
1

Improved Mapping of
Quantum Circuits to IBM QX Architectures

Abhoy Kole, Member, IEEE, Stefan Hillmich, Student Member, IEEE, Kamalika Datta, Member, IEEE,

Robert Wille, Senior Member, IEEE, and Indranil Sengupta, Senior Member, IEEE

Abstract—Quantum computers are becoming a reality today
due to the rapid progress made by researchers in the last years.
In the process of building quantum computers, IBM has devel-
oped several versions—starting from 5-qubit architectures like
IBM QX2 and IBM QX4 to larger 16- or 20-qubit architectures.
These architectures support arbitrary rotations of a single qubit
and a controlled negation (CNOT) involving two qubits. The two
qubit operations come with added coupling-map restrictions that
only allow specific physical qubits to be the control and target
qubits of the operation. In order to execute a quantum circuit on
the IBM QX architecture, CNOT gates must satisfy the so-called
coupling constraints of the architecture.

Previous works addressed this issue with the objective of
reducing the number of gates and the circuit depth. However,
in this work we show that further improvements are possible. To
this end, we present a general approach for further improving
the number of gate operations and depth of the mapped circuit.
The proposed approach encompasses the selection of physical
qubits, determining initial and local permutations efficiently to
obtain the final circuit mapped to the given IBM QX architecture.
Through experiments improvements are observed over existing
methods in terms of the number of gates and circuit depth.

Index Terms—IBM QX Architecture, Coupling-map, Quantum
Circuit, Clifford+T library

I. INTRODUCTION

Quantum computing has received much attention in the last

few decades due to its superiority over classical computing for

solving problems like factoring integers [1], searching objects

in unsorted databases [2], and efficiently simulating processes

in quantum chemistry [3].

The supremacy in computation comes from the exploitation

of quantum mechanics like linear evolution and entanglement.

A computing system in this domain comprises a number of

two-state subsystems that are called qubits. The state of an

individual qubit in a 2-dimensional Hilbert space can either

be one of the basis states |0〉 and |1〉 or a linear combination

A. Kole is with the Rajendra Mishra School of Engineering Entrepreneur-
ship, Indian Institute of Technology, Kharagpur 721302, India.
E-mail: abhoy.kole@iitkgp.ac.in

S. Hillmich is with the Institute for Integrated Circuits, Johannes Kepler
University Linz, A-4040 Linz, Austria.
E-mail: stefan.hillmich@jku.at

K. Datta is with the Nanyang Technological University, Singapore.
E-mail: kdatta.iitkgp@gmail.com

R. Wille is with the Institute for Integrated Circuits, Johannes Kepler
University Linz, A-4040 Linz, Austria and the Cyber-Physical Systems Dept.,
DFKI Bremen GmbH, 28359 Bremen, Germany.
E-mail: robert.wille@jku.at

I. Sengupta is with the Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur 721302, India.
E-mail: isg@iitkgp.ac.in

of them, i.e. |ψ〉 = α |0〉+ β |1〉 where α and β are complex

numbers and |α|2 + |β|2 = 1 [4]. Different technologies, such

as trapped ions and superconducting qubits, provide retainable

quantum states and mechanisms to interact with them [5] that

are necessary requirements for the physical realization of a

quantum system.

In March 2017, IBM introduced their first superconducting

quantum architecture, IBM QX2 with 5 qubits [6] and made

it available in the cloud for broad access. IBM also provides

cloud access to their 16 qubit architecture IBM QX3. The

improved version of these two architectures, IBM QX4 and

IBM QX5, were made available in the cloud later on.

In order to run a quantum algorithm on one of the IBM QX

architectures, the algorithm must be expressed using supported

elementary quantum operations. There also exist architectural

constraints on applying the elementary operations on physical

qubits. The quantum circuits must be mapped to these physical

architectures adhering to the constraints. In all but the trivial

cases, it is not possible to physically map an entire quan-

tum circuit at once satisfying these physical constraints. The

states of physical qubits must be interchanged in performing

subsequent quantum operations to satisfy such constraints. In

order to do this, additional gates realizing SWAP operations

are inserted before quantum gates operating on qubits not

satisfying these physical constraints. Since quantum operations

are not error free, the operational reliability of quantum

circuits is compromised due to the insertion of these additional

gates. Thus, it is necessary to minimize the number of SWAP

operations.

