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Abstract—The recent advances in the physical realization of
Noisy Intermediate Scale Quantum (NISQ) computers have moti-
vated research on design automation that allows users to execute
quantum algorithms on them. Certain physical constraints in
the architectures restrict how logical qubits used to describe the
algorithm can be mapped to physical qubits used to realize the
corresponding functionality. Thus far, this has been addressed
by inserting additional operations in order to overcome the
physical constrains. However, all these approaches have taken
the existing architectures as invariant and did not explore the
potential of changing the quantum architecture itself—a valid
option as long as the underlying physical constrains remain
satisfied. In this work, we propose initial ideas to explore this
potential. More precisely, we introduce several schemes for the
generation of alternative coupling graphs (and, by this, quantum
computing architectures) that still might be able to satisfy
physical constraints but, at the same time, allow for a more
efficient realization of the desired quantum functionality.

I. INTRODUCTION
Quantum computing [1] received significant interests be-

cause of its ability to provide efficient solutions for cer-
tain complex tasks such as quantum chemistry, optimization,
machine learning, cryptography, etc. Physicists experimented
with various technologies such as ion-traps, superconductors,
semiconductor quantum dots, or photonic systems in order to
physically realize quantum computers. Among these, the su-
perconducting technology is considered very promising since it
provides better physical realizations over other candidate tech-
nologies [2]. This motivated researchers as well as companies
to focus on the development of actual quantum computers [3],
[4].

Herein, the approach from IBM stands out—it provided the
first publicly available quantum processors. These processors
can be accessed by anyone through cloud access [5]. This
allows designers to run their own quantum algorithms (usually
represented in terms of circuits) on the IBM quantum com-
puters, known as IBM QX architectures. In order to execute
quantum circuits on those architectures, the initial circuits have
to be decomposed into elementary quantum operations that
are supported by the given architecture. To this end, several
solutions exists that decompose arbitrary quantum circuits into
a sequence of elementary quantum gates [6]–[8].

Once the circuits are represented in a sequence of ele-
mentary quantum gates supported by the architecture, further
design steps need to be conducted. This includes the map-
ping of logical qubits used in the originally given quantum
circuit to the physical qubits used in the architecture. This,
however, cannot be done in a one-to-one fashion, because IBM
QX architectures have certain physical constraints described
by so-called coupling graphs. Current state-of-the-art meth-
ods [9]–[14] insert additional gates in order to re-arrange the
qubits and/or to change the control/target connections so that
the constraints imposed by the coupling graphs are satisfied.
Obviously, the insertion of additional gates increases the size of
the quantum circuit and, thus, reduces the fidelity of the circuit.
As a result, researchers and engineers focused on developing
solutions that aim to derive a proper mapping of logical qubits
to physical qubits while, at the same time, keeping the number
of additional gates as small as possible.

g1 g2 g3 g4 g5 g6
q0 T H • q0

q1 • q1
q2 • • q2
q3 q3

Fig. 1: Quantum circuit

However, all these approaches have taken the existing archi-
tectures as invariant and did not question the correspondingly
resulting constraints. In this work, we show that there exists
further potential. In fact, changing the constraints imposed by
the existing quantum computing architectures is a valid option
(of course, as long as the underlying physical constrains remain
satisfied). In the following, we motivate that in more detail and
propose initial ideas to explore the resulting potential. More
precisely, we introduce several schemes for the generation of
alternative coupling graphs (and, by this, quantum comput-
ing architectures) that still might be able to satisfy physical
constraints but, at the same time, allow for a more efficient
realization of the desired quantum functionality.

II. QUANTUM CIRCUITS AND ARCHITECTURES

Before the general idea and the proposed schemes are
introduced, we first provide a brief review on quantum circuits
as well as the quantum architectures commonly used in today’s
NISQ devices.

Quantum bits (qubits) are the basic information units in
quantum computation [1]. A qubit can have two basis states,
|1〉 or |0〉 and can also have a superposition of both states.
A quantum circuit is composed of quantum gates, where
each gate represents a quantum operation. A gate can either
involve one or two qubits. In the case of two-qubit quantum
gates, one qubit is the target qubit and other is the control
qubit. The Clifford+T gate library [6], [15] composed of the
1-qubit Hadamard (H) gate, T (phase shift by π

4 ) gate, and
2-qubit controlled NOT (CNOT) gate represents a universal
gate library, i.e., all quantum operations can be performed by
circuits composed of gates from this library. In order to realize
an efficient quantum circuit, the total number of quantum gates
in a circuit, should be kept as low as possible.

Example 1. Fig. 1 shows an example of a quantum circuit
composed of four qubits and six gates. The boxes labeled with
H and T represent the single qubit gates H and T, respectively.
The control and target qubits of the CNOT gates are denoted
by • and ⊕, respectively.

In order to execute a quantum circuit, they have to be
mapped onto a real quantum computer. In the following,
we focus on the quantum computers provided by IBM’s
Project Q [5]. Here, quantum algorithms to be executed
(usually provided in terms of a quantum circuit) have to be
composed of elementary quantum gates only. To this end,
several methods decomposing the desired quantum function-
ality to an elementary gate library exist in literature [6]–[8].
Besides that, there are also some constraints which need to be



Fig. 2: Quantum architecture Rueschlikon

satisfied. In fact, 2-qubit quantum gates such as CNOT can
only be applied between specific pairs of qubits. Furthermore,
for each pair of qubits, which qubit will work as the control
and which one will work as the target are firmly specified.
This restriction is known as CNOT-constraints, and are usually
described in terms of a coupling graph which depicts the layout
of the quantum architecture. More formally, a coupling graph
A = (Q,E) over physical qubits Q = {Q0, Q1, · · · , Qn−1} is
a directed graph consisting of a set of vertices Q and a set of
edges E = {(Qu, Qv), Qu, Qv ∈ Q,Qu 6= Qv} representing a
2-qubit operation with the qubits Qu and Qv being the control
and target, respectively.

Example 2. Fig. 2 shows a coupling graph representing the
restrictions of the Rueschlikon (also known as IBM QX5)
architecture. As can be seen, the architecture has 16 physical
qubits represented by vertices with labels Q0 to Q15. The edges
e1 to e22 in the graph represent the connections between the
qubits. For example, edge e1 pointing from physical qubit Q1
to qubit Q0 indicates that a CNOT with control qubit Q1 and
a target qubit Q0 can be applied here. Similarly, all other
edges define the other allowed qubit interactions. All remaining
interactions are prohibited.

III. MOTIVATION AND GENERAL IDEA

In this section, we first briefly review the state-of-the-art
process of realizing quantum functionality on real quantum
computers. Afterwards, we discuss a potential that has not
been utilized thus far. This provides the basis for investigations
towards the generation of alternative coupling graphs that
satisfy physical constraints but also allow for more efficient
realizations of the desired quantum functionality.

A. Current Design Process
Thus far, the realization of quantum functionality onto real

quantum computers has been conducted by simply taken the
existing architectures as invariant and not questioning the
correspondingly resulting constraints. This does not only yield
a significantly more complex design process (in fact, realizing
a given quantum functionality to a given architecture has been
proven to be NP-hard [16]), but also substantially increases
the costs of the resulting realizations. This is because the
given architectures substantially restrict the allowed interac-
tions between quibts. Current state-of-the-art methods address
this problem by adding additional gates which re-arrange
qubits and/or change control/target connections so that they are
eventually in line with the constraints imposed by the quantum
architecture/coupling graph. An example illustrates the idea.

Example 3. Consider the circuit from Fig. 1 that is to be
realized on the Rueschlikon quantum computer. The constraints
as defined by the coupling graph shown in Fig. 2 have to
be satisfied. By directly mapping each logical qubit qi to a
physical qubit Qi, the first three gates are supported. However,
gate g4 and gate g6 cannot be realized under the given
constraints, because an interaction between Q2 and Q1 is only
possible if Q2 is target and Q1 is control (which is the opposite
in g4) and because no interaction is allowed between Q0 and
Q3 at all (which is required in g6), respectively.

