
Simulating Industrial Electrophoretic Deposition
on Distributed Memory Architectures

Kevin Verma∗† Johannes Oder∗ Robert Wille†
∗ESS Engineering Software Steyr GmbH, Austria

†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
Email: {kevin.verma, johannes.oder}@essteyr.com robert.wille@jku.at

Abstract—The application of coatings by employing Elec-
trophoretic Deposition (EPD) is one of the key processes in
automotive manufacturing. Here, car assemblies or entire car
bodies are dipped into a tank of liquid aimed for preventing
the object from future corrosion. However, this process is
highly non-trivial. In fact, it has to be ensured that no air
bubbles emerge during the dipping which may lead to an
incomplete coverage of the coating. Moreover, entrapped liquids
that remained after dipping out may lead to corrosion in the
consecutive manufacturing process. To detect such problems
in an early development stage, simulation methods based on
Computational Fluid Dynamics (CFD) are utilized. Additionally,
employing a dedicated volumetric decomposition method, this has
led to a tool chain ALSIM which allows to simulate the process
of EPD with significantly reduced complexity as compared to
standard CFD tools. However, despite these benefits, the method
still suffers from large execution times. In this work, we are
proposing a parallel scheme which allows for an execution on
distributed parallel memory architectures. To that end, dedicated
workload distribution and memory optimization methods are
presented, which eventually allow for an efficient simulation of
EPD coatings. Experimental evaluations based on industrial use
cases confirm the obtained benefits: While a serial simulation
required more than 8 days, the parallel method proposed in this
work allows to complete the simulation with 32 processes in less
than 15 hours.

I. INTRODUCTION

Electrophoretic Deposition (EPD, [1], [2]) coating is one of
the key processes in automotive manufacturing. Here, coatings
are applied to car assemblies or entire car bodies (also known
as Body in White or BIW for short) by moving them through
a tank of liquid as sketched in Fig.1. During this process, the
object is dipped into a tank by a certain kinematic, while the
exact kinematic varies between different manufacturers.

The coatings applied by EPD are used to prevent the object
from corrosion. However, this is a highly non-trivial task.
In fact, to completely prevent corrosion, it is required that
the whole surface of the object is completely covered by the
coating – which is frequently prevented by air bubbles that
may emerge when dipping the object into the tank. Moreover,
entrapped liquids that remained after dipping out may lead to
corrosion in the consecutive manufacturing process. To detect
and avoid these issues, it has been practically suited for many
years to perform EPD on prototypes. Based on these proto-
types, the manufacturers were able to assess the problematic
areas of the object and to modify them accordingly, e.g. by
adding an extra hole to drain entrapped liquids.

However, prototypes inherently can only be built at a very
late stage of development. This leads to the fact that every
change made at this stage requires a rollback to early devel-
opment stages. By that, not only immense costs are caused,
but also manufacturing processes are frequently delayed. Thus,
there is a high demand for an efficient and accurate simulation
tool that not only drops the need for an expensive prototype
but also allows to detect problem areas at an early stage of
development.

In recent years, tools based on Computational Fluid Dynam-
ics (CFD, [3], [4], [5]) have been used to simulate correspond-
ing coating processes. CFD is a well established method for
the simulation of fluid flows. However, the complex data used
in EPD often pushes standard CFD methods to their limits
– and, even on dedicated computer clusters, cause extremely
large simulation times.

To address this problem, the ALSIM architecture (from
the German “Auslaufsimulation”, i.e. drainage simulation) has
been proposed [6], [7]. ALSIM is a CFD-based tool, which
uses a geometric kernel that employs a unique volumetric de-
composition method. This volumetric decomposition allows to
use triangular surface meshes, as against CFD, where typically
volume meshes are required (this volumetric decomposition is
reviewed in more detail in Section II). This technique allows
for a volumetric representation with significantly reduced
complexity.

