluated through a fitness function Fit(x) that assess
how ”fit” these individuals are, that is how good they are
as a solution for the given optimization problem. The fittest
individuals are then picked and used to generate the next
generation G′ through a mutation process. That means that
every new individual x′i ∈ G′ has been generated by changing
and/or combining some of the fittest individuals in G. This
process is then repeated several times and aims to select fitter
and fitter individuals as generations go by and to get as close
as possible to the ideal individual x∗ = argmaxx Fit(x). In
this work, this process is used to mimic the selection of the
designers among many possible HSIs configurations, searching
for the one that minimizes the design cost.

III. PROPOSED METHOD

In this section, we sketch conceptually the proposed method.
Our approach could be simply described as an alternation
between one evaluation step and one mutation step. In III-A
we describe, as a preliminary, the used data representation.
Afterward, in III-B, our DL-based estimation method choice
for the evaluation step is explained. Finally, in III-C, the two
main steps are both described first singularly and later as parts
of the combined flow.

A. Data Representation

In order to efficiently combine DL and EA approaches in an
unique flow, we use a data representation that is appropriate
for both methods. While the implemented DL method needs
to estimate each configuration fast and accurately, the EA has
to generate new sets of candidate solutions. For this reason,
on the one hand the DL method takes advantage of a data
representation in image format. Such notation uses a 2D image
for Hardware’s cost prediction and a 3D image for Software
cost metrics, in a similar fashion to what presented in [18].
On the other hand, the EA component uses an HSI compact
notation for performing each mutation step. This notation
condenses in one small dictionary the information required to
retrieve the 2D and 3D images that are necessary to perform
the estimation step. An illustrative example of the two different
notations can be seen in Fig. 2.

B. Estimating the Configuration Cost with Deep Learning

During the optimization process, the algorithm needs to
estimate iteratively each different HSI configuration x. This
requires a very efficient method E to estimate the cost C(x)
independently from which configuration x has been given
as input. Tipically, the cost is calculated through a synthe-
sis process (using Xilinx Vivado). Unfortunately, the current

Fig. 2. Two equivalent ways of representing an HSI: Compact Notation (up)
and Image Notation (down)

synthesis method is time-expensive and, if several iterations
are necessary for retrieving the optimal one, the use of the
synthesis tool becomes soon infeasible. For this reason, our
estimation method E for our evaluation step needs to be some
order of magnitude faster in order to be coupled with our
mutation step.

Convolutional Neural Networks (CNNs) have been proven
to provide very accurate predictions for data structures which
present spatial positions [9]. At the same time, in [18], the
image format has been proven to be a good representation
for predicting HSI’s design cost. Motivated by this, we use
convolutional layers for estimating the cost C(x) for a certain
HSI x structured as 2D and 3D images. This allows to compute
C(x) in a very fast and accurate manner. Hence, we adopt
them as method E for our evaluation step.

To increase training efficiency and spatial features sharing,
we assemble our convolutional layers with the DenseNet archi-
tecture [12]. DenseNet extends a CNN with skip-connections
that allow an easier backpropagation of the gradient. This
additional skip-connections contributed to the big success that
this method has in the field of CV. More in detail, we build
two architectures (2D and 3D) that are used as estimation
method E respectively for Hardware and Software metrics op-
timization. Both nets possess two convolutional dense blocks
and are connected with skip-connections. Together with a
faster convergence in training, we consistently report more
accurate and robust predictions after the implementation of
the additional connections.

C. Optimizing the Cost with Evolutionary Algorithms

In order to use a common terminology in the EA field, from
now on, when we say individual x, we refer respectively to an
HSI x. As already mentioned in II-C, EAs are gradient-free
optimization methods that aim to find the fittest individual
x∗ = argmaxx Fit(x). To do so, they simulate an arbitrary
number M of generations G. In our case, for every generation
G, we have two steps: evaluation and mutation.



(a) Evaluation step (b) Mutation step

Fig. 3. The two main steps of our method considered singularly. (a) evaluates an HSI configuration depending on what we are trying to optimize, (b) mutates
the HSI configuration to generate new candidates.