Mapping an arbitrary quantum function to the IBM QX

architecture is carried out in two steps. Initially the function-

ality is expressed in terms of elementary operations. Several

methods exist to carry out this task [7]–[12]. Next, elementary

operations on logical qubits are mapped to an IBM QX

architecture satisfying the physical constraints. Early works

for satisfying nearest neighbor constraints on 1-dimensional,

2-dimensional or higher dimensional physical layouts are less

restricted [13]–[23] compared with physical constraints for the

IBM QX architecture. There exist few works on physical map-

ping of these quantum circuits to IBM QX architectures [24]–

[27]. The authors in [25] have addressed the physical map-

ping issue specifically for IBM QX2 and QX4 architectures

whereas the authors in [26] have presented a generic approach

for mapping to an arbitrary IBM QX architecture. In [24],

the authors have suggested an architecture specific mapping

scheme for quantum circuits containing SU(4) gates. Although

these approaches have produced better compilation results for
0000–0000/00$00.00 c© 20XX IEEE

2

quantum circuits, there is always scope for improvement. In

finding an optimal solution, there are several issues that need to

be addressed, like physical qubits selection, mapping logical

qubits, insertion of SWAP operations and finally optimizing

the mapped netlist using certain gate reduction rules. In

fact, finding the optimal mapping for quantum circuits is an

NP-complete problem [28], [29]. An investigation towards this

remains as an active research problem (see, e.g. [30]).

In this regard, we propose a generic approach for mapping

quantum circuits to IBM QX architectures satisfying physical

constraints. Initially, for a given circuit, physical qubits are

identified and an evolutionary algorithm is used to find a close

to optimal initial ordering of the qubits. For the evolutionary

algorithm, a new cost metric based on the physical mapping

is introduced as the fitness function. With this cost metric we

propose an approach for insertion of gates to perform SWAP

operations. Although the run-time of our proposed approach

increases due to incorporation of the evolutionary algorithm

for initial mapping, after optimizations we observe resulting

circuits with reduced gate count and depth over the approach

proposed in [26], with an increasing improvement for larger

circuits.

The remainder of this paper is organized as follows. In Sec-

tion II we provide a review of quantum circuits and IBM QX

architectures. In Section III we discuss the proposed approach

for mapping a quantum circuit to the IBM QX architecture.

Experimental results and discussions are presented in Section

IV. Finally, in Section V, we provide some concluding remarks.

II. PRELIMINARIES

A. Quantum Operations

Quantum computers operate on quantum bits or qubits. A

qubit is the basic computational unit in the quantum domain.

Like classical bits that can only assume the basis states 0 or 1,

a qubit can represent a two-level system with basis states |0〉
and |1〉 (written in Dirac notation). However, a qubit, unlike

a classical bit, can also be in a superposition of these basis

states, i.e. |ψ〉 = α |0〉 + β |1〉 where α and β are complex

numbers and |α|2+ |β|2 = 1. Any general qubit state like |ψ〉
also represents a vector

(

α
β

)

in a 2-dimensional Hilbert space.

The state of n such qubits is the tensor product of individual

states, i.e.
(

α
β

)⊗n
. This allows parallel quantum operations

over all 2n possible basis states.

Unitary operations are performed on one or more qubits to

evolve the qubits states. An n-qubit operator is represented by

a 2n × 2n unitary matrix. The elementary operators can be

represented by the following matrices:

X = NOT =

(

0 1
1 0

)

S =
√
Z =

(

1 0
0 i

)

Y =

(

0 −i
i 0

)

T = 4
√
Z =

(

1 0
0 1+i√

2

)

Z =

(

1 0
0 −1

)

H = 1√
2

(

1 1
1 −1

)

Here in the first column X , Y and Z are the Pauli rotation

operators and the second column represents phase S, square-

root of phase T and Hadamard H operators.

Together, they form the Clifford+T library [11]. For com-

pleteness, two-qubit CNOT gate is also included in this library.

The 4 × 4 matrix for CNOT(qi, qj): |qi, qj〉 7→ |qi, qi ⊕ qj〉
operation is represented as a sum of tensor products of 2× 2
matrices, |0〉〈0|qi⊗Iqj + |1〉〈1|qi⊗Xqj where I is the identity

matrix and 〈k| is the dual of |k〉.

B. Quantum Circuits

In this work quantum circuits are represented by their corre-

sponding circuit diagrams. There are quantum languages like

Scaffold [31], Quipper [32], and OpenQASM [33] which can

also be used to describe quantum circuits. In a circuit diagram,

qubits are shown in space (y-axis) and unitary operations that

are performed on the qubits are shown as applications of these

operations in the axis of time (x-axis).

Example 1. Fig. 1 shows a quantum circuit composed of 7

unitary operators and 3 qubits. The elementary gates H , S

and T † are represented by rectangular boxes and the boxes are

labeled with corresponding operator names. The CNOT(qi, qj)

gates are represented by a • on the control qubit qi and ⊕ on

the target qubit qj .

q1 • S • T † • q1

q2 • q2

q3 H q3

Fig. 1: An example quantum circuit

C. IBM QX Architecture

The project IBM Q [6] has provided several architectures

that are shown in Fig. 2. A framework named Qiskit [27]

is also presented for describing, simulating and executing

quantum circuits on a real quantum device that has been made

available in the cloud. These real devices are comprised of 5

or 16 physical qubits connected through coplanar waveguide

bus resonators [34]. Microwave pulses are applied to perform

quantum operations on these qubits.

All of these architectures support the elementary oper-

ation U(θ, φ, λ) that can be expressed by unitary rotation

operations, i.e. Rz(φ)Ry(θ)Rz(λ), where θ rotations about

Z-axis and Y -axis are represented by Rz(θ) =
(1 0

0 e
i θ
2

)

and

Ry(θ) =
(cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)

respectively. Arbitrary elementary

operations are performed on physical qubits by adjusting the

parameters θ, φ and λ.

Further, all of these architectures restrict the application of

the two-qubit CNOT operation. A CNOT(Qi, Qj) operation

on a physical qubit pair Qi and Qj can only be applied if a

coupling-map Qi → Qj exists between them where Qi and

Qj act as control and target qubits, respectively. Fig. 2 shows

the coupling-map for the four IBM QX architectures.

3

Q0 Q1

Q2

Q4 Q3

(a) IBM QX2

Q0 Q1

Q2

Q4 Q3

(b) IBM QX4

Q1

Q0

Q2

Q15

Q3

Q14

Q4

Q13

Q5

Q12

Q6

Q11

Q7

Q10

Q8

Q9

(c) IBM QX3

Q1

Q0

Q2

Q15

Q3

Q14

Q4

Q13

Q5

Q12

Q6

Q11

Q7

Q10

Q8

Q9

(d) IBM QX5

Fig. 2: Physical association of qubits in IBM QX architectures

III. PHYSICAL QUBIT MAPPING

A. Physical Qubit Selection

To map a given circuit with n logical qubits (q0, . . . , qn−1)

to a given IBM QX architecture with m (n ≤ m) physi-

cal qubits (Q0, . . . , Qm−1), the physical qubits can be selected

in
(

m
n

)

ways. Assuming the qubit association as a directed

graph (see Fig. 2), the selected physical qubits for mapping

with logical qubits must be a connected component. Initially,

both logical qubits and physical qubits are ordered based on

their degree of association. For the coupling-map Qi → Qj

and Qi → Qk, the degree of association of Qi is 2, i.e.

deg(Qi) = 2. Similarly for the logical qubit associations

qx → qy and qx → qz , deg(qx) is 2. For a given quantum

circuit, the degree of association of each logical qubit is

the out-degree of the corresponding vertex in the incidence

graph, IG = (V,E) where each vertex qi ∈ V represents a

logical qubit and each directed edge (qi, qj) ∈ E denotes a

CNOT(qi, qj) operation. The following example illustrates the

qubit ordering.

Example 2. Fig. 3a and 3b show a quantum circuit and

the corresponding incidence graph, respectively. The qubit

ordering derived from the incidence graph is shown in Fig. 3c.

For a given architecture physical qubits are also ordered in a

similar way based on their degree of association obtained from

the coupling-map, e.g. the out-degree of Q2 in IBM QX4 is

3 as can be verified from Fig. 2b.

Next, the shortest distances between physical qubits are

computed to determine the number of SWAP operations re-

quired to satisfy the coupling-map constraints. For a coupling-

map containing Qi → Qj , the distance dij is set to 0, since the

application of CNOT(Qi, Qj) requires no SWAP operation.

If Qi and Qj are not adjacent but have a common adjacent

qubit, the application of CNOT(Qj , Qi) requires 4 additional

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
q0 • • • • •
q1 • • • •
q2 • •
q3

(a) Quantum circuit

q0 q1

q3 q2

g1

g4, g11

g3, g9 g5, g8
g7, g10

g2, g6

(b) Incidence graph

qx deg(qx)
q0 3
q1 2
q2 1
q3 0

(c) Qubit ordering

Fig. 3: An example logical qubit ordering

Hadamard operations, and since a SWAP operation is realized

using a network of 7 elementary operations, distance dji is set

to 4
7 ≈ 0.6. The following example illustrates the realization

of a SWAP operation.

Example 3. Fig. 4a shows the SWAP operation,

i.e. SWAP(qx, qy). The operation can be realized by a

network of three CNOT gates:

CNOT(qx, qy)CNOT(qy, qx)CNOT(qx, qy)

as shown in Fig. 4b. For the coupling-map shown in Fig. 4c

and physical mapping of qubits (qx, qy) → (Qi, Qj), the

second CNOT(qy, qx) operation can be realized using four

Hadamard operations as shown in Fig. 4d.

qx : |φ1〉 × |φ2〉
qy : |φ2〉 × |φ1〉

(a) SWAP gate

qx : |φ1〉 • • |φ2〉
qy : |φ2〉 • |φ1〉

(b) SWAP realization

Qi Qj

(c) Coupling-map

Qi ← qx • H • H •
Qj ← qy H H

(d) SWAP realization

Fig. 4: Realizing SWAP operation on IBM QX architecture

For a given physical architecture, the distance dij between

adjacent physical qubits Qi and Qj is assigned to 0 or

0.6, depending on their directions in the coupling-map. The

distance dij for all non-adjacent physical qubit pairs Qi Qj

is initially set to∞ and further computed exploiting the Floyd-

Warshall algorithm [35] for solving the all-pairs-shortest-path

problem in the following way.

For a non-adjacent qubit pair Qi Qj and an intermediate

qubit Qk if there exists a finite distance path between qubit

pairs Qi Qk and Qk Qj , i.e. dik 6= ∞ and dkj 6=

4

∞ then the distance between Qi and Qj through Qk, dkij is

computed as follows:

dkij =

{

dki + djk + 1.6; if dik > dki ∧ dkj > djk
min{dik, dki}+min{dkj , djk}+ 1; otherwise

where both the distance expressions represent the normalized

distance in terms of the number of SWAP operations and the

expression dki + djk + 1.6 is used in computing the distance

when there exist only reverse coupling-map edges in the path

Qi Qk Qj ; otherwise the latter expression is used. Fi-

nally, the distance, dij between qubit pair Qi Qj is assigned

dkij , if dij > dkij . For an n-qubit physical layout this process

continues considering physical qubit Qk two times, initially

for k = 0, 1, · · · , n− 1 and then for k = n− 1, n− 2, · · · , 0
to find the shortest distance between each such non-adjacent

pairs Qi Qj , where i, j = 0, 1, · · · , n− 1 and i 6= j.

To obtain the shortest distances the algorithm is run twice

for increasing and decreasing values of k. Although the run-

time for computing the shortest distance between n physical

qubits is O(n3), the process is carried out only once for each

physical architecture. The computation of the shortest distance

is illustrated below.

Example 4. The initial distance between physical qubits and

the final distance obtained by running the Floyd-Warshall

algorithm [35] for IBM QX4 is shown in Table I. From the

table, it can be verified that the application of CNOT(Q1, Q3)
requires 1 SWAP operation and 4 Hadamard operations,

whereas the application of CNOT(Q3, Q1) requires only 1
SWAP operation.

TABLE I: dij Measures for IBM QX4

Initial Final
Q0 Q1 Q2 Q3 Q4 Q0 Q1 Q2 Q3 Q4

Q0 − 0.6 0.6 ∞ ∞ − 0.6 0.6 1.6 1

Q1 0 − 0.6 ∞ ∞ 0 − 0.6 1.6 1

Q2 0 0 − 0.6 0 0 0 − 0.6 0

Q3 ∞ ∞ 0 − 0 1 1 0 − 0

Q4 ∞ ∞ 0.6 0.6 − 1 1 0.6 0.6 −

Initially, the logical qubit with the maximum degree of

association is mapped to a physical qubit having the maximum

degree of association. For subsequent mapping of the logical

qubit with the next highest degree of association, an unmapped

physical qubit which has the shortest distance from all the

mapped physical qubits is selected. The process continues until

all logical qubits are mapped. To obtain a mapping of physical

qubits with evenly distributed degree of association, the dis-

tance between physical qubits Qi and Qj dij is rounded to the

nearest integer value. It can be verified that the average run-

time of this algorithm is O(n2) in mapping n physical qubits.