However, the topology of the object is changed as soon as
the object is rotated – leading to different volumetric decom-
positions. This is a crucial problem, since electrophoretic de-
position is a dynamic process in which the object is constantly
rotated. Due to this inherent dynamic behavior, the volumetric
decomposition needs to be applied frequently for various
rotation angles. Moreover, it has been shown that this frequent
volumetric decomposition is the most time consuming part of
the whole simulation [8], in contrary to other fluid simulation
methods, where typically the solving part is rendered as the
bottleneck (see e.g. [9], [10], [11]).

To overcome this drawback, in [8] a parallel framework
on a threading level has been presented. This framework
employs OpenMP to introduce two layers of parallelism and,
by that, allows to compute the volumetric decomposition of
each discrete time step in parallel. Following this flow, the
computational time is reduced significantly. However, this
approach still suffers from two major aspects: (1) high memory

Fig. 1: A simplified Electrophoretic Deposition tank used in
automotive industry to apply coatings.

consumption as a result of concurrently storing multiple reeb
graphs in the memory, and (2) limited parallel computing cores
due to hardware limitations of shared memory architectures.
To make this parallel approach practically applicable, it is
therefore key to enable the execution on distributed memory
architectures.

In this work, we are addressing these shortcomings by
extending the parallel framework for distributed parallel ar-
chitectures based on the MPI framework [12], [13]. In order
to accomplish that, we consider the following major aspects in
this regard: (1) The initial workload distribution of the discrete
input rotation degrees, (2) the inherent serial dependency
of the concrete time step simulation, (3) the high memory
requirement of the employed graph structure, and (4) the
irregular workload distributions.

The correspondingly obtained method is described in the
remainder of this paper as follows: First, Section II and
Section III briefly review the basics on CFD and the volumetric
decomposition as well as how to utilize that for EPD simu-
lations, respectively. Afterwards, we describe in Section IV
how parallelization of those simulations can be improved by
addressing the four aspects listed above – eventually leading
to an efficient simulation of EPD on distributed memory ar-
chitectures. Finally, Section V summarizes the results obtained
from experimental evaluations, before the paper is concluded
in Section VI.

II. BACKGROUND

In this section, we review the background for simulation of
Electrophoretic Deposition (EPD, [1], [2]) which is based on
methods for Computation Fluid Dynamics (CFD, [3], [4], [5]).
We particularly review the main characteristic of previously
proposed methods which, originally, prevented an efficient
simulation and motivates the consideration of a so-called vol-
umetric decomposition scheme. While this scheme addresses
a major obstacle for an efficient EPD simulation, it causes
other drawbacks which are discussed afterwards. Resolving
this drawback and, by this, eventually enabling an efficient
EPD simulation is then considered in the remainder of this
work.

A. CFD-based Simulation for Electrophoretic Deposition

In electrophoretic deposition processes, objects (e.g. BIWs)
get dipped through a tank of paint. In order to simulate such
processes, a three-dimensional representation of the object
which can serve as input data is necessary. In manufacturing
processes, such objects are usually developed using common

CAD-tools and, then, exported as meshes which can be used as
input for various simulation tools. Fig. 2a provides an example
of an object representation used in EPD.

Using such a representation, standard tools based on Com-
putation Fluid Dynamics (CFD) can be utilized (and, in
fact, have been used for many years) in order to simulate
corresponding coating processes. CFD allows the simulation of
fluid flows by the numerical solution of the governing Navier-
Stokes equations, which have been known for over 150 years.

However, CFD is usually applied to simulate a large number
of small volumes like meshes composed of tetrahedra or
hexahedra [14], [15]. Simulating large objects such as entire
car bodies frequently brings CFD to its limits and, hence,
typically requires significantly large computation times (even
on dedicated HPC clusters). Besides that, CFD is very sensitive
to the choice of boundary conditions. A small difference in
boundary conditions may lead to a huge deviation in results.

These drawbacks motivate alternative representation of the
considered objects which is more suited to the simulation of
EPD. For that purpose, the ALSIM architecture has been pro-
posed. This architecture is based on a decomposed volumetric
representation whose key ideas are reviewed next.

B. Volumetric Decomposition

One of the main ideas of ALSIM is to use fewer and larger
volume units compared to standard CFD methods in order to
reduce the computational complexity. For that purpose, the
input model is typically a triangular surface mesh, as against
CFD where volumetric meshes (consisting of e.g. tetrahedras)
are widely used. However, since the main task is to show the
fluid distribution inside the volumes of the object, a volumetric
representation of the object is inevitable. Therefore, as an alter-
native volumetric representation, a geometrical decomposition
into so-called flow volumes has been introduced by Strodthoff
et. al. [16]. Here, flow volumes are defined as connected parts
of a given triangulated solid, with the boundary consisting
of triangles of the triangulated solid and parts of horizontal
planes on top and bottom. To generate these flow volumes, the
object is scanned for local minimums, maximums, and saddle
points (also referred to as critical vertices) while sweeping
from bottom to top. Each of these identified points ends the
former flow volume and starts a new one.

Example 1. Consider the object representation from Fig. 2a.
This is geometrically decomposed by vertical cuts into flow
volumes as illustrated in Fig. 2b. Each number denotes one
identified flow volume.

Based on this volumetric decomposition, a graph is con-
structed which represents the topology of the object by flow
volumes with their respective relations. The resulting graphs
can be seen as so-called reeb graphs [17], [18], which are
originally a concept of Morse theory [19], where they are used
to gather topological information. This graph representation
describes the topology of the object, which is important for the
purpose of EPD simulation where it is key to know possible
flow paths of liquids.

(a) Input Object (b) Flow Volumes (c) Resulting Graph

Fig. 2: Geometric decomposition of a simple object.

Example 2. Fig. 2c shows the resulting graph, while the node
numbers correspond to the identified flow volumes shown in
Fig. 2b. By means of this graph, it is known that e.g. fluid of
volume 3 can flow into volume 2 and volume 4, while fluid of
volume 4 can only flow to volume 5.

Based on this reeb graph representation, the actual sim-
ulation can be conducted. The simulation consists of two
processes: (1) a hydro-static solving process (rotation), and
(2) a hydro-dynamic solving process (translation). In this
context, the reeb graph is not only used to decompose the
input object into flow volumes, but also to store the simulation
result. After the hydro-static and hydro-dynamic solving, for
each reeb graph node the liquid filling level is stored, which
fundamentally represents the simulation result.

This approach provides advantages compared to standard
CFD methods, however, it also yields a major disadvantage
related to rotation. Every time the rotation angle of the object
is changed, the volumetric decomposition is changed and
hence the reeb graph needs to be re-computed. This essentially
leads to the fact that during every EPD simulation the reeb
graph frequently needs to be re-computed which results in
increased execution time and memory consumption.

In this work, we are overcoming this drawback by allowing
the execution of the EPD simulation on distributed memory
architectures. Thereby, the workload of each discrete time step
is distributed to the individual processes and then executed in
parallel, while keeping the inherent serial dependency of each
time step to its predecessor. The basic methodology for this
is described next.

III. SIMULATION OF ELECTROPHORETIC DEPOSITION

The basic serial simulation flow employed thus far is
sketched in Algorithm 1. This flow consists of mainly three
steps while iterating through all time steps T . The first step is
to rotate the input mesh according to the kinematic of the real
process (see Line 3). Based on this rotated mesh, a new reeb
graph is created (Line 4). Once this reeb graph is constructed,
the actual simulation (hydro-static and hydro-dynamic solving)
is conducted (Line 5). Afterwards the results of this time step t
are available and can be exported for further analysis (Line 6).

Algorithm 1 Basic simulation flow

1: M ← input Mesh
2: for each time step t ∈ T do
3: Mr ← rotateMesh(M)
4: Gt ← createGraph(Mr)
5: Gt ← simulate(Gt−1, Gt)
6: exportResults(Gt)
7: end for

In order to allow the execution of the EPD simulation on
distributed parallel architectures, this basic simulation flow
needs to re-developed.

In the distributed setup, each process is performing the
computations of the time steps t ∈ T independently. For that
purpose, each process initially requires two inputs: (1) the
original input mesh and (2) the input time step t ∈ T to be
computed.

Therefore, at first, the input time steps are subdivided and
distributed to the independent processes. This data contains the
rotation angles of the input object of each discrete time step.
The rotation will be performed on the original input mesh,
which is also distributed to the individual processes.

However, as already discussed, the simulation of time step
t−1 needs to be completed before the simulation of time step
t can be started. Therefore, each process not only requires
the original input data, but also the result of the preceding
simulation step. Based on this preceding result, the current
process can compute its corresponding simulation step.

Overall, for each process this yields the basic workflow as
sketched in Algorithm 2. Here, each process is assigned a
partition of the input time steps t ∈ T , which contains the
positions and rotation angles of the object (see Line 1). Based
on this data, each process independently rotates the input mesh
and constructs the corresponding reeb graph (Line 4-5). In
order to simulate this time step, the process needs to receive
the preceding simulation result, based on which the current
step can be simulated (Line 6-7). The results are stored inside
the reeb graph and dispatched to the subsequent process, as
well as exported to disc for further analysis (Line 8-9). This
basic workflow is also illustrated in Fig. 3.

Fig. 3: Illustration of the parallel flow.

Algorithm 2 Proposed distributed simulation flow

1: V ← assigned time steps
2: M ← input Mesh
3: for each v ∈ V do
4: Mr ← rotateMesh(M)
5: Gv ← createGraph(v)
6: recv Gv−1

7: Gv ← simulate(Gv−1, Gv)
8: send Gv

9: exportResults(Gv)
10: end for

However, to receive optimal performance, it is key to
consider the important aspects of the implementation, as in-
troduced in Section I. More precisely, at first, the initial work-
load distribution of the discrete input rotation degrees needs
to be considered. Moreover, the inherent serial dependency
of the concrete time step simulation and the high memory
requirement of the employed graph structure further increase
the complexity. Finally, the irregular workload distributions
among the concrete time steps needs to be taken into account
to receive optimal performance.

The details for this are covered next.

IV. IMPLEMENTATION OF THE DISTRIBUTED ALGORITHM

In order to efficiently implement the proposed workflow,
the four aspects as described above need to be considered.
To this end, the following section covers the implementation
of the workload distribution, as well as a dedicated memory
optimization strategy. Furthermore, load balancing issues and
limitations of the presented scheme are discussed.

A. Workload Distribution

The general setup of the distributed algorithm is based on
a master-slave architecture. Instead of iterating through the
time steps t ∈ T and solving the equation system for time
step t after creating the graph (as sketched in Algorithm 1),
the first process (N0) starts by partitioning the input data and
distributing it to the remaining processes. Due to the inherent
dependency of time step t on t−1, an optimal partition should
allow a contiguous computation of the time steps t ∈ T .
Therefore, time steps t0 to tp−1 should be the first steps to be
computed, where p is the total number of processes. Hence,
the data for each process N is partitioned as

N0 = {t0, t0+p, t0+2p, ..., t0+(T−p)},
N1 = {t1, t1+p, t1+2p, ..., t1+(T−p)},
Np−1 = {tp−1, tp−1+p, tp−1+2p, ..., tp−1+(T−p)}

where p is the total number of processes and T the total
number of time steps.

However, in some certain kinematics it might occur that
identical rotation degrees are used within one simulation. For
example: (1) when the object dips in, an identical rotation
degree might occur during the dip out phase, or (2), when
a specific rotation degree needs special consideration and
is therefore splitted into small time slices to receive more
accurate results. In such cases, the reeb graph from the
duplicated rotation degree could be re-used and does not need
to be constructed again. For that purpose, the identical input
rotation angles are assigned to the same process, such that the
reeb graph for the duplicated rotation degree does not need to
be created again, but can be re-used instead.

Input

N0

N1

N2

0 1 2 3 4 5 6 7 8 9

0 4 8 9

1 2 5

3 6 7

Fig. 4: Partition of the input data to three processes. Colored
fields mark identical values.

Example 3. Fig. 4 shows input data containing rotation
degrees for 10 time steps which should exemplarily be par-
titioned to three processes. Each of the colored fields marks
one tuple with identical rotation degrees. During the iteration
through the input, the individual rotation degrees are assigned
consecutively to the processes. The duplicated rotation degrees
are assigned to the same process to allow re-usage of the
constructed reeb graph.

After this initial data partitioning, the first process sends: (1)
the original input mesh, and (2) the data partition to the corre-
sponding processes. Asynchronously to this memory transfer,
the first process starts the creation of the reeb graph of time
step t0 and the subsequent simulation. Once the remaining
processes have received their corresponding input data, each
process is computing its rotated mesh, based on which the reeb
graph is constructed. As soon as the simulation of time step t0
is completed by the first process N0, its result is transfered to
the subsequent process N1. Based on the simulation result
of t0, process N1 can conduct its corresponding simulation
of time step t1 and once completed, dispatch the result to
process N2. This flow is repeated until all time steps t ∈ T
are simulated.

By employing this communication flow, the actual simula-
tion of the time steps t ∈ T are kept in the same order as they
were executed in serial.

However, as introduced in Section I, not only the inherent
serial dependencies, but also the high memory consumption
of the reeb graph renders the dispatching of the simulation
result to the consecutive processes a non-trivial task. To receive
optimal performance, further optimization on the memory
consumption is required, as discussed next.

B. Memory Optimization

The high memory requirement of the reeb graph method
yields a major drawback in a distributed setup, where the reeb
graph needs to be dispatched between the processes. Although
the reeb graph method allows for efficient volumetric repre-
sentation with reduced complexity as compared to volumetric
mesh approaches, it suffers from high memory requirements
as summarized in Table I. Here, the memory requirements for

TABLE I: Reeb graph memory requirements.

Data set # Triangles Memory Requirement
Spare Wheel Case 60k 150MB
Liftgate 200k 450MB
Cabin 850k 1.3GB
BIW 3M 6GB

(a) Initial State (b) After Rotation

Fig. 5: Influence of rotation to the reeb graph.

typical data sets used in the automotive industry: Spare wheel
case, liftgate, and cabin are car assemblies (i.e. car parts),
while BIW (Body In White) refers to an entire car body. Con-
sidering that in a parallel approach using n processes, n reeb
graphs will be allocated at the same time, this clearly suggests
that the reeb graph construction needs to be distributed among
a dedicated cluster. In this distributed setup however, the reeb
graphs frequently need to be dispatched between the processes,
since the simulation result is incorporated into the graph.

Fig. 5 shows a simple object with the corresponding reeb
graph in two discrete time steps with different rotation angles.
The simulation result is incorporated into the reeb graph in a
way that each reeb graph nodes stores its corresponding liquid
filling level. Hence, in Fig. 5a reeb graph node 2 is fully filled,
while 0 and 1 are completely empty. In Fig. 5b, reeb graph
node 3 and 4 are partially filled and 5 is completely empty.
Based on this reeb graph, the simulation result is represented
and can also be projected back onto the original input mesh.
Therefore, the reeb graph is also employed to transfer the
result from one simulation step to another. In Fig. 5 it is
also shown that the reeb graph is heavily influenced by the
corresponding rotation degree. The volumetric decomposition
of Fig. 5b significantly differs from the decomposition before
rotation as shown in Fig. 5a. Due to that, the transfer of
simulation results from one reeb graph to another is a non-
trivial task. In order to transfer the result, the connection from
one reeb graph node to the corresponding reeb graph node after
rotation needs to be computed. However, as shown in Table I,
the reeb graph data structure is extremely heavy in terms
of memory requirement. Since dispatching such heavy data
structure among a distributed architecture is highly inefficient,
a simplified reeb graph has been developed which stores the
following data:

1) In order to compute the relation between two rotated
reeb graphs, the vertices of the original input mesh are
employed. Every reeb graph node represents one volume
of the underlying mesh. To compute the relation after
rotation, the IDs of the vertices of the underlying mesh
are stored.

2) For every vertex of the underlying mesh, every reeb
graph node additionally stores a boolean which repre-
sents if the corresponding vertex is in touch with liquid
or not.

3) For each reeb graph node, the corresponding liquid
filling level is stored.

This simplified reeb graph representation has significantly
less memory requirement than the standard reeb graph, while
the preceding simulation result can still be accurately repre-
sented.