The evaluation step consists in establishing how fit our
current individuals are. To do so, we use an estimation method
E (in our case we picked the DL method described in III-B)
that takes as input an individual x and gives as output the
result for the four design objectives ELUT , ESR, ESS and
ESC . We define the fitness of an individual x as the opposite
of its cost, i.e Fit(x) = −C(x), where

C(x) = δELUT + (1− δ)ESR (1)

in case we are interested in optimizing the area objectives
(LUTs and SRs), and

C(x) = λESS + (1− λ)ESC (2)

in case we are interested in optimizing the SW metrics (i.e.
SS and SCs). Here, the hyper-parameters δ ∈ [0, 1] and λ ∈
[0, 1] enables the designer to specify which the contribution to
the final cost of ELUT , ESR, ESS and ESC .

Although SRs are important for evaluating the design cost,
they are independent w.r.t. allocation of the bi on x and cannot
be optimized. For this reason, we remove them from (1),
obtaining now

−Fit(X) =

{
ELUT , when optimizing HW
λESS + (1− λ)ESC , when optimizing SW

(3)
as overall fitness definition.
As a consequence, only the hyper-parameter λ regulates the

optimization step, and enables the designer to specify which
SW design objective is more relevant for the optimization
at the moment. For example, in (3), increasing λ will make
ESS more important while decreasing it puts the focus of
the optimization on ESC . As default, we propose λ = 1/2,
which can then be changed depending on the designer’s needs.
With the given notation, maximizing the fitness function is
equivalent to minimizing the design cost. A high-level sketch
of this can be also seen in Fig. 3(a).

The mutation step creates new individuals by mutating the
fittest individuals from the previous generation, i.e. creates a
new individual x′ by changing the spatial position of some
bi inside a previous HSI x. This is done by choosing how
many bitfields of the old configurations x should be randomly
moved, we call this ratio r ∈ [0, 1] mutation rate. Specifically,
r = 1 is equivalent to move all the bitfields bi in a random
way and therefore creating a totally random HSI while r = 0
is equivalent to not move any of the bi and therefore having no
mutation, i.e. x = x′. Hence, the adopted mutation rate can be
seen as an arbitrary hyper-parameter to trade-off exploration
and exploitation when generating new possible configurations.

The movement of the selected bi is completely random,
with the constraint of not overlapping other bitfields and not
exiting the limits of the HSI size. A simple sketch of this step
is shown in Fig. 3(b).

The two steps are combined in a unique pipeline. Before
each step, due to the difference in the input’s data representa-
tion, we perform a mapping from one notation of every HSI x
to the other. For example, before we run the evaluation step, we
will map our compact notation for x used by the mutation step
to the image representation. The image can successively be fed
to our DL method for the estimation. Analogously, before the
mutation step, we will perform the inverse mapping on every
HSI x image picked from the previous generation.

All the described steps are combined together as a cycle,
shown in Fig. 4, that is iterated several times until M genera-
tions have been processed. Every cycle aims to provide fitter,
i.e. more optimized, individuals.

IV. EXPERIMENTAL RESULTS

In this section, we describe some relevant details about
data generation, real cost retrieval, method implementation
and training. After that, we report the obtained results in our
industrial environment and discuss them.

A. Dataset and Setup

For the experimental phase we use two datasets, both
generated in the same fashion as [18]. Each sample of the



Fig. 4. The two main steps, mutation and evaluation, combined in one unique flow together with intermediate steps.

dataset belongs to a predefined design space (in terms of No.
of Bitfields, where No. of Bitflieds ∈ [15, 30]) and contains
variations over spatial distribution of bitfields.

We first use a dataset consisting of 4532 samples to train
our DL model that is implemented for estimation purposes.
On this dataset, we perform a train/validation/test split in
the proportions 70/15/15 following the common practice.
The difference in accuracy between the train and test set is
negligible (i.e. < 1%), therefore we do not report overfitting
for our estimation method.

To evaluate our optimization method, we optimize con-
figurations belonging to a much smaller dataset containing
100 samples and we observe the average improvement, i.e.
the average decrease in the design cost. Unlike most ML
algorithm, this second dataset does not need training/test splits.
In fact, our proposed method does not require training for the
two steps once we have a pre-trained estimation method.