These issues can be addressed as follows. First, add four H
gates which flip the respective control/target connections of a
gate and, by this, satisfy the constraints for gate g4 as shown
in Fig. 3. Second, SWAP gates are applied which exchange

g1 g2 g3 g′4 g5 g6

Q0 ← q0 T H × q1

Q1 ← q1 • H • H × • q0

Q2 ← q2 H H • × q3

Q3 ← q3 × q2

Fig. 3: Mapped circuit (assuming coupling graph from Fig. 2)

two qubit values and effectively “moving” qubit values from
one physical position to another. This is applied to satisfy the
constraints for gate g6 as also shown in Fig. 3. Since all these
adjustments require 18 additional elementary gates (four H
gates and two SWAP gates which need to be realized with
seven elementary gates each), realizing this circuit onto the
Rueschlikon architecture increases the gate count by a factor
of 3.

In the recent past, several methods for realizing quan-
tum functionality under these constraints have been proposed
(see e.g. [9]–[13]). They employ various heuristics, clever
reordering schemes, templates, etc. Even exact solutions which
guarantee a minimal overhead with respect to H/SWAP gates
have been proposed (see [14]). However, all these solutions
frequently yield substantial overheads in terms of a large
number of additionally gates—a significant drawback since
the total number of gates significantly affects the fidelity
of the result. In fact, studies by IBM have shown that, if
the gate overhead gets too large, the intended result cannot
be determined anymore because of the noise levels are too
high [17].

B. Potential Impact of Architectural Modifications
Reducing the gate overhead caused by the need to satisfy

the constraints from physical realizations obviously is the
main objective of solutions introduced thus far for quantum
circuit realization. However, even if minimal overheads can
be determined, their impact on the reliability of the resulting
computations remains substantial. Hence, to further improve
realizations, more avenues need to be explored. Changing
the constraints imposed by the existing quantum computer
architectures (and described by the coupling graphs) seems
to be a promising further direction. Since those constraints
resulted from physical requirements, they have been taken as
invariant and were not questioned thus far. In this section, we
show that, even if we recognize that physical constraints have
to be satisfied, some degree of freedom exists. This allows
for the design of valid alternative quantum architectures onto
which certain quantum circuits can be realized with much less
gate overhead than before.

The physical constraints of quantum computing technology
have to be considered in more detail. We focus on the
constraints of quantum superconducting (cf. [2], [18]) as a
representative technology1. Here, each qubit is realized as an
artificial atom using a non-linear inductor-capacitor circuit.
The non-linear elements lead to anharmonicity which results
in unequally spaced energy levels [19]. These differences in
energy levels allow to address individual qubits with a different
anharmonic oscillator. As a result, in a multi-qubit quantum
computer, each qubit has a unique frequency [20]. In case of
2-qubit gates, the qubit with high frequency is usually used
as control qubit and the qubit with low frequency is usually
used as target qubit. Exceptions to this high frequency control
and low frequency target arise when the qubits are degenerated

1Quantum superconducting is used in many quantum computers accessible
today. Furthermore, the corresponding constraints are similar in other tech-
nologies. Hence, choosing it as representative allows for valid conclusions for
several quantum computing technologies.



Fig. 4: Coupling graph of an alternative architecture
g1 g2 g3 g′4 g′5 g6

Q0 ← q1 • H • H q1

Q1 ← q0 T H • q0

Q2 ← q3 H • H q3

Q15 ← q2 H H H H q2

Fig. 5: Mapped circuit (assuming coupling graph from Fig. 4)

or there is an interference between coupling qubits and other
qubits with low frequency.

This establishes couplings between two qubits and thus
allows to perform operations on the target qubit based on the
state of the control qubit [21]—eventually, realizing 2-qubit
operations such as CNOT. However, such a strong coupling is
only possible between two qubits and can only be established
if the qubits are next to each other (otherwise, the qubits may
degenerate which results in a gate operation with very low fi-
delity). Eventually, this led to quantum computer architectures
with constraints defined by coupling graphs.

However, it is obvious that these characteristics not nec-
essarily have to lead to quantum architectures as available
thus far. In fact, a coupling between qubits that follow these
characteristics can be established in numerous fashions. This
allows to determine architectures with coupling graphs that are
much more suited for quantum circuits to be executed on them.
Again, an example illustrates the idea.

Example 4. Fig. 4 shows the coupling graph for an alter-
native architecture that also satisfies the physical constraints
discussed above. In fact, this coupling graph is almost identical
to the coupling graph for the Rueschlikon architecture shown
before in Fig. 2, but differs in the directions of the edges.
Despite these minimal differences (which should not pose any
obstacles with respect to a physical realization), this allows
to map the quantum circuit from Fig. 1 with significatly
less overhead as shown in Fig. 5. In fact, rather than 18
additionally gates, only eight additional gates are needed—
an overhead reduction of 55%.

This example sketches the possible potential in the design
of quantum architectures: Rather than only satisfying physical
constraints (which, of course, always remains a primary ob-
jective), it should also be considered how good/bad a derived
architecture is able to realize the desired quantum functionality.

IV. TOWARDS EXPLORING THE POTENTIAL

In this work, we propose initial ideas towards exploring
the potential sketched above. In fact, exploiting the shown
potential in a naive fashion is easy. One just needs to generate
alternative coupling graphs and map the respective quantum
circuits to it in order to see whether this yields more efficient
results as if, e.g., IBM’s Rueschlikon is considered as coupling
graph. However, exploring the potential using “arbitrary” cou-
pling graphs is meaningless (in this case, a complete graph
where all qubits may arbitrarily interact with each other will be
the best but also physically most unrealistic solution). Hence,
we consider alternative schemes for coupling graph generation
that, on the one hand, allow to explore the possible potential
while, on the other hand, remain as close to the characteristics
of existing quantum computing architectures (and, by this,
most likely will also be physically possible).

Fig. 6: Coupling graph determined by random modifications
Q0 ← q0 T H × −

Q1 ← q1 • H • H q1

Q2 ← q2 H H • q2

Q3 ← q3 q3
Q15 × • q0

Fig. 7: Mapped circuit (assuming coupling graph from Fig. 6)

A. Flipping Edges of Existing Coupling Graphs
The first approach to generate alternative coupling graphs

involves a minor modification of the existing coupling graph
in order to still satisfy the physical constraints/restrictions
discussed in Section III-B. We consider an existing coupling
graph (such as for Rueschlikon) as a basis for generating a
modified one. The modification is done by randomly reversing
the directions of the edges that exist in the given coupling
graphs. More precisely, given an existing coupling graph
A = (Q,E), we randomly choose an edge ei,j ∈ E pointing
from qubit Qi to qubit Qj (Qi, Qj ∈ Q) and flip its direction
which results in an edge ej,i, now pointing from qubit Qj to
Qi. In a similar fashion, the directions of the other edges in
the graph can also be reversed. The choice of the edges to be
flipped is done in a purely random fashion.

Example 5. Consider the coupling graph for the Rueschlikon
architecture as shown in Fig. 2. Applying the scheme described
above may lead to an alternative coupling graph as shown in
Fig. 4. As already discussed above in Example 4, this reduces
the overhead by 55% from 18 to eight additional gates in case
of the circuit from Fig. 1.

B. Random Modifications
While the coupling graphs generated by the above scheme

differ from the existing graphs with respect to the directions
of the edges, i.e., only minor modifications are made, more
substantial modifications can be made by a random approach
which is proposed as second scheme to generate alternative
coupling graphs. We again consider an existing coupling graph
(such as for Rueschlikon) as a basis for generating an alter-
native one. The modification is done by randomly adding and
removing edges that exist in the considered coupling graph.
More precisely, given an existing coupling graph A = (Q,E),
we randomly select a qubit Qi, its adjacent qubit Qj followed
by a qubit Qk which is adjacent to Qj ({Qi, Qj , Qk} ∈ Q).
Based on the edges with outward direction, we order the nodes
as control qubit to target qubit. Without loss of generality,
assume that an edge points from Qi to Qj , while another edge
points from Qk to Qj resulting the order Qi > Qj < Qk. Next
we remove an existing edge between Qi and Qj and add an
edge either pointing from Qi to Qk or vice-verse.