While this reduced memory requirement essentially simpli-
fies the communication among the distributed memory archi-
tecture, the methods still exhibits a rather irregular workload
distribution among their iterations caused by the inherent serial
dependency. The details on this are discussed next.

C. Load Balancing

The whole simulation can essentially be abstracted by three
major tasks: (1) the reeb graph construction, (2) the actual sim-
ulation (hydro-static and hydro-dynamic equation systems),
and (3) various setup and I/O tasks. Out of these three
major tasks only the reeb graph construction offers potential
parallelism, while the other tasks are inherently serial. The
ratio between the reeb graph construction and the other tasks,
hence the ratio between parallel and serial tasks is roughly
80% to 20%. Fig. 6 illustrates an abstract task view of the
whole workflow. The serial part has been summarized by the
Simulation task. The illustration shows how this inherent serial
dependency of time step t to t− 1 strongly limits the parallel
scalability of the whole process. The higher task numbers yield
a large idle time between the reeb graph construction and
the actual simulation. This strongly suggest that this scheme
cannot scale well on a higher number of processing cores.
Furthermore, it is also evident that further optimization to the
reeb graph construction itself will not result in much higher
speedup. Regardless of the magnitude of improvement, the
limiting factor is the inherent serial work, as described by
Amdahl’s Law.

Since this inherent serial dependency cannot be overcome,
the only way to reduce this idle time would be to reduce
the time of the serial work, hence the actual simulation time.
However, in this process a hydro-static and hydro-dynamic
equation system is solved which itself offers very limited
potential to parallelism. Therefore, the presented scheme of
parallelizing the reeb graph construction on a distributed mem-
ory architecture is close-to-optimal considering the inherent
limiting factors of the application. Evaluations summarized in
the next section, confirm these enhancements.

Reeb Graph Simulation

Processes
T
im

e

Fig. 6: Abstract processes view of the whole parallel scheme.

TABLE II: Considered data sets.

Spare Wheel Case Liftgate Cabin BIW
triangles 60k 200k 850k 3M

V. EXPERIMENTAL EVALUATIONS

In order to evaluate the performance of the proposed
methods, a range of experiments have been conducted whose
results are summarized in this section. More precisely, we
present the obtained speedup for the reeb graph construction
alone (i.e. excluding the actual simulation) as well as for the
entire simulation process. Before results on that are presented,
however, the utilized test environment and the considered data
sets are described first.

A. Test Environment and Considered Data Set

The experiments have been conducted on a cluster contain-
ing 8 individual nodes. Each of the nodes contains two Intel
Xeon E5-2620 v4 2.10 GHz with 8 physical cores each. The
source code was compiled with GCC 5.4.0 with optimization
level -O3 and executed on CentOs 7.

To evaluate the scalability of the methods with respect to
the input size and number of processes, data sets of different
sizes, i.e. composed of different numbers of triangles forming
the surface mesh (c.f. Section II), have been considered. All
of them constitute typical data sets used in the automotive
industry such as a Spare wheel case, a Liftgate, and a Cabin
(which all represent parts of a car) as well as an BIW
(i.e. a Body In White) which represents an entire car body
(and, hence, is the largest data set). Table II provides the
number of triangles for each of those data sets. Each data set is
considered for 72 discrete time steps which yields a simulation
of a complete rotation of 360◦ assuming that simulations steps
after each 5◦ are considered sufficient For each of the data sets,
the results of the proposed distributed method are compared
with the results obtained by the serial method, i.e. using a
single processing core.

2 4 8 16 32 64
Number of processes

2

4

6

8

10

12

14

16

Sp
ee

du
p

Spare Wheel Case
Liftgate
Cabin
BIW

(a) Speedup.

2 4 8 16 32 64
Number of processes

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Spare Wheel Case
Liftgate
Cabin
BIW

(b) Efficiency.

Fig. 7: Speedup and efficiency of the reeb graph construction.

1 2 4 8 16 32 64
Number of processes

25

50

75

100

125

150

175

200

Ex
ec

ut
io

n
Ti

m
e

(h
)

BIW

(a) Absolute execution time.