The mapping generated by running the proposed algorithm on

various IBM QX architecture is illustrated by the following

example.

Example 5. Fig. 5a and 5b show the selection of physical

qubits for mapping the quantum circuit shown in Fig. 3a, to

the IBM QX3 and QX5 architectures, respectively. The logical

to physical qubit mappings are shown in Fig. 5c.

Q4 Q5

Q13 Q12

(a) IBM QX3

Q5 Q6

Q12 Q11

(b) IBM QX5

qi QX3 QX5

q0 Q12 Q6

q1 Q5 Q5

q2 Q4 Q12

q3 Q13 Q11

(c) Physical mapping

Fig. 5: Physical mapping of logical qubits

B. Qubit Ordering

For a given quantum circuit, the physical mapping of logical

qubits (q0, q1, . . . , qn−1)→ (Qi, Qj , . . . , Qk) obtained in the

previous section may not satisfy the coupling-map constraints

for all the CNOT gates present in the circuit. To satisfy the

constraints SWAP operations are performed on a pair of qubits

to exchange their states. For a coupling-map Qi → Qj ,

the CNOT(Qj , Qi) operation is realized using 4 additional

Hadamard operations.

For a physical mapping (q0, . . . , qn−1)→ (Qi, . . . , Qk), if

a CNOT gate at depth i does not satisfy the coupling-map

constraints, the state of the qubits are swapped to obtain a

new permutation πi. Since the physical layout of IBM QX

architectures is 2-dimensional, there exists more than one

permutation that may satisfy the coupling-map constraint.

In order to obtain a permutation that minimizes the SWAP

requirement for subsequent depths (i+1, i+2, . . .), a heuristic

is used. Initially, all CNOT gate operations are prioritized

based on their depth such that for a given circuit of depth

n, the priority, pi of the CNOT gate at depth i satisfies the

following criteria

pi > pi+1 + pi+2 + . . . pn (1)

The priority values are selected in such a way that Eq. 1 is

satisfied for all possible values of i.

Lemma 1. For any real number M ≥ 2, n > 1 and

0 ≤ i ≤ n − 1, the priority assignment pi = Mn−i

satisfies Eq. 1.

Proof. For 0 ≤ i ≤ n, the RHS of Eq. 1 is

pi+1 + pi+2 + . . . pn =Mn−(i+1) +Mn−(i+2) + · · ·+ 1

=
1

M − 1

(

Mn−i − 1
)

< Mn−i

for M ≥ 2.

The cost metric coupling-cost for a physical mapping of

n logical qubits (q0, q1, . . . , qn−1) → (Qi, Qj , . . . , Qk) is

defined as

coupling-cost =
∑

x,y∈{1,2,...,n}
dxywxy (2)

where for a physical mapping qx → Qs and qy → Qt,

dxy is the distance between the physical qubit pair {Qs, Qt},
and wxy is the weight of the corresponding edge (qx, qy) in

5

the incidence graph. Given a quantum circuit with n logical

qubits {q0, q1, . . . , qn−1} and depth m, the weight wxy of the

directed edge (qx, qy) in the incidence graph is defined as

wxy =
∑

k∈{1,2,...,m}
p
xy
k (3)

where p
xy
k is the priority of the CNOT(qx, qy) gate at depth

k ≤ m. The following example illustrates the computation of

physical mapping cost.

Example 6. Fig. 6a shows the same quantum circuit of depth 8
(see Fig. 3a) where the priority pi = M8−i at each depth

i is computed with M = 2. The corresponding weighted

incidence graph for the circuit is shown in Fig. 6b. It can

be verified that the weight of the edge (q2, q3) is the sum

of the priorities of the CNOT gates g2 and g6 at depth 1
and 5, i.e. p1 + p5 = 128 + 8 = 136. The coupling-cost for

the physical mapping (q0, q1, q2, q3)→ (Q2, Q0, Q3, Q4) to

IBM QX3 is calculated as

0×128+0×136+0×66+0.6×33+1.6×18+1×5 = 53.6.

g1, g2 g3 g4 g5 g6 g7 g8 g9 g10g11
q0 •

✤

✤

✤

✤

✤

✤

•
✤

✤

✤

✤

✤

✤

•
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

•
✤

✤

✤

✤

✤

✤

•
q1 • • • •
q2 • •
q3

128 64 32 16 8 4 2 1

(a) Quantum circuit

q0 q1

q3 q2

128

33

66 18
5

136

(b) Incidence graph

Fig. 6: Coupling-cost estimation for mapping logical qubits on

IBM QX3

For a given physical mapping of n logical qubits

(q0, . . . , qn−1) → (Qi, . . . , Qk), there are n! permutations,

including the current permutation πi. To minimize the number

of SWAP gates, the selection of a specific permutation πj
and the insertion of SWAP gates to transform the current

permutation πi → πj is carried out in such a way that the

coupling-cost of the physical mapping for subsequent CNOT

gates is minimized. The following example illustrates this

process.

Example 7. Fig. 7 shows the physical mapping

(q0, q1, q2, q3) → (Q6, Q5, Q12, Q11) of a quantum circuit in

IBM QX5 (see Fig. 2d). The first three CNOT gates g1, g2
and g3 satisfy the coupling-map constraint. For the gate g4,

CNOT(q0, q2), there is no such coupling-map Q6 → Q12 in

IBM QX5 architecture. All possible permutations considering

the coupling-maps Q6 → Q5 ← Q12 and Q6 → Q11 ← Q12

are explored and a permutation that minimizes the coupling-

cost of the subsequent CNOT gates (g5, . . . , g11) is selected

for the physical mapping.

C. Initial Permutation

Given a quantum circuit to be mapped to a specific archi-

tecture, the selection of physical qubits {Qi, . . . , Qk} and the

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
Q06 ← q0 • • • • •
Q05 ← q1 • • • •
Q12 ← q2 • •
Q11 ← q3

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Fig. 7: An example logical qubit ordering

initial permutation π0 of logical qubits {q0, . . . , qn−1} have a

significant impact in minimizing the number of gates as well

as depth. It is necessary to estimate the SWAP-cost for each

of the initial permutations, π0
0 , π

1
0 , . . . , π

k−1
0 to determine the

permutation, πi
0, (0 ≤ i ≤ k−1) with the smallest SWAP-cost.

To estimate the SWAP-cost of a specific initial permutation

πi
0 for a given circuit of depth m, the incidence graph for

the circuit is traversed m times, d = m − 1,m − 2, . . . , 0,

and setting the SWAP-cost to 0 at the beginning. In each

iteration the edges (qx, qy) with weight wxy > Md are

updated with wxy = wxy − Md. For the current physical

mapping (qx, qy) → (Qi, Qj) if the distance dxy is greater

than 0, the SWAP-cost is updated by adding dxy and the

current permutation is transformed to πi
d such that for this new

permutation, πi
d, dxy = 0 and the coupling-cost is minimized.

The following example illustrates this.

Example 8. The weights of the edges (q0, q1) and (q2, q3)
of the incidence graph shown in Fig. 6b can be updated

for d = 7 to w01 = 128− 27 = 0 and w23 = 136− 27 = 8,

respectively, considering circuit depth 8 and M = 2. Since for

the physical mapping (q0, q1, q2, q3)→ (Q6, Q5, Q12, Q11) in

IBM QX5 (see Fig. 7), the corresponding distances d01 and

d23 are 0, the initial permutation is left unchanged. Similarly,

for d = 6, the edge weight w03 is only updated to w03 = 2
without affecting the initial permutation as shown in Fig. 8a.

Next, for d = 5, the edge weight w02 is updated to w02 = 1.

Since the distance d02 is 1 due to this initial permutation, the

SWAP-cost is updated to 1 and a transformation of the initial

permutation (q0, q1, q2, q3) → (Q6, Q12, Q5, Q11) results in

distance d0,2 = 0 and coupling-cost

1× 0 + 1× 8 + 0× 2 + 0× 33 + 0× 18 + 0× 5 = 8.

The coupling-cost can be verified from the sub-circuit shown

in Fig. 8b.

q0 q1

q3 q2

0

33

2 18
5

8

(a) Incidence graph

g4 g5 g6 g7 g8 g9 g10g11
Q06 ← q0 • • •
Q05 ← q1 × •
Q12 ← q2 × • • • •
Q11 ← q3

(b) Quantum sub-circuit

Fig. 8: SWAP-cost estimation for quantum sub-circuit mapped

to the IBM QX5

An exhaustive search for an optimal initial permutation of

n logical qubits has a complexity of O(n!) w. r. t. the number

6

of qubits. In order to reduce the run-time, we explore the

permutations using a genetic algorithