Verification Runtime Analysis:
Get the Most Out of Partial Verification

Martin Ring*, Fritjof Bornebusch*, Christoph Liith*t, Robert Wille*, Rolf Drechsler*'
*Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
TMathematics and Computer Science, University of Bremen, Germany
j5Integrated Circuit and System Design, Johannes Kepler University Linz, Austria

Abstract—The design of modern systems has reached a complexity
which makes it inevitable to apply verification methods in order to
guarantee its correct and safe execution. The verification methods
frequently produce proof obligations that can not be solved anymore
due to the huge search space. However, by setting enough variables
to fixed values, the search space is obviously reduced and solving
engines eventually may be able to complete the verification task.
Although this results in a partial verification, the results may still
be valuable — in particular as opposed to the alternative of
no verification at all. However, so far no systematic investigation
has been conducted on which variables to fix in order to reduce
verification runtime as much as possible while, at the same time,
still getting most coverage. This paper addresses this question by
proposing a corresponding verification runtime analysis. Experimen-
tal evaluations confirm the potential of this approach.

I. INTRODUCTION

While capturing almost all aspects of our daily life, embedded
and cyber-physical systems reach a complexity which poses
significant challenges to their design. As those systems are
usually expected to be free from errors, particularly if they are
safety-critical, verification becomes inevitable in order to guarantee
their correct and secure execution. To this end, numerous methods
such as simulation [1], [2], [3], emulation [4], [5], or formal
verification [6], [7] have been proposed and are utilized in modern
design flows.

The corresponding verification processes frequently produce
proof obligations which pose serious challenges to the reason-
ing engine. The ever-increasing complexity yields huge search
spaces which often cannot be covered within the given time
limits. Together with pressing time-to-market constraints, this
eventually forces designers to release the system even if 100%
functional correctness has not been ensured. Consequently, bugs
are frequently allowed to escape into the final product — a problem
which is usually referred to as the verification gap.

A simple albeit effective way to reduce the search space and,
by this, reduce the runtime of the reasoning engine is to set a
certain amount of the given variables to a fixed value. Although
this obviously results in less than 100% coverage, such a result is
potentially offering more value than no result at all. In fact, rather
than having to abort the verification process entirely because of
time limitations, fixing some variables and accepting that the
verification process covers a (strictly defined) subset at least
provides a partial (but hopefully substantial) verification result.
This is particularly the case in systems containing a large number
of free variables representing configuration variables, parameters,

Research supported by BMBF grant SELFIE (grant no. 01IW16001) as well as
the LIT Secure and Correct System Lab (funded by the State of Upper Austria).

sensor inputs, or user inputs, which will be substituted with
concrete values after deployment anyway. Then, each partial
verification result provides correctness guarantees at least for some
scenarios in which the embedded system is eventually deployed.

While the general methodology has been explored in earlier
work [8], the question of which variables to fix in order to achieve
the largest reduction of verification runtime has not been addressed
at all. While in theory fixing one Boolean variable would reduce
the search space and runtime by half, actual instances show a much
smaller and less uniform reduction due to the optimizations by
the proof engine. Some variables may hardly have an effect at all,
while others may immediately cut down a day-long verification
process to a few moments. Because of that, it is essential for
verification engineers to have a clear understanding about the
impact of fixing a particular variable to the verification runtime,
so they can follow the general idea of fixing some variables in
order to get a partial result out of the verification process covering
as many cases as possible. However, no systematic investigation
on this effect has been conducted so far.

In this paper, we introduce a methodology to analyze verification
runtime, and to measure it practically in a meaningful way. The
main problem is how many and which variables are fixed. For this,
we first define a formal criterion describing an optimal solution
to this problem. Based on that, a cost function is derived which
can be used to employ stochastic and heuristic methods in order
to eventually determine solutions optimized for this goal. Using a
proof-of-concept implementation based on evolutionary algorithms,
we were able to confirm the potential of the proposed methodology.
In fact, experimental evaluations confirmed that this methodology
indeed determines a set of variables to be fixed which keeps the
verification runtime within reasonable limits while still covering
as much as possible of the search space.

In general, the methodology works for any other heuristic and
is independent from both the reasoning engine and the underlying
logical language, i.e. we treat the reasoning engine as a completely
opaque black box which either proves a proposition or not. This
offers a completely complementary verification approach which
addresses the verification gap, not by incremental improvements
(excessively investigated in the past and still struggling with
the exponential growth of the underlying complexity), but an
alternative scheme that accepts that 100% completeness might not
always be possible but still aims for getting the most out of a
verification task.

The remainder of this work is structured as follows: Sect. II first
defines the problem, both informally and formally. Based on that,
Sect. III sketches the main ideas of the proposed methodology
— including a definition for an optimal solution. A proof-of-
concept implementation of the methodology based on evolutionary
algorithms is described in Sect. IV. Finally, results obtained by
experimental evaluations are summarized in Sect. V before the
paper is concluded in Sect. VI.

II. REDUCING VERIFICATION RUNTIME

In this section, we describe the main idea of the proposed
verification runtime analysis. Recall that our goal is to determine
how many and which variables to fix in order to achieve as much
of a reduction in verification runtime as possible (and, by this,
getting as much out of a partial verification as possible, rather
than no result at all).

A. Fixing Free Variables

In the following, we consider a verification problem as a single
proposition' ¢ that shall be proven with contemporary reasoning
engines such as SAT solvers [9], [10], SMT solvers [11], [12],
[13], or similar. The particularly used logic and reasoning engine
does not matter, as long as the proof procedure is fully automatic.
We are interested in problems that cannot be solved using the
given resources, where verification process would be aborted and
the verification engineers would get no result at all.

In contrast, when enough variables are set to fixed values (we
say the variables are fixed), the search space is reduced and the
reasoning engine eventually yields a verification result. Even if
such a result would not cover all instances of the verification
problem, proving an instance of ¢ may still be of potential value.

This yields the questions how many and which variables should
be fixed. In an idealized scenario, answers to these questions
would be as sketched in the following example:

Example 1. Consider a verification problem ¢ whose complete
verification takes a certain time Ty. Setting all variables of ¢ to a
fixed value will allow for a more or less instantaneous completion
of the verification task.2 Moreover, in an idealized scenario, the
proof time would be reduced exponentially with respect to the
number of fixed variables. This is sketched by the green solid
line in Fig. 1, showing an idealized graph plotting the (presumed)
average proof time (in logarithmic scale) over the number of fixed
variables. In this idealized scenario, answers to the two questions
raised above are trivial: It does not matter which variables are
fixed (any differences are averaged out) and the number is basically
determined by the available resources; i.e. the available time (on
the y-axis) determines the corresponding number of variables (on
the x-axis).

However, such an idealized scenario almost never occurs. In
fact, it quickly becomes clear that the relation between the number

Note that a number of verification conditions can of course always be combined
into a single proposition by conjoining them. Furthermore, we consider all variables
to be Boolean. This does not restrict the methodology (because other types such
as integer variables can be encoded as bit vectors) but significantly simplifies the
exposition in the following.

2In some logics (e.g. with nested quantifiers), this might not be the case, but
the general principle that proving ground term propositions is much faster is still
valid.

10°
108
Z 0
&
2 10
-
g 10°
[aW
104
103
0 50 100 150 200 250

Number of fixed variables | X|

Fig. 1. Runtime of a representative verification problem.

of fixed variables and the proof time is rather erratic. Again, this
is illustrated by means of an example:

Example 2. Consider a representative benchmark taken from the
SMT-LIB benchmark library [14]* for which the relation between
proof time and sets of fixed variables have been evaluated. The
obtained results are shown in Fig. 1. Here, each data point at
(n,t) corresponds to the average proof time t of ¢ with n different
variables fixed. As can clearly be seen, there is no obvious relation
between proof time and the number of fixed variables. Instead,
there are a number of data points which are better than the
idealized scenario discussed before in Example 1, i.e. points
which lie below the diagonal in Fig. 1.

As illustrated by these observations, simply fixing a certain
number of variables of ¢ often does not yield the desired result.
Moreover, a straightforward enumeration is not suitable because
of the following issues:

o Complexity: Even if the number of variables to be fixed is
given as say m, there still would be 2" possible combinations
left to try out.

o Quality: Proving ¢ with all variable fixed except for one
certainly will be very fast, but will hardly give more insight
than an aborted verification process. Hence, verification
engineers are interested in restricting only as little variables
as needed.

e Effectiveness: We are particularly interested in verification
problems which cannot be completed due to a time-out; here,
we are looking for the data points which lie as much to the
left in Fig. 1 as possible, but are still below the time-out.
These are hard to find by enumeration as one would run into
time-outs a lot.

In summary, we are interested in finding the data points in the
lower left corner of Fig. 1, which represent instances where only
a small number of variables is fixed (i.e. the instance is as little
restricted as possible), while at the same time runtime is kept
small.

3The SMT-LIB library is composed of various benchmarks to challenge reasoning
engines — including many problems from the verification of circuits and systems
— and, hence, provides a representative source of problems to be considered within
the scope of this work.

B. Verification Runtime Analysis

The observations and discussions from above motivate an
analysis of the verification runtime in order to determine the
best possible data points. This poses an optimization problem
which has not been clearly defined so far. In the following, a
definition is provided which is used as a basis for the remainder
of this work.

The inputs of the optimization problem are as follows:

o A reasoning engine (such as a SAT solver, SMT solver, or
similar) which, given a proposition, either returns true, false
or does not terminate.

A proposition ¢ which takes the time T} to prove using the
reasoning engine.

Note that the actual time units are irrelevant, but we assume
that the time is deterministic and reproducible.4 Furthermore, the
proof procedure may not terminate; in that case, Ty is a time unit
which is larger than any finite one.

Let FV(¢) denote the set of free variables occurring in ¢. Given
a subset X C FV(¢) of the free variables of ¢, we define the
average verification runtime T¢(X) as the average time it takes to
prove ¢ with the variables in X set to ground terms, and the rest
in FV(¢)\ X kept free. That is, 7,5(X) is the expected verification
runtime if the variables in X are set to an arbitrary fixed value.
We have found that, for a given X, we can approximate T¢(X)
with a small number (five) of representative samples.

Example 3. Fig. I also provides an illustration of this notation.
The figure plots the average verification runtime Ty(X) at the
y-axis over the number of fixed variables (i.e. the cardinality | X |
of X) at the x-axis for the representative benchmark discussed
in Example 2. Each data point in the diagram corresponds to
(IX], Ty(X)) for a particular set X of variables to be fixed.

The aim of the analysis is to determine a set X which is as
small as possible while still corresponding to a reasonable average
verification time. To this end, we need to investigate how the
function mapping X to Tj3(X) behaves. With) C X C FV(¢),
we can state that

o T,(FV(¢)) is the minimum, because it proves a ground term

(no free variables), and

. T¢(®) = Ty is the maximum, because we prove the original

proposition ¢.
However, in between, the behaviour is not so well defined. From
the above, we might guess that the smaller the set X, the larger
the average verification runtime (i.e. T¢(X) is anti-monotone over
the size of the variable set), but this turns out not be true. Given
two different subsets X,Y € FV(¢), we have

1X| < Y] #= Tp(X) > Ty(Y). (1)

In other words, increasing the number of fixed variables does
not necessarily decrease the average verification runtime. Hence,
the problem remains how to determine an optimal subset X of
variables such that the average verification time T¢(X) is still
acceptable.

“In the experiments summarized below, we use the number of elementary
operations of the SMT solver Z3 [11] as time unit (r1imit count), since this is
deterministic and independent of architecture or memory.

17\

—
=
<
&~
Q
=)
=
G
(=]
o
=
[=¥
Q
o=
g
=
=
=
<
o0
[©]
—_—
G
o
o
=
<
R~

\o %e NN e

0.2 | : G \ A

™~ “ \ ° \
0 = ? \ ‘ C: ‘l O';O ;
0 0.2 0.4 0.6 0.8 1

Ratio of fixed variables | X|

Fig. 2. Contour of the cost function.

III. PROPOSED SOLUTION

The problem motivated and introduced above can be addressed
in a number of different ways. However, a straightforward
enumerative approach does not work here, as the optimal solution
for say two variables is not necessarily a subset of the optimal
solution for three variables (they are not even guaranteed to
intersect at all). So we lack an order structure on the space of
possible solutions — all subsets of FV(¢) — which can guide a
search process to the optimal solution. To determine a solution
in a rather unstructured space of solutions (such as this one), a
number of probabilistic and heuristic approaches are available (e.g.
simulated annealing, evolutionary algorithms, etc.). However, all
of these need a dedicated cost function to guide the search.

To get this cost function, we propose a geometric interpretation
of the data points in Fig. 1. We are looking for the one which is
closest to the bottom left corner, i.e. which has the least distance
to the origin. Geometrically, if we consider our data points as
vectors, we are looking for the vector with the smallest length. In
order to make the cost function behave uniformly for different
propositions ¢, we scale both axes with the maximum, i.e. the
size of the set of fixed variable | X| with the total number of free
variables | FV(¢)| and the average verification runtime 7, (X)
with the proof time of the original proposition T4. Thus, for a set
X of variables to be fixed, our cost function is

9 . 2
02| (Y ¢ (et
[FV(9)] log(T;)

Example 4. Fig. 2 visualizes the contours of the cost function q
Sfrom Eq. (2). The theoretical optimum lies at q(0,0) = 0. When
applied to the results of Fig. 1, a ranking of the data points
becomes apparent, ordering the data points by the distance to the
origin (highlighted by solid lines in Fig. 2). Considering this as
cost metric, the optimal solution is the point marked with a green
circle in Fig. 2.

2

Our cost function requires a concrete value for T, which can
only be approximated, as we are considering propositions where
T} is very large (in practice, a time-out). Hence, we need an upper

limit for the solutions to consider during the analysis, otherwise we
would constantly run into time-outs. Given an upper limit 7}, 4
which is considered acceptable for the analysis, the threshold T(¢)
is defined as the number of variables to be fixed such that the
average verification runtime is still below 7,,,,,. The value of
7(¢) can be efficiently approximated e.g. through a binary search.
This confines the number of data points to be considered to the
ones which can be analyzed within acceptable runtime.

Example 5. For the example considered above, assume an
acceptable time limit Tyqq. Based on this, approximate ()
as illustrated by the dotted lines in Fig. 2. Now, only the data
points between the left bottom corner and these lines lines are
considered during analysis. This way, it is ensured that a good
solution is derived while, at the same time, the analysis time
remains efficient.

Using this cost function and the threshold, any heuristic method
of choice can be applied to determine a set X such that ¢(X) is
minimized — this will be our desired solution.

IV. IMPLEMENTATION

In this section, we describe one possible implementation of the
proposed solution described above. As a heuristic, we decided
on Evolutionary Algorithms (EAs, [15], [16]) which represent
an established method to solve optimization problems, with
applications in hardware design [17], [18] or multi-objective
optimization [19], [20]. In the following, we briefly review the
basic concepts of EAs in general, before discussing how those
concepts are utilized in order to address the problem.’

A. Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods inspired
by the natural evolution process. The goal is to find a group of
individuals (representing solutions) which have the best fitness
according to a requested property (in our case, which best satisfy
the cost function stated in Eq. (2)).

In order to use EAs for an optimization problem, the following
aspects need to be formulated:

e Individuals: An individual represents a possible solution for
a considered problem, and a set of individuals constitute a
population representing a set of solutions. The idea of EAs
is that these populations (and hence solutions) are improved
over generations.

e Mutation operation: Each individual of a population is
subjected to mutations which change the solution each
individual represents, and hence explore new parts of the
search space.

e Recombination operation: Recombinations combine the char-
acteristics of more than one individual, hoping to get the best
out of them towards a better solution. Recombinations explore
new parts of the search space as well, but also converge on
existing individuals.

o Fitness function: After each mutation and recombination,
new individuals are generated. To decide which individuals

SHowever, note that any other optimization methodology can be applied as well,
and that the usage of EAs only constitutes a representative.

shall be considered further, a fitness function selects the best
individuals and promising candidates for the next generation.

Overall, the typical flow of EAs includes the generation of
an initial population first. Afterwards, a sequence of mutation
and recombination operations is conducted which yielding new
generations of populations. The fitness function selects the
individuals for the next generation. This process is continued until
the process converges (i.e. no real improvements are observed
anymore) or until a time limit terminates the process.

B. EA-based Verification Runtime Analysis

In the following, we describe how EAs can be utilized for the
optimization problem defined above. Recall that we are interested
in keeping the set X of variables to be fixed as small as possible
while the average verification runtime T¢ (X)) remains feasible for
the reasoning engine. With this as a basis, we can formulate the
different EA aspects with respect to the considered problem as
follows:

Individuals: An individual represents a potential solution X as
a bit vector I = (I;);—1,.. | rv(s) Of size | FV(¢)| such that for
every variable x; € FV(¢) there is a corresponding bit I; in [
which indicates whether z; € X.

Mutation: Based on the description of an individual, mutations
are performed as follows: Given an individual / and a mutation
rate p,,, every bit of its vector is flipped with probability py;.
This leads to a new individual J, representing the new solution.

m(I,pm) = (Ji)i=1,...,| Fv(¢)|

flip I;
Y
1;

Recombination: Recombinations are performed as follows:
Given two individuals /,J and a recombination bias p., we
combine the two bit vectors by retaining bits which have equal
values in both vectors, but randomly choose bits from I or J at
positions where they differ. The recombination bias is applied
here to prefer one of the individuals. The recombination leads to
a new offspring K.

(L, Jipr) = (Ki)i=1,...| Fv(e)|
L, ifI;=J;

K, =X1I

J;, otherwise

with p,,
otherwise

with p,

Fitness Function: We employ q from Eq. (2) as the fitness
function, with T, approximated as Tjqz - 27(#), T¢(X) is
approximated by averaging the results of a small number of
concrete measured times.

Implementation Aspects®: The initial population is obtained by
first approximating the threshold 7(¢) with a binary search and
then instantiating random individuals with 7(¢) positive bits. We
employ the algorithm with a very low mutation rate p,,, since this
yields better recombination results. Individuals to recombine are
randomly chosen using a normal distribution which prefers the best
individuals. In addition, we apply a recombination bias p, towards

6We will make the entire implementation available upon publication.

the individual with the better score. We monitor the progress
of the optimization and spawn increasingly many independent
individuals as the optimization slows down. In the beginning, these
random individuals are of cardinality |X| where X is the best
solution found so far. With every generation which does not yield
an improvement over the last, we increase the deviation from | X|
in order to avoid getting stuck in a local optimum.

Even though the strategies described here constitute only one
possible implementation, it yields very promising results, as the

experimental evaluations summarized in the next section will show.

V. EXPERIMENTS AND RESULTS

The solution proposed above has been implemented and
evaluated using a large corpus of verification instances. This
section summarizes the most important results obtained by this
evaluation. To this end, we first briefly provide details on the
actual set-up as well as the considered benchmarks. Afterwards,
the obtained results are presented and discussed.

A. Set-up

As input for the considered problem, we used verification
benchmarks provided by the SMT-LIB benchmark library [14]
(in the bit vector logic QF_BV), and the SMT solver Z3 [11]
as the reasoning engine. The EA has been implemented in the
programming language Scala using the Java bindings of Z3.

In order to have a deterministic and reproducible notation of
time for the analysis, we used Z3’s r1imit count as a time unit,
which provides the number of elementary operations required to
solve an instance. This way, the time measurements (e.g. conducted
by the fitness function of the EA) remain independent from the
actual platform and hardware. The target time-out T;,,, was set
to an rlimit count of 500000 which is roughly equivalent to
0.5s of computation on the utilized compute server’.

Using this set-up, the verification runtime analysis determines
the desired set X out of which the variables to be set to fixed values
can be obtained. Afterwards, the originally given proposition ¢
as well as the proposition with the variables in X set to ground
terms is solved by Z3 again — showing the impact of the obtained
analysis results. For the evaluations, solving times have been
measured on an Intel Xeon (E3-1270 v3) compute server with 8
cores and 16 GB of memory running Linux.

B. Considered Benchmarks

Our methodology is meant for hard verification tasks which
do not terminate before a given time-out. The SMT-LIB library
provides a huge, representative corpus of such problems from the
verification of circuits and systems. We considered non-iterative
quantifier free bit vector logic (QF_BV) benchmarks from the
category “industrial” which are marked as “unsat”, where 7(¢)
(determined by binary search as described above) is larger than
10; the latter ensures that trivial benchmarks which complete in
less than roughly T},,q. - 219 ~ 5125 are omitted.

With the remaining set of hard benchmarks, the proposed
method has been evaluated on a total of 333 propositions. The
mean runtime tn of the analysis was 86 seconds. 34% (114)

"Note that there is no exact relation between Z3’s r1imit count and real time
since rlimit also considers memory operations.

of the benchmarks were analyzed in under 60 seconds, 93%
(309) finished in less than 10 minutes, and the longest took 1417
seconds. There was no significant relation between the runtime of
the analysis and the original proof time.

C. Obtained Results

Since, due to space limitations, not all results can be listed
and discussed, a representative subset of results is summarized
in Table 1. Here, the first columns denote the problem size: the
number of SMT variables, and the number of bits (| FV(¢)])
representing those SMT variables. The next group of columns
shows the results of the analysis: 7(¢) is the initially approximated
number of variables that has to be fixed, | X| is the size (in bits)
of the found solution X; and ¢, is the runtime of the analysis
itself. The last column group shows the reduction in verification
runtime: 7'(¢) is the runtime with state-of-the-art verification
(which results in a time-out for all problems because we explicitly
consider hard ones). Tg‘d(|X |) denotes the runtime when just an
arbitrary selection of variables Y C FV(¢) with the same size
|Y'| = | X| is set to a fixed value, while 7,(X) denotes the runtime
when exactly the variables in X are set to a fixed value.

The results clearly confirm the benefits of our approach. While
it is in general not surprising that fixing a number of variables
reduces the verification runtime, our analysis yields a small number
| X| of variables to fix for maximum effect. By this, verification
engineers get much more out of partial verification since it allows
them to only set a small portion of the variables to a fixed value.
For example for calypto/problem_22.smt2, a naive method would
have made them set 7(¢) = 128 variables to a fixed value; with
the sophisticated analysis method proposed in this work, just fixing
| X| = 13 is sufficient — yielding substantially larger coverage.

Moreover, the results confirm that not only the number |X|
of variables is important (how many?), but also which variables
should be set to a fixed value (which?). This can clearly be seen
in the last two columns of Table I: randomly fixing | X| variables
often leads to a time-out (600s). In contrast, fixing exactly those
variables X obtained by the proposed analysis allows solving all
benchmarks in negligible runtime.

D. Further Discussions

The obtained results show how many and which variables to fix
to get as much as possible out of partial verification. In this regard,
note that there may be external reasons to fix (or not fix) a variable.
For example, it makes no sense to fix sensor input which changes
rapidly, but it makes a lot of sense to fix configuration parameters
which rarely change (see [8]). Obviously such considerations can
easily be integrated into the proposed analysis e.g. by adding
a weight to the variables such that instantiating some variables
(which do not change often) is favourable to instantiating others
(which do change often).

With regard to related work, the term “partial verification” is
also used with model checking, in particular software model
checking (see e.g. [21], [22]), referring to techniques to reduce
the search space in order to find counterexamples (and, hence,
bugs), or referring to the exchange of results between different
automatic tools (model checkers, static analyzers, theorem provers)
such that the combination of partial results makes the whole

TABLE I
OBTAINED RESULTS

Problem Size Analysis Verification Runtime Reduction
Benchmark SMT Variables |FV(¢)| | 7(¢) |X]| ta T(¢) T(;“d(|X|) Ty(X)
...1a32...Add32.load32.Mul32.Mulh_u32.0005.smt2 38 831 43 5 29s | > 3600s* > 600s* < 0.01s
calypto/problem_22.smt2 33 205 128 13 173s | > 3600s™* > 600s* 0.02s
float/newton.1.3.i.smt2 427 8498 135 33 92s | > 3600s* > 600s* 0.12s
float/test_v5_r10_vr10_c1_s7608.smt2 855 17860 91 35 298s | > 3600s* 64.15s 0.16s
float/test_v5_r15_vr5_c1_s23844.smt2 1280 26710 235 48 492s | > 3600s* 301.85s 0.23s
float/test_v7_r12_vrl_cl_s10576.smt2 1431 29853 234 50 525s | > 3600s* 113.98s 0.265s
float/test_v7_r17_vr5_cl_s25451.smt2 2024 42194 157 65 326s | > 3600s* 94.39s 0.36s
mem/23.smt2 33 363 10 11 45s | > 3600s* 62.04s 0.03s
mecm/63.smt2 36 432 29 12 49s | > 3600s* 155.09s 0.04s
mem/69.smt2 33 396 12 12 47s | > 3600s* 108.72s 0.04s
tacas07/Y86_std.smt2 246 5795 700 109 437s | > 3600s* > 600s* 0.07s
uum/uum16.smt2 190 3428 29 16 27s | > 3600s™ > 600s* 0.01s
uum/uum20.smt2 234 5244 36 20 29s | > 3600s* > 600s* 0.02s

verification succeed (see e.g. [23], [24]). This is also referred to
as conditional model checking [25]. Furthermore, the term is also
used in the context of agents [26], [27], but refers to verification
of truthfulness. However, the methodology proposed in this work
here is not related to any of these previous work and, hence, is
novel to the best of our knowledge.

VI. CONCLUSIONS

In this work, we proposed a novel and complementary approach
to tackle the verification gap: instead of aborting the entire
verification process and getting no result at all, we propose to set
some variables to a fixed value in order to get at least a partial
verification result. While the idea itself is rather obvious, we have
proposed a systematic verification runtime analysis which show
how many and which variables to fix for maximum verification
runtime reduction. Experimental evaluations based on a proof-of-
concept implementation confirmed the potential and demonstrated
that the proposed analysis method does not only yield a partial
verification result, but also gets the most out of it. Considering
that further analysis methods can be implemented on top of this
methodology, this work provides a promising basis for future work
in this direction as an alternative to existing verification methods.

REFERENCES

[1] J. Yuan, C. Pixley, and A. Aziz, Constraint-Based Verification.
2006.

[2] T. Zhang, D. G. Saab, and J. A. Abraham, “Automatic assertion generation

for simulation, formal verification and emulation,” in IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). 1EEE Computer Society, 2017, pp.

471-476.

R. Wille, D. GroBe, F. Haedicke, and R. Drechsler, “SMT-based stimuli

generation in the SystemC verification library,” in Forum on Specification

and Design Languages (FDL). 1EEE, 2009, pp. 1-6.

A. Koczor, L. Matoga, P. Penkala, and A. Pawlak, “Verification approach

based on emulation technology,” in International Symposium on Design and

Diagnostics of Electronic Circuits and Systems (DDECS). 1EEE, 2016, pp.

169-174.

Y. Kuwabara, T. Yokotani, and H. Mukai, “Hardware emulation of IoT

devices and verification of application behavior,” in Asia-Pacific Conference

on Communications (APCC), 2017, pp. 1-6.

E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. MIT

Press, 1999.

R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level: Towards

verification-driven design based on natural language processing,” in Forum

on Specfication and Design Languages, 2012, pp. 53-58.

M. Ring, F. Bornebusch, C. Liith, R. Wille, and R. Drechsler, “Better late

than never: Verification of embedded systems after deployment,” in Design,

Automation & Test in Europe (DATE), 2019.

Springer,

[4]

[5]

[6]
[7

—

[8

—_

* = time-out

[9] N. Eén and N. Sorensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing (SAT), ser. Lecture Notes in Computer
Science (LNCS), vol. 2919. Springer, 2003, pp. 502-518.

A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), vol. 4, pp. 75-97, 2008.

L. M. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science (LNCS), vol. 4963. Springer, 2008.

R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for bit-
vectors and arrays,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science (LNCS), vol. 5505.
Springer, 2009.

R. Wille, G. Fey, D. GroBe, S. EggersgliiB, and R. Drechsler, “SWORD:
A SAT like prover using word level information,” in IFIP International
Conference on Very Large Scale Integration (IFIP VLSI-SOC). IEEE, 2007.
SMT-LIB-benchmarks, “Official SMT-LIB repository,” https:/clc-
gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks, 2018, accessed: 2018-11-27.
D. B. Fogel, “Evolutionary algorithms in theory and practice,” Complexity,
vol. 2, no. 4, pp. 26-27, 1997.

Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained
parameter optimization problems,” Evolutionary Computation, vol. 4, no. 1,
1996.

B. Korousic-Seljak, J. Silc, and G. Papa, “An evolutionary approach to
problems in electrical engineering design,” in Handbook of Bioinspired
Algorithms and Applications. Chapman and Hall/CRC, 2005.

Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital
circuits design,” IEEE Transactions on Evolutionary Computation, vol. 19,
2015.

R. Chen, K. Li, and X. Yao, “Dynamic multiobjectives optimization with
a changing number of objectives,” IEEE Transactions on Evolutionary
Computation, vol. 22, pp. 157-171, 2018.

K. Deb, “Multi-objective evolutionary algorithms,” in Handbook of Compu-
tational Intelligence. Springer, 2015.

P. Parizek and F. Plasil, “Partial verification of software components:
Heuristics for environment construction,” in Euromicro Conference on
Software Engineering and Advanced Applications (EUROMICRO). Liibeck,
Germany: IEEE Computer Society, Aug 2007, pp. 75-82.

A. Groce and W. Visser, “Heuristics for model checking java programs,”
International Journal on Software Tools for Technology Transfer, vol. 6,
no. 4, pp. 260-276, Aug 2004.

V. Wiistholz, “Partial verification results,” Ph.D. dissertation, ETH Ziirich,
2015.

D. Beyer, “Partial verification and intermediate results as a solution to
combine automatic and interactive verification techniques,” in Leveraging
Applications of Formal Methods, Verification and Validation: Foundational
Techniques, ser. Lecture Notes in Computer Science, vol. 9952. Springer,
2016.

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Conditional
model checking: A technique to pass information between verifiers,” in
International Symposium on the Foundations of Software Engineering. ACM,
2012, pp. 57:1 — 57:11.

I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu, “Mechanism design:
From partial to probabilistic verification,” in ACM Conference on Electronic
Commerce, ser. Conference on Electronic Commerce (EC). ACM, 2012,
pp. 266-283.

L. Yu, “Mechanism design with partial verification and revelation principle,”
Autonomous Agents and Multi-Agent Systems, vol. 22, no. 1, pp. 217-223,
2011.

[10]
[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

(27]