After generating the design configurations, we retrieve the
objectives measurements for each one of the design instances.
We first ran a synthesis (through Xilinx Vivado) on the
instances to obtain the real cost for the objectives LUTs and
SRs of each design. After that, we ran on each one of the HSI
a Software program, where the operations of the program are
specified in the design configuration. From this, we retrieved
the real cost for the SS and SCs objectives.

As implementation environment, we use Python 3.6 with
Tensorflow-GPU 1.14.0 and Keras 2.2.4. As for Hardware
setup, we use an Nvidia Tesla P100 GPU, an Intel Core i7-
8700K CPU and DIMM 16GB DDR4-3000 module of RAM.
In the next section, we report timing experiment both with and
without GPU acceleration.

B. Results

Intending to evaluate the effectiveness of the proposed
method, we implement it in an industrial environment with
generated HSI use-cases. To measure the performance, we
observe the average improvement on the three design objec-

tives of the optimized configurations that our method outputs
and compare it with the results given by the greedy method
currently adopted in the industrial setup, namely the First Fit
Search [3]. The results are expressed in terms of percentage
improvement within the variational range of each objective.
The quantitative results of this comparison can be seen in Table
I. When compared to First Fit Search [3], we report an average
improvement of 9, 83% when optimizing for the area. When
optimizing for the Software metrics with a trade-off value of
λ = 1/2, we report 7, 82% for the SS and 8, 85% for SCs. In
all our experiments we used a mutation rate r = 0.1.

TABLE I
OBJECTIVES IMPROVEMENTS EVALUATION

Objective Average Improvement
Name Type Variational Range w.r.t to First Fit [3]
LUTs Area [353, 546] 9,83%

SS Software [722b, 1645b] 7,82%
SCs Software [224, 423] 8,85%

For SW optimization we utilized the default value λ = 1/2.
For SS, values are expressed in bits (b).

As one would expect, the time effort necessary to run the
described method depends on several factors, e.g. the number
of steps that the designer wants to perform. Although in our
experimentation we cannot determine an ”ideal minimum”
number of generations for which the proposed method works,
we observe that no optimal candidate is found after 100
generations. Therefore, we propose this number as upper-
bound of generations for the optimization process. In Table
II we report the necessary time to run the proposed upper-
bound number of generations.

We believe that the conducted experimentation shows the
advantage of the proposed method when compared to greedy
algorithms in terms of optimization performance. The timing
experiment results confirm that the usage of a fast estimation
method, as described in III-B, allows the proposed method
to run in a reasonable amount of time. Furthermore, we



TABLE II
TIMING EVALUATION

Optimization type Running time
Target Hardware (seconds)
Area with GPU 45,7
Area only CPU 77,1

Software with GPU 1298,8
Software only CPU 2763,4
Results are for 100 generations and are independent w.r.t. λ and r.

also report that the usage of GPU acceleration during the
optimization, although not necessary, can further reduce the
time needed to obtain optimized HSIs.

V. CONCLUSIONS AND FUTURE WORK

In this work, we aim to solve the problem of optimizing
Hardware/Software Interfaces, i.e. finding an optimal allo-
cation for a set of bitfields inside the HSI configuration.
To this end, we proposed a novel gradient-free optimiza-
tion algorithm based on Evolutionary Algorithms and Deep
Learning composed of two steps: mutation and evaluation. We
define a fitness function that is linked directly to our design
cost and therefore to the objectives that are crucial for the
design process. Furthermore, we propose the usage of s-o-t-
a Deep Learning algorithms to estimate the fitness function.
This combination between an Evolutionary Algorithm and a
Deep Learning method makes the evaluation step fast. Without
this coupling, by using classical methods such as Xilinx
Vivado synthesis, the whole pipeline would be extremely time-
expensive and therefore not feasible. Experimental evaluations
within an industrial context show that our method consistently
optimizes an HSI in a fast as well as automatic manner, and
outperforms currently used greedy/manual methods in terms
of cost optimization.

As for future work, we believe that even more accurate
methods for the evaluation step could lead to an improvement
of our optimization results. This will be the focus of our future
research together with other optimization methods, including
gradient-based ones.
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