1 2 4 8 16 32 64
Number of processes

2

4

6

8

10

12

Sp
ee

du
p

Speedup

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency

(b) Speedup and Efficiency.

Fig. 8: Absolute execution time, speedup and efficiency of the whole simulation.

B. Speedup in the Reeb Graph Construction

Table III shows the speedup and efficiency obtained for
the four considered data sets using the proposed distributed
method compared to the serial method. The results are also
visualized in Fig. 7. The obtained values show that the best
speedup is achieved when using 32 processes. Then, e.g. for
the Cabin, a speedup of 13.1 and, for the BIW, a speedup of
16.2 is obtained. Only for the smallest data set, the spare wheel
case, 16 processes yield the best speedup of 6.1. Generally,
for the spare wheel case the obtained speedup is significantly
lower as compared to larget data sets. This results from the
fact that for smaller data sets, the execution time for the reeb
graph construction is proportionally smaller as compared to the
time spent on synchronization efforts. This generically renders
the obtained speedup for smaller data sets underperforming as

compared to larger data sets. For the larger data sets it is shown
that an efficiency of over 0.9 is obtained when employing up
to 8 processes. For the largest data set, the BIW, even for 16
processes an efficiency of 0.93 is achieved.

However, the obtained values also strongly suggest that, for
more than 32 processes, the speedup drops drastically. This
originates from the fact that in total 72 discrete times steps are
considered in the experiments and, hence, 72 reeb graphs need
to be computed. When employing 64 processes, 64 reeb graphs
will be computed in parallel. After those are completed, only
8 reeb graphs are missing, yielding workload for 8 processes,
whereas the remaining processes remain idle. This essentially
results in dramatic drop of efficiency, e.g. 0.11 for the BIW
when employing 64 processes.

TABLE III: Results obtained for the reeb graph construction.

(a) Speedup

Processes Spare Wheel Case Liftgate Cabin BIW
2 1.9 1.9 1.9 1.9
4 3.7 3.8 3.8 3.9
8 5.7 7.5 7.6 7.8
16 6.1 12.2 12.9 14.8
32 5.7 12.1 13.1 16.2
64 3.5 4.7 5.2 7.3

(b) Efficiency

Processes Spare Wheel Case Liftgate Cabin BIW
2 0.98 0.98 0.99 0.99
4 0.93 0.95 0.95 0.98
8 0.71 0.94 0.95 0.98
16 0.38 0.76 0.81 0.93
32 0.18 0.38 0.41 0.51
64 0.05 0.07 0.08 0.11

TABLE IV: Results obtained for the entire simulation.

Processes Absolute (h) Speedup Efficiency
1 192.5 1 1
2 106.9 1.8 0.9
4 58.3 3.3 0.82
8 29.6 6.5 0.81
16 15.4 12.5 0.78
32 14.9 12.9 0.40
64 35.6 5.4 0.08

C. Speedup in the Entire Simulation

To show the improvements gained for a typical industrial
automotive use case, we are also presenting the speedup in
absolute times of the entire simulation gained for a BIW. The
BIW is composed of 3 million triangles, the simulation is
considering 72 discrete time steps of 5◦ rotation each.

Table IV shows the obtained values for absolute execution
time hours as well as speedup and efficiency compared to
the serial method. The results are also visualized in Fig. 8.
The results confirm that the proposed method yields significant
improvements. While the serial simulation took 192.5 hours,
the simulation method proposed in this work utilizing 32
processes terminated in 14.9 hours, resulting in a speedup of
12.9. When 64 processes are used, the presented approach
does not excel due to the inherent serial dependencies of
the application. In a simulation using 72 time steps, the 64
processes are frequently just busy waiting after completing
their respective reeb graph construction until the simulation
of the preceding step is completed. Therefore the efficiency
for 64 processes is merely 0.08, as presented in Table IV.

However, for up to 32 processes, significant speedups with
satisfying efficiency is obtained. In fact, the time needed to
simulate the industrial example considered here can be reduced
from over 8 days to just less than 15 hours.
work. The proposed methods result in significant speedup for

VI. CONCLUSION AND FUTURE WORK

In this work we presented a distributed parallel scheme for
an industrial electrophoretic deposition simulation. Dedicated
workload distribution and memory optimization methods were
presented an implemented in C++ employing the MPI frame-

the entire simulation. For an industrial use case simulation
using a full car body (Body In White), a serial simulation
consumed over 190 hours, whereas the parallel approach
could be completed in less than 15 hours using 32 processes.
Future work includes the extension of the simulation with new
physical phenomena, as well as geometrical optimizations for
the reeb graph construction.

ACKNOWLEDGMENT

This work has been supported by the Austrian Research
Promotion Agency (FFG) within the project “Industrienahe
Dissertationen 2016” under grant no. 860194.

REFERENCES

[1] L. Besra and M. Liu, “A review on fundamentals and applications of
electrophoretic deposition (epd),” Progress in Materials Science, vol. 52,
no. 1, pp. 1 – 61, 2007.

[2] F. N. Jones, M. E. Nichols, and S. Peter Pappas, “Electrodeposition
coatings,” in Organic Coatings: Science and Technology, 08 2017, pp.
374–384.

[3] H. K. Versteeg and W. Malalasekera, An introduction to computational
fluid dynamics: the finite volume method. Pearson Education, 2007.

[4] C. Chu, “Computational fluid dynamics,” in Numerical Methods for
Partial Differential Equations, 1979, pp. 149 – 175.

[5] G. Strang and G. J. Fix, An analysis of the finite element method.
Wellesley-Cambridge Press, 1988.

[6] M. Schifko, S. Xinghua, and K. Kazumasa, “Enhanced dip paint
simulation at the very first milestone of car development,” JSAE Annual
Congress, vol. 99, pp. 5–9, 2013.

[7] M. Schifko, H. Steiner, H. Mohri, and C. Bauinger, “Enhanced E-
Coating - Thickness Plus Gas Bubbles, Drainage and Buoyancy Force,”
SAE World Congress and Exhibition, pp. 1–9, 2016.

[8] K. Verma, L. Ayuso, and R. Wille, “Parallel Simulation of Elec-
trophoretic Deposition for Industrial Automotive Applications,” in In-
ternational Conference on High Performance Computing & Simulation,
2018, pp. 1–8.

[9] K. Verma, K. Szewc, and R. Wille, “Advanced load balancing for SPH
simulations on multi-GPU architectures,” in IEEE High Performance
Extreme Computing Conference, 2017, pp. 1–7.

[10] K. Verma, C. Peng, K. Szewc, and R. Wille, “A Multi-GPU PCISPH
Implementation with Efficient Memory Transfers,” in IEEE High Per-
formance Extreme Computing Conference, 2018, pp. 1–7.

[11] P. Zaspel and M. Griebel, “Massively parallel fluid simulations on
Amazon’s HPC Cloud,” in First International Symposium on Network
Cloud Computing and Applications, 2011, pp. 73–78.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface. Cambridge, MA:
MIT Press, 1999.

[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary,
September 2004, pp. 97–104.

[14] T. J. Baker, “Mesh adaptation strategies for problems in fluid dynamics,”
Finite Elements in Analysis and Design, vol. 25, no. 3, pp. 243 – 273,
1997.

[15] J. F. Thompson, “Grid generation techniques in computational fluid
dynamics,” American Institute of Aeronautics and Astronautics, vol. 22,
no. 11, pp. 1505 – 1523, 1984.

[16] B. Strodthoff, M. Schifko, and B. Juettler, “Horizontal Decomposition
of Triangulated Solids for the Simulation of Dip-coating Processes,”
Computer-Aided Design, vol. 43, pp. 1891–1901, 2011.

[17] T. L. Kunii and Y. Shinagawa, “Constructing a Reeb graph automati-
cally from cross sections,” IEEE Computer Graphics and Applications,
vol. 11, pp. 44–51, 1991.

[18] H. Doraiswamy and V. Natarajanb, “Efficient algorithms for computing
Reeb graphs,” Computational Geometry, vol. 42, pp. 606–616, 2009.

[19] J. Milnor, “Morse theory.” Princeton University Press, vol. 51, 1963.