Example 6. Consider again the coupling graph from Fig. 2.
Applying the scheme sketched above, we choose qubits Q15,
Q2, and Q3 which are adjacent to each other (see Fig. 2).
Now, we remove the edge pointing from Q15 to Q2 and add
an edge pointing from Q15 to Q3. This leads to an alternative
coupling graph as shown in Fig. 6. Using this coupling graph,
the circuit from Fig. 1 can be realized as shown in Fig. 7.
Rather than 18 additionally gates (needed in case of the
Rueschlikon architecture), this requires only eleven additional
gates—a reduction of the overhead by 39%.



Fig. 8: Dedicated coupling graph for circuit from Fig. 1

C. Function-specific Generation with Restrictions
The schemes proposed above generate various coupling

graphs and, by this, allow to evaluate the effects the coupling
graphs have, in general, on the final quantum circuits. Never-
theless, in order to work towards the development of coupling
graphs/architectures, schemes considering the quantum func-
tionality to be executed in the resulting architecture can be of
interest. To this end, we first determine how often which qubit
pairs interact in the quantum functionality to be executed on
the architecture (this can be obtained from a representative
quantum circuit or defined by the designer). Based on the
number of interactions between the pairs of qubits, the edges
are added between the corresponding pairs, which ultimately
generate a coupling graph. More precisely, for n logical qubits
{q0, q1, · · · , qn−1} of a given quantum circuit G, we add n
physical qubits Qi (where, i = {0, 1, · · · , n − 1}) in the
coupling graph A = (Q,E). Then, an edge ei,j is added to
E with a point of direction from physical qubit Qi to Qj

depending on the 2-qubit gate gl(qi, qj) ∈ G where, qi and
qj denote control and target qubits respectively. In a similar
manner, the other edges are applied between physical qubits
based on the rest of the 2-qubit gates gm(c, t) ∈ G resulting
in a coupling graph A = (Q,E).

However, adding an edge between qubits based on every
2-qubit gates in a given circuit leads to a coupling graph
where all qubits may interact with each other. According
to the current physical constraints, this is unrealistic. To
avoid such unrealistic coupling graph, we enforce two re-
strictions to the graph: (1) only one edge exists between
two qubits Qi and Qj and (2) each qubit Qi has an out-
degree of 2. The choice of the 2 target qubits for any qubit
Qi is made depending on how frequently 2-qubit opera-
tions occur between Qi and the corresponding target qubits.
Without loss of generality, assume that the quantum gates
{gl1(qi, qj), gl2(qi, qk), · · · , glk(qi, qm)} ∈ G occur T1, T2, T3
times (T1 ≥ T2 ≥ T3) respectively, then we only add edges
between qubits Qi to Qj and Qi to Qk as T1 and T2 are higher
than that of T3 resulting in no edge pointing from Qi to Qm.

Example 7. Consider the circuit from Fig. 1 for which a
coupling graph is to be generated. Applying the scheme
described above, for each logical qubit qi, we consider a
physical qubit Qi. Now, we add an edge pointing from Q1
to Q0 by considering the gate g2 with q1 as control and q0
as target. In a similar manner, edges from Q2 to Q1 and to
Q3, and Q0 to Q3 are added according to the gates g4, g5
and g6 respectively. This leads to a coupling graph depicted
in Fig. 82. Using this coupling graph, the circuit from Fig. 1
can be realized with no additional gates.

Architectures described by the coupling graphs obtained
from schemes proposed above most likely can be physically
realized. In fact, those schemes result in coupling graphs which
are heavily restricted based on the arguments discussed in
Section III-B—making these architectures likely physically
realizable. Since, as shown in the examples, they allow for
much cheaper realizations of quantum functionality, they might
be a promising alternative to existing architectures.

2To stay in line with the goal of generating a 16 qubit architecture, we have
randomly generated the rest of the qubits Q4 to Q15 which are shown with
dashed circles/lines.

V. CONCLUSION AND FURTHER WORK
In this work, we proposed initial ideas for the generation

of alternative coupling graphs (i.e. quantum computing archi-
tectures) that might be able to realize quantum functionality
in a more efficient fashion. The considerations may motivate
physicists to develop quantum computers while not only con-
sidering physical constraints, but also taking the effect of the
corresponding architectures on the quantum functionality to be
executed into account. In order to provide further motivation
along those lines, a more thorough evaluation of the outlined
potential is left for future work.
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