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ABSTRACT
By using quantum mechanical effects, quantum computers promise

significant speedups in solving problems intractable for conven-

tional computers. However, despite recent progress they remain

limited in scaling and availability—making quantum software and

hardware development heavily reliant on quantum simulators run-

ning on conventional hardware. However, most of those simulators

mimic perfect quantum computers and, hence, ignore the fragile

nature of quantum mechanical effects which frequently yield to

decoherence errors in real quantum devices. Considering those

errors during the simulation is complex, but necessary in order

to tailor quantum algorithms for specific devices. Thus far, most

state-of-the-art simulators considering decoherence errors rely on

(exponentially) large array representations. As an alternative, simu-

lators based on decision diagrams have been shown very promising

for simulation of quantum circuits in general, but have not sup-

ported decoherence errors yet. In this work, we are closing this

gap. We investigate how the consideration of decoherence errors

affects the simulation performance of approaches based on decision

diagrams and propose advanced solutions to mitigate negative ef-

fects. Experiments confirm that this yields improvements of several

orders of magnitudes compared to a naive consideration of errors.

1 INTRODUCTION
Quantum computers can solve specific problems significantly faster

than classical computers. Besides early examples of corresponding

algorithms such as Shor’s factorization approach [23] and Grover’s

database search [8], recently also other relevant quantum algo-

rithms have been found in the areas of chemistry, finance, machine

learning, and mathematics [6, 11, 13, 17, 21]. Moreover, not least

due to the drive of big companies such as IBM, Google, Intel, Rigetti,

Microsoft, or Alibaba, who are heavily investing in this emerging

technology, there have been remarkable accomplishments towards

the physical realization of quantum computers recently.

However, quantum computers do not work perfectly and are

indeed even more prone to errors than their classical counterparts.

In particular, decoherence errors [26] are a common phenomenon

with which researchers and engineers frequently have to deal with.

They lead to the problem that qubits can only hold information

for a limited amount of time. Although recent developments in the

physical realization of quantum computers have improved upon

that [5, 12], decoherence errors are are still a dominating aspect in

quantum computing.

Accordingly, it is essential to specifically evaluate whether quan-

tum algorithms can cope with this kind of errors. To this end, meth-

ods for quantum circuit simulation would be ideal as they allow

for an explicit investigation how a given algorithm behaves on a

specific device and its possible errors. But most of the available

simulators (such as, e.g., proposed in [16, 19, 25, 28, 34]) mimic

perfect quantum computers and, thus, ignore the fragile nature of

quantum mechanical effects which frequently yield to decoherence

errors. Luckily, the effects are well understood and mathematical

models for decoherence errors are available [18]—leading to first

simulation approaches to also support the consideration of those

errors (e.g. [1–3, 10, 14, 24, 29, 30]).

But a main challenge remains: The capabilities of those simu-

lation approaches is severely limited by the inherent exponential

nature of the vectors and matrices which describe the respective

quantum states and operations, respectively. Additionally consider-

ing decoherence errors further increases the resulting complexity.

Because of this, alternatives to straightforward approaches (which

represent the required vectors and matrices in terms of arrays) are

currently investigated. Decision diagrams for quantum circuit simu-

lation (as introduced, e.g., in [16, 19, 22, 27, 34]) provide a promising

approach. In many cases and/or for many quantum applications,

they allow for a representation of vectors and matrices which is

below the exponential size of array-based solutions [9, 34].

All these methods, however, do not support the consideration

of decoherence errors yet. Moreover, thus far, it remains unknown

whether the promising effects of a more efficient representation of

vectors and matrices can still be maintained, when those errors are

additionally taken into account. In this work, we are investigating

this issue. Our observations and evaluations suggest that decision

diagrams might remain compact in many cases—even if decoher-

ence errors are considered. But we also show that just having a

compact representation is not sufficient: Efficiently realizing the

operations describing the error effects poses a substantial challenge.

In order to mitigate those negative effects, we eventually propose
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an advanced solution for simulation using decision diagrams that

also can efficiently handle decoherence errors.

Experimental evaluations and comparisons to state-of-the-art

simulators by IBM and Atos confirm the viability of the proposed

solution. Moreover, we show that the proposed advanced solution

is able to complete simulation runs several orders of magnitudes

faster than the solution with a naive consideration of errors.

Our contributions are described in the rest of this paper as fol-

lows: Section 2 reviews quantum computing and quantum circuit

simulation using arrays as well as decision diagrams. Section 3

discusses how considering errors changes the way simulation is

conducted and analyzes the resulting challenges for approaches

based on decision diagrams. Based on these insights, we propose an

advanced simulation scheme in Section 4. Finally, we summarize

our evaluations in Section 5 and conclude the paper in Section 6.

2 BACKGROUND
In this section, we review the basics of quantum computing and

the simulation of corresponding quantum algorithms/circuits (us-

ing array-based methods as well as methods based on decision

diagrams).

2.1 Quantum Computing
While, in the classical world, systems are described by bits which

can either be 0 or 1, in quantum computing a system is described by

so-called quantum bits or qubits. In contrast to classical bits, qubits

can assume not only the state 0 or 1—which are called basis states

and, using Dirac notation, are written as |0⟩ and |1⟩—but also an

almost arbitrary combination (superposition) of these states. More

precisely, the state of the qubit |𝜙⟩ is given by |𝜙⟩ = 𝛼0 · |0⟩ +𝛼1 · |1⟩.
The amplitudes 𝛼0, 𝛼1 ∈ C describe how the qubit is related to

each of the basis state and must satisfy the normalization condition

|𝛼0 |2 + |𝛼1 |2 = 1. Measuring a qubit in superposition results in its

collapse into one of the basis states |0⟩ or |1⟩ with probability |𝛼0 |2
and |𝛼1 |2, respectively.

These concepts can be extended for multi-qubit systems—to

so-called quantum registers—to represent the exponential num-

ber of basis states the system can assume. For example, a two

qubit system |𝜓 ⟩ has four basis states and is described by |𝜓 ⟩ =

𝛼00 · |00⟩ + 𝛼01 · |01⟩ + 𝛼10 · |10⟩ + 𝛼11 · |11⟩. Usually, the state de-
scription for n-qubit systems is shortened to a column vector of

size 2
𝑛
containing only the amplitudes, e.g., [𝛼00 𝛼01 𝛼10 𝛼11]⊤ for

𝑛 = 2.

The state of a qubit can be manipulated using quantum opera-

tions. With the exception of the measurement operation, all quan-

tum operations are inherently reversible and, therefore, represented

by unitary matrices. Important quantum operations are the NOT

operation, which negates the state of a qubit, and the Hadamard

operation, which transforms a qubit from a basis state into a super-

position. In addition to single-qubit operations, there are two-qubit

operations. A prominent operation is the controlled-NOT (CNOT)

operation, which negates the state of a qubit, if the designated

control qubit is in state |1⟩. Applying an operation to a quantum

state is done via matrix-vector multiplication. To illustrate these

concepts, consider the following example:

Example 1. Consider a two-qubit register in the state

|𝜓 ⟩ = 1

√
2

· |00⟩ + 0 · |01⟩ + 1

√
2

· |10⟩ + 0 · |11⟩ ,

which is represented as 1/√2 · [1 0 1 0]⊤. This is a valid state since
|1/√2|2 + 0

2 + |1/√2|2 + 0
2 = 1. Measuring the state yields either |00⟩ or

|10⟩, both with probability |1/√2|2 = 1/2. Applying a CNOT operation
to the state, which flips the amplitude of the second qubit when the
first qubit, is set to 1 is given by

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

︸             ︷︷             ︸
CNOT

· 1

√
2


1

0

1

0

︸  ︷︷  ︸
|𝜓 ⟩

=
1

√
2


1

0

0

1

︸  ︷︷  ︸
|𝜓 ′⟩

.

Measuring the new state |𝜓 ′⟩ now yields either |00⟩ or |11⟩, each
with probability 1/2.

2.2 Array-based Quantum Circuit Simulation
The array-based simulation style realizes the concepts described

above in a straightforward fashion. States and operations are rep-

resented by 1-dimensional and 2-dimensional arrays, respectively.

Simulation is conducted by matrix-vector multiplications similar

to Example 1. Since the multiplication of a matrix and a vector can

be decomposed into smaller operations, this simulation approach

has a huge potential for parallelization. Every matrix-vector multi-

plication can be split into a series of multiplications and additions,

i.e., [
𝑀00 𝑀01

𝑀10 𝑀11

]
·
[
𝑉0
𝑉1

]
=

[
𝑀00 ·𝑉0 +𝑀01 ·𝑉1
𝑀10 ·𝑉0 +𝑀11 ·𝑉1

]
.

This can be further decomposed in a recursive fashion, leading

to a large set of intermediate operations, which can be executed

independently of each other with little synchronization overhead.

State-of-the-art array-based simulators (such as [1–3, 14, 24, 25, 30])

make heavy use of that.

2.3 Decision Diagram-based Quantum Circuit
Simulation

In order to tackle the memory problem of array-based simula-

tors, a complementary approach has been developed using deci-

sion diagrams [16, 19, 22, 27, 34]. The general idea of decision

diagram-based simulation is about identifying data redundancies

in the state and representing them using shared sub-structures.

Doing so results in a potentially very compact state representation,

which in turn allows simulating quantum applications that cannot

be simulated using array-based simulation approaches.

Representing a state vector as a decision diagram revolves around

recursively splitting the vector into equal sized sub-vectors, un-

til the sub-vectors only contain a single element. More precisely,

consider a quantum register 𝑞0, 𝑞1, . . . , 𝑞𝑛−1 composed of 𝑛 qubits,

where𝑞0 represents the most significant qubit. The first 2
𝑛−1

entries

of the corresponding state vector would then represent amplitudes

for basis states where 𝑞0 is |0⟩ and the other entries would repre-

sent amplitudes where 𝑞0 is |1⟩. This is represented in a decision
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|00⟩

|01⟩
|10⟩

|11⟩

𝑞0

𝑞1

𝑞1

1√
2

0

0

1√
2




(a) Vector representation

𝑞0

𝑞1 𝑞1

1

1/√2

0 0

(b) Decision diagram representation

Figure 1: State vector representation

diagram by a node labeled𝑞0 with two successors labeled𝑞1. By con-

vention, the left (right) successor points to a node that represents

the sub-vector with amplitudes for basis states with 𝑞0 assigned

|0⟩ (|1⟩). This process is repeated recursively until sub-vectors of

size 1 (i.e. complex numbers) result. During this process, equiva-

lent sub-vectors are represented by the same node, reducing the

overall size of the decision diagram. Furthermore, instead of having

distinct terminal nodes for all amplitudes, edge weights are used

to store common factors of the amplitudes, leading to even more

compaction. Reconstructing the amplitude of a specific state can

be done by multiplying the edge weights along the corresponding

path. In order to increase the readability of the decision diagram

edge weights of 1 are omitted. Additionally, nodes with an incom-

ing edge weight of 0 are represented as 0-stubs—indicating that

amplitudes of all possible states represented by this part of the

decision diagram are zero.

Example 2. In Fig. 1, a quantum register is represented both in
the vector and decision diagram representation. The annotations of
the state vector in Fig. 1a indicates how it is decomposed when the
corresponding decision diagram is constructed. Reconstructing the
amplitude for a specific state from the decision diagram requires
multiplying the edge weights of the corresponding path. For example,
reconstructing the amplitude of the state |11⟩ (bold lines in the figure),
requires multiplying the edge weight of the root edge (1/√2) with the
right edge of 𝑞0 (1) as well as 𝑞1 (1), i.e. 1/√2 · 1 · 1 = 1/√2.

Quantum operations are represented in a similar fashion as quan-

tum states. However, due to the square nature of matrices, they

are split into four equal sized sub-parts. This is represented in a

decision diagram by a node with four successors the first one rep-

resenting the sub-matrix in the upper left corner, the second one

representing the sub-matrix in the upper right corner, the third

one representing the sub-matrix in the lower left corner, and the

fourth one representing the sub-matrix in the lower right corner.

Apart from this, the decomposition and normalization process is

analogue to the one for vectors.

Similar to array-based simulators, simulation is conducted by

multiplying operations onto states. However, due to the different

representation, the multiplicationmust be decomposed with respect

to the most significant qubit. Consider again a quantum register

|𝜙⟩ = 𝑞0, 𝑞1, . . . , 𝑞𝑛−1 of 𝑛 qubits, where 𝑞0 represents the most

significant qubit, as well as a unitary quantum operation𝑈 of size

2
𝑛 ×2

𝑛
. In order to multiply the operation𝑈 onto the state |𝜙⟩, they

are split into two (in the case of the state vector) and four (in the case

of the operation) equally sized parts. Leading to two sub-vectors

of size 2
𝑛−1

and four sub-matrices each of size 2
𝑛−1 × 2

𝑛−1
. This

represents themodifications of𝑈 onto𝑞0 and is represented by a top

node labeled 𝑞0, with two successor nodes. The splitting process is

repeated recursively until vectors of size 2 and matrices of size 2×2

remain. These are multiplied and the resulting new amplitudes are

stored into terminal edges. Finally, the edge weights are calculated

by extracting common factors of the amplitudes and equivalent sub-

vectors are represented by the same node. Hence, multiplication

of decision diagrams mainly involves recursive traversals of the

involved decision diagrams. On top of that, further optimizations

are possible with respect to the precision of the simulation [20, 33],

the run-time performance [35], or a trade-off of both [31]

3 SIMULATION OF DECOHERENCE
In this work, we aim for the consideration of decoherence errors in

the simulation of quantum circuits using decision diagrams. To this

end, we provide the motivation and propose an initial approach in

this section. More precisely, this section first reviews decoherence

effects that occur in today’s quantum computer realizations and af-

terwards provides a mathematical description of them to be used by

simulation approaches in general. Based on that, we then show how

those descriptions can be used to conduct such simulations using

decision diagrams and discuss how this may affect the performance

of corresponding approaches.

3.1 Qubit Decoherence Errors
Coherence errors occur due to the fragile nature of qubits—leading

to the problem that they can only hold information for a limited

amount of time. More precisely, there are two types of coherence

errors that arise [26]:

• A qubit in a high-energy state |1⟩ naturally tends to decay

to a low energy state |0⟩, i.e., after a certain amount of time,

qubits in a quantum system eventually relax to |0⟩. This error
is called amplitude damping error or T1 error.

• In addition to that, when a qubit interacts with the environ-

ment, a phase flip effect might occur. This leads to an error

called phase flip error or T2 error.

Recent developments in the physical realization of quantum com-

puters (such as, e.g., in [5, 12]) show significant improvements in

the coherence times and improved possibilities to reduce unwanted

interactions of qubits—improving the “lifetime” of qubits before

decaying to |0⟩ and reducing the frequency of phase flip errors,

respectively. Nevertheless, the underlying errors are still a domi-

nating aspect in all quantum computations and, hence, should also

be considered during simulation.

However, in order to describe them mathematically, the formu-

lation in terms of state vectors as reviewed in Section 2.1 obviously

is not sufficient. Moreover, even a deterministic formulation is not

suitable since decoherence heavily relies on probabilistic effects

that are not known in advance. Hence, a description is needed

which incorporates all possible states a quantum system may be in

(including the original state but also states resulting from any of

the decoherence effects mentioned above with a certain probabil-

ity). This is accomplished by extending the vector representation

introduced in Section 2 to density matrices (also known as density
operators) as follows:
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Definition 1. Let |𝜙⟩ be a complex vector representing the state
of a quantum system. The corresponding density matrix is defined as

𝜌 = |𝜙⟩ ⟨𝜙 | with ⟨𝜙 | B |𝜙⟩† . (1)

Example 3. Consider a system, which is in the state

|𝜓 ⟩ = 1

√
2

· |00⟩ + 0 · |01⟩ + 0 · |10⟩ + 1

√
2

· |11⟩ ,

or, using vector notation, 1/√2 · [1 0 0 1]⊤. The corresponding density

matrix 𝜌 is given by
1√
2

0

0

1√
2


·
[
1√
2

0 0
1√
2

]
=


1

2
0 0

1

2

0 0 0 0

0 0 0 0

1

2
0 0

1

2

 .
In contrast to the original vector representation (as illustrated in
Example 1), the probabilities of measuring specific basic states are
now reflected in the diagonal elements (highlighted in gray). More
precisely, the diagonal entries from the first element in the upper-left
to the last element in the bottom-right represent the probabilities for
measuring |00⟩ , |01⟩ , |10⟩ , and |11⟩, respectively. Hence, measuring
this state would yield |00⟩ or |11⟩—both with probability of 1/2. All
other elements of the density matrix represent the coherence in the
state.

Employing this concept allows to probabilistically apply deco-

herence, i.e., the application (or non-application) of decoherence

effects by means of probabilities. More precisely, the effects of a

decoherence error can be described by Kraus matrices defined as

follows:

Definition 2. Using the operator-sum representation, an error is
represented by a tuple (𝐸0, 𝐸1, . . . , 𝐸𝑚) of Kraus matrices that satisfy
the condition

𝑚∑
𝑖=0

𝐸
†
𝑖
𝐸𝑖 = 𝐼 . (2)

Using this notation, the T1 and T2 errors can be represented by [18]

𝑇 1 = (𝐸0, 𝐸1) with 𝐸0 =

[
1 0

0

√
1 − 𝑝

]
, 𝐸1 =

[
0

√
𝑝

0 0

]
and (3)

𝑇 2 = (𝐸0, 𝐸1) with 𝐸0 =
√
𝑝 ·

[
1 0

0 1

]
, 𝐸1 =

√
1 − 𝑝 ·

[
1 0

0 −1

]
,

(4)

respectively, where the variable 𝑝 represents the probability that an
error occurs. This probability is a parameter of the specific quantum
computer realization (and, hence, needs to be provided by the user).

Applying these error descriptions to the current quantum system

(represented by a density matrix) can be conducted as follows:

Definition 3. Applying an error specified by the Kraus matrices
(𝐸0, 𝐸1, . . . , 𝐸𝑚) to a quantum system given by the density matrix 𝜌
yields the density matrix [18]

𝜌 ′ =
𝑚∑
𝑖=0

𝐸𝑖𝜌𝐸
†
𝑖
. (5)

Example 4. In order to illustrate the concepts above, we apply the
amplitude damping (T1) error to the state 𝜌 from Example 3. More
precisely, we apply amplitude damping to the second qubit with a
probability of 30 % (p=0.3). The effects of this error are given by the
Kraus matrices provided in Eq. 3. Applying each Kraus matrix to the
state 𝜌 (as defined in Eq. 5) leads to

0.5 0 0 0.418

0 0 0 0

0 0 0 0

0.418 0 0 0.35

︸                        ︷︷                        ︸
E0𝜌E

†
0

+

0 0 0 0

0 0 0 0

0 0 0.15 0

0 0 0 0

︸                 ︷︷                 ︸
E1𝜌E

†
1

=


0.5 0 0 0.418

0 0 0 0

0 0 0.15 0

0.418 0 0 0.35

︸                        ︷︷                        ︸
𝜌′

.

The resulting density matrix accordingly describes the effect of the
employed error: While the probability for measuring |00⟩ remains
the same, the probability of measuring |11⟩ has dropped to 35 % and,
additionally, there is now a probability of 15 % to measure |10⟩. In
other words, the probability that the second qubit is measured |0⟩ has
increased by 30 %—reflecting the damping error assumed above.

Finally, since states are now represented by (density) matrices,

applying an operation to a state has to be adjusted. Originally, given

a quantum state |𝜙⟩ and a quantum operation𝑈 , the correspond-

ing application is conducted by matrix-vector multiplication (as

illustrated in Example 1). Now, vector states |𝜙⟩ are represented by

density matrices given by 𝜌 = |𝜙⟩ ⟨𝜙 | (cf. Definition 1 and Eq. 1).

Accordingly, applying𝑈 onto 𝜌 is given by

𝜌 ′ = 𝑈𝜌𝑈 † . (6)

3.2 Effect to Simulation
Having the mathematical description of decoherence errors as re-

viewed above, simulation approaches can accordingly be extended.

This is particularly straightforward for array-based approaches as

proposed in [1–3, 14, 24, 25, 30] and reviewed in Section 2.2. Here,

the major challenge of considering decoherence is “only” given by

the fact that the state is represented by density matrices rather than

vectors. This can simply be addressed by extending the correspond-

ing data structures (i.e., the arrays). The required operations (in

particular, for multiplying and adding matrices) are supported by

the corresponding libraries anyway and can also be extended in a

straightforward fashion. Also, improvements employed by parallel

executions can readily be utilized. Because of that, implementations

of array-based simulation approaches supporting the consideration

of decoherence are already available (see, e.g., [1–3, 10, 14, 24, 30]).

For approaches based on decision diagrams, the consideration

of decoherence errors, however, may pose much more severe chal-

lenges (which have not be considered in the literature thus far).

First, it remains open how severely the consideration of decoher-

ence errors (and the corresponding need of representing states and

operations through density matrices) harms the ability of decision

diagrams to represent states and operations in a compact fashion.

As reviewed in Section 2.3, being able to represent certain quantum

states and quantum operations in a more compact fashion con-

stitutes one of the main advantages of simulation using decision

diagrams. The question remains whether this compactness can still

be maintained when decoherence errors are additionally considered.

To this end, consider the following example:
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𝑞0

𝑞1 𝑞1

1

1/2

0 0

(a) Decision diagram of a state vector

𝑞0

𝑞1 𝑞1 𝑞1 𝑞1

1

1/2

0 0 0 0 0 0 0 0 0 0 0 0

(b) Decision diagram of a density matrix

𝑞0

𝑞1 𝑞1 𝑞1 𝑞1

1

1/2

0 0 0 0

0.836
0 0 0 0

0.836
0 0

0.3
0

0.7

(c) State after applying T1 error

Figure 2: Decision diagram representation of states

Example 5. Recall the state considered before in Example 3 in both
the vector as well as in the density matrix representation. The corre-
sponding decision diagram representations are provided in Fig. 2a and
Fig. 2b, respectively. As can be seen, the size of the decision diagrams
are rather similar (4 nodes vs. 6 nodes, although the corresponding
vector/density matrix have a size of 22 and 2

2 × 2
2). This, at least,

shows that considering decoherence errors does not necessarily harm
the ability of decision diagrams to represent states/operations in a com-
pact fashion.1 Moreover, also more detailed evaluations (summarized
later in Section 5) confirm this observation.

Considering the example (and the evaluations summarized in

Section 5) suggests that decision diagrams might remain compact

in many cases—even if decoherence errors are considered. But hav-

ing a compact representation alone is not sufficient. Also efficient

realizations of the corresponding matrix-matrix operations (most

notably multiplication and addition), as reviewed in Section 3.1, are

required. For multiplication, related work such as [34] already pro-

vides efficient solutions since matrix-matrix multiplication already

is a core operation of simulation without decoherence. Addition,

however, which is required for applying the error effect as defined

in Eq. 5, has not been that frequently required thus far and turns

out to be particularly challenging.

More precisely, recall that adding two matrices is done by adding

all elements sharing the same index. Hence, this requires access

to all single matrix elements—something for which a decision dia-

gram has to be completely traversed. This is in stark contrast with

multiplication, where addition is required as well, but the operands

are often just sub-parts of the involved decision diagrams (which

substantially reduces the size of the decision diagrams that need to

be traversed). Additionally, decision diagram representations of op-

erations are of very sparse nature, so that during the multiplication

often one part of the addition equals zero.

Overall, this suggests that decision diagrams also show promise

for quantum circuit simulation when considering decoherence er-

rors (something which has not been considered thus far). At the

same time, it also unveils challenges which remains to be addressed,

namely how to efficiently apply the decoherence to the state with-

out having to traverse the entire decision diagram.

1
Note that this does not mean that decision diagrams always provide a compact repre-

sentation for a quantum state/operation. In fact, previous work [34] clearly showed

that the worst-case complexity of decision diagrams is exponential—even though poly-

nomial representations are possible for certain applications. The example, however,

shows that this characteristic is not completely lost when considering decoherence

errors.

4 ADVANCED SIMULATION APPROACH
In order to address the shortcomings unveiled above, we investi-

gated how the required operations (particularly Eq. 5) can efficiently

be realized on decision diagrams. A major obstacle is that apply-

ing decoherence effects heavily relies on the addition of matrices

which requires access to all single matrix elements and, in turn,

triggers the complete traversal of the decision diagrams—causing

an exponential overhead independently of how compact they can

be represented.

Accordingly, we looked for alternatives that either completely

avoid the addition ofmatrices or, at least, only conduct it on (smaller)

sub-matrices. Our investigations eventually resulted in such alter-

natives whose main idea rests on the following three observations:

First, adding two matrices is not always necessary. In particular,

the T2 error can be described bymultiplications only. In fact, w.l.o.g.,

the effect of this error on a single qubit can be described by[
𝑎 𝑏

𝑐 𝑑

]
↦−→

[
𝑎 (2𝑝 − 1)𝑏

(2𝑝 − 1)𝑐 𝑑

]
,

where 𝑝 represents the probability. That is, two of the elements are

not changed at all, while the remaining ones are just multiplied

by 2𝑝 − 1. Hence, applying the T2 error can be reduced to two

multiplications—without the need for any addition.

Second, applying the error as specified in Eq. 5 is inefficient and

allows to apply only one error effect to one qubit at a time. By

explicitly enforcing the error effects directly on the corresponding

nodes of the affected qubits, we can apply all desired effects to all

qubits with just one traversal of the decision diagram.

Third, if the matrix is represented in terms of decision diagrams,

it is not always necessary to do the addition on the entire matrix.

In fact, in decision diagrams, every qubit is represented by one

or more nodes. Applying a decoherence error to a qubit actually

only modifies the outgoing edges from the nodes representing this

specific qubit. All predecessor nodes are only indirectly affected

when the edge weights are normalized (as described in Section 2.3).

Based on those observations, we are proposing an advanced

method of applying this operation on decision diagrams: Instead of

doing the matrix-matrix multiplications followed by the addition

separately, we apply the decoherence effects in one step—exploiting

our observation that applying an operation to a qubit only modifies

the outgoing edge weights of nodes representing it. Decoherence

can therefore accordingly be applied by directly modifying all those

edges. In doing so, we also gain full control over how the operation

is applied—allowing us to exploit the first two observations as well.
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Example 6. The advanced approach is illustrated by reusing Exam-
ple 4. Recall that, in this example, we apply an amplitude damping (T1)
decoherence error with a probability of 30 % to 𝑞1 of the quantum
state 𝜌 from Example 3. In contrast to the earlier example, we now
apply the error directly to the decision diagram of 𝜌 (given in Fig. 2b).
To this end, we apply the effects of the T1 error to all nodes labeled 𝑞1
leading to the following transformations[

𝑎 𝑏

𝑐 𝑑

]
↦−→

[
𝑎 + 𝑑𝑝 𝑏

√
1 − 𝑝

𝑐
√
1 − 𝑝 𝑑 − 𝑑𝑝

]
.

As defined in Section 2.3, the four outgoing edges of a node in a decision
diagram represent the matrix elements a, b, c and d from left to right.
Hence, modifying the fourth node labeled 𝑞1 with probability 𝑝 = 0.3

leads to [
0 0

0 1

]
↦−→

[
0 + 1 · 0.3 0

0 1 − 1 · 0.3

]
=

[
0.3 0

0 0.7

]
The other nodes labeled 𝑞1 are modified in the same way, leading
to the new decision diagram shown in Figure 2c. This new decision
diagram represents 𝜌 after the T1 decoherence error has been applied
and is equal to 𝜌 ′ from Example 4.

5 EVALUATION
In this section, we summarize the core results of our evaluations

conducted in order to investigate the effect of considering deco-

herence errors in the simulation of quantum circuits using deci-

sion diagrams. To this end, we took the state-of-the-art decision

diagram-based simulator from [32, 34] and extended this implemen-

tation to additionally support decoherence errors. This led to one

version in which error support has been added in a straightforward

fashion (i.e., directly applying the concepts described in Section 3.1)

and another version in which error support has been added in an

advanced fashion (i.e., applying the methods described in Section 4).

In addition to that and for the purpose of comparison, we also con-

sidered two state-of-the-art array-based simulators, namely Linalg
from the commercial Atos Quantum Learning Machine (QLM) [3]

as well as the density_matrix simulator from IBM’s Qiskit [2].

For the evaluations, we assumed the amplitude damping (T1)

error with 0.2 % probability and the phase flip (T2) error with 0.1 %

probability (applied each time a qubit has been used). As quantum

algorithm, we considered theQuantum Fourier Transform (QFT [18])

with an increasing number of qubits. This is an ideal choice for

the purpose of this evaluation, since QFT (1) constitutes a core

element of numerous existing quantum applications (such as Shor’s

factorization method [23], quantum phase estimation [18] and the

hidden subgroup problem [18]), (2) is an established benchmark

for evaluating the effects of decoherence errors in related work

(e.g., [4]), and (3) additionally has the benefit that, thus far, it repre-

sents one of the best cases for simulation using decision diagrams

without considering decoherence (showing a linear scalability in

memory and run-time with respect to the number of qubits). There-

fore, the effects of considering decoherence errors can ideally be

investigated using QFT.

All evaluations have been conducted on a system using 5 cores

running at a clock frequency of 2.2 GHz and 1.5 TB of RAM. While

the QLM simulator runs directly on this system, we ported the

Qiskit simulator and the simulators using decision diagrams to

this machine utilizing Docker [15]. We choose Docker since its

virtualization overhead is negligible [7]. By this, all simulators have

been evaluated using the same hardware resources.

Table 1 summarizes the obtained results. The first column pro-

vides the number of considered qubits. In the remaining columns,

we list the peak memory usage in MB as well as the total simulation

time in real time seconds for all considered approaches, i.e., Atos’

and IBM’s array-based QLM and Qiskit, respectively, as well as the

considered decision diagrams-based approach with and without the

improvement from Section 4. Note that the accumulated CPU time

of the array-based approaches would be substantially larger than

the real time values listed in Table 1, since both approaches heavily

utilize concurrency enabled by the available five cores during the

simulation. Cells without any entries represent instances where

the timeout of one hour has been exceeded.

The results clearly confirm the observations from above: Con-

sidering decoherence errors during simulation does not necessarily

harm the compact representation of decision diagrams. In fact, the

respective memory requirements for the decision diagrams remain

rather moderate (never more than 150 MB), while they sky-rocket

for the array-based approaches (certainly, the main reason why

those approaches only scale up to 15 or 14 qubits, respectively).

At the same time, it also can be seen that run-time becomes much

more the limiting factor for the decision diagram-based simulation.

This confirms the discussion from Section 3.2 and shows the impact

of the advanced method of conducting the required operations as

described in Section 4—eventually yielding improvements of several

orders of magnitude and more than twice the scalability.

6 CONCLUSION
Decision diagrams provide a promising alternative for quantum

circuit simulation due to their capability of representing vectors and

matrices in a much more compact fashion than, e.g., array-based

methods. But no work existed yet which investigated whether these

promising effects can be maintained when decoherence errors—still,

a dominating aspect in quantum computing—are additionally as-

sumed. This work sheds light on this. We observed that considering

decoherence errors not necessarily harms the compact represen-

tation, but leads to new challenges with respect to conducting the

respectively required operations in a run-time-efficient fashion. In

order to address these challenges an advanced method has been pro-

posed, whichmitigates the negative effects and led to improvements

of several orders of magnitudes. By this, we showed that quantum

circuit simulation using decision diagrams remains a promising

approach also when decoherence errors are considered.
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Table 1: Experimental results

Array-based Decision diagram-based

QLM Qiskit Without Improvement With Improvement

#Qubits Mem [MB] Time [s] Mem [MB] Time [s] Mem [MB] Time [s] Mem [MB] Time [s]

10 142.11 2.06 261.57 40.04 94.44 0.47 41.94 0.16

11 190.21 4.29 313.65 97.27 95.03 0.87 41.00 0.16

12 390.43 13.54 505.40 174.69 97.62 2.40 39.97 0.17

13 1166.96 58.22 1297.79 366.26 98.22 7.47 40.48 0.17

14 4241.86 265.40 4287.89 1114.23 100.58 22.49 40.74 0.17

15 16535.59 1217.52 103.10 72.89 43.21 0.17

16 107.69 269.04 41.70 0.17

17 109.55 1067.78 94.46 0.27

18 97.21 0.27

.

.

.
.
.
.

36 129.85 528.62

37 135.08 1255.23

38 137.02 2816.20

REFERENCES
[1] 2019. Cirq: A Python Framework for Creating, Editing, and Invoking Noisy Inter-

mediate Scale Quantum (NISQ) Circuits. github.com/quantumlib/Cirq. Accessed:

2020-01-22.

[2] Héctor Abraham et al. 2019. Qiskit: An Open-source Framework for Quantum

Computing. https://doi.org/10.5281/zenodo.2562110

[3] Atos SE. 2016. Quantum Learning Machine. atos.net/en/products/quantum-

learning-machine. Accessed: 2019-11-20.

[4] Himanshu Chaudhary, BiplabMahato, Lakshya Priyadarshi, Naman Roshan, Azad

Utkarsh, and Apoorva Patel. 2019. A Software Simulator for Noisy Quantum

Circuits. arXiv:1908.05154 (2019).
[5] Michael Devoret and Robert Schoelkopf. 2013. Superconducting Circuits for

Quantum Information: An Outlook. Science 339 (2013), 1169–1174.
[6] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-

mate Optimization Algorithm. arXiv:1411.4028 (2014).
[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated

performance comparison of virtual machines and Linux containers. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software. 171–
172. https://doi.org/10.1109/ISPASS.2015.7095802

[8] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.

In Symp. on Theory of Computing. 212–219. https://doi.org/10.1145/237814.237866
[9] Thomas Grurl, Jürgen Fuß, Stefan Hillmich, Lukas Burgholzer, and Robert Wille.

2020. Arrays vs. Decision Diagrams: A Case Study onQuantumCircuit Simulators.

In Int’l Symp. on Multi-Valued Logic, Vol. 50. 176–181.
[10] Tyson Jones, Anna Brown, Ian Bush, and Simon Benjamin. 2018. QuEST and High

Performance Simulation of Quantum Computers. arXiv preprint arXiv:1802.08032
(2018).

[11] Ivan Kassal, Stephen Jordan, Peter Love, Masoud Mohseni, and Alán Aspuru-

Guzik. 2008. Polynomial-time quantum algorithm for the simulation of chemical

dynamics. Proc. of the National Academy of Sciences 105, 48 (2008), 18681–18686.
[12] Julian Kelly. 2018. A Preview of Bristlecone, Google’s New Quantum Pro-

cessor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-

new.html Accessed: 2019-05-19.

[13] Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash.

2019. q-means: A quantum algorithm for unsupervised machine learning. Proc.
of the Neural Information Processing Systems (2019).

[14] Nader Khammassi, Imran Ashraf, Xiang Fu, Carmen Almudever, and Koen Bertels.

2017. QX: A High-Performance Quantum Computer Simulation Platform. In

Design, Automation and Test in Europe.
[15] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-

opment and Deployment. Linux Jour. 2014, 239, Article 2 (2014).
[16] D. M. Miller, M. A. Thornton, and D. Goodman. 2006. A Decision Diagram

Package for Reversible and Quantum Circuit Simulation. In IEEE World Congress
on Computational Intelligence. 8597–8604.

[17] Ashley Montanaro. 2016. Quantum algorithms: An overview. npj Quantum
Information 2 (2016), 15023.

[18] Michael Nielsen and Isaac Chuang. 2000. Quantum Computation and Quantum
Information. Cambridge Univ. Press.

[19] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A. Thornton, and

Rolf Drechsler. 2016. QMDDs: Efficient Quantum Function Representation and

Manipulation. 35, 1 (2016), 86–99.

[20] Philipp Niemann, Alwin Zulehner, Rolf Drechsler, and Robert Wille. 2020. Over-

coming the Trade-off between Accuracy and Compactness in Decision Diagrams

for Quantum Computation. In IEEE Trans. on CAD of Integrated Circuits and
Systems. IEEE.

[21] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. 2018. Quantum

computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A
98 (2018), 15. Issue 2. https://doi.org/10.1103/PhysRevA.98.022321

[22] Vasilis Samoladas. 2008. Improved BDD Algorithms for the Simulation of Quan-

tum Circuits. In European Symp. on Algorithms. 720–731.
[23] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. 26, 5 (1997), 1484–1509.

[24] Mikhail Smelyanskiy, Nicolas P. D. Sawaya, and Alán Aspuru-Guzik. 2016. qHiP-

STER: The Quantum High Performance Software Testing Environment. Comput-
ing Research Repository abs/1601.07195 (2016).

[25] Damian Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: An open

source software framework for quantum computing. Quantum 2 (2018).

[26] Swamit Tannu and Moinuddin Qureshi. 2018. Not All Qubits Are Created Equal.

arXiv:1805.10224 (2018).
[27] George Viamontes, Igor Markov, and John Hayes. 2004. High-performance

QuIDD-based simulation of quantum circuits. In Design, Automation and Test in
Europe. 1354–1355.

[28] Guifré Vidal. 2003. Efficient classical simulation of slightly entangled quantum

computations. Physical review letters 91, 14 (2003).
[29] Benjamin Villalonga, Sergio Boixo, Bron Nelson, et al. 2019. A flexible high-

performance simulator for verifying and benchmarking quantum circuits imple-

mented on real hardware. npj Quantum Information 5, 1 (2019).

[30] Dave Wecker and Krysta Svore. 2014. LIQUi |>: A Software Design Architecture

and Domain-Specific Language for Quantum Computing. arXiv:1402.4467 (2014).

[31] Alwin Zulehner, Stefan Hillmich, Igor Markov, and Robert Wille. 2020. Approxi-

mation of Quantum States Using Decision Diagrams. In Asia and South Pacific
Design Automation Conf. 121–126.

[32] Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to Efficiently Han-

dle Complex Values? Implementing Decision Diagrams for Quantum Computing.

In Int’l Conf. on CAD.
[33] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille. 2019. Ac-

curacy and Compactness in Decision Diagrams for Quantum Computation. In

Design, Automation and Test in Europe. 280–283.
[34] Alwin Zulehner and Robert Wille. 2018. Advanced Simulation of Quantum

Computations. IEEE Trans. on CAD of Integrated Circuits and Systems.
[35] Alwin Zulehner and Robert Wille. 2019. Matrix-Vector vs. Matrix-Matrix Multi-

plication: Potential in DD-based Simulation of Quantum Computations. In Design,
Automation and Test in Europe. 90–95.

https://github.com/quantumlib/Cirq
https://doi.org/10.5281/zenodo.2562110
https://atos.net/en/products/quantum-learning-machine
https://atos.net/en/products/quantum-learning-machine
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1145/237814.237866
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://doi.org/10.1103/PhysRevA.98.022321

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Computing
	2.2 Array-based Quantum Circuit Simulation
	2.3 Decision Diagram-based Quantum Circuit Simulation

	3 Simulation of Decoherence
	3.1 Qubit Decoherence Errors
	3.2 Effect to Simulation

	4 Advanced Simulation Approach
	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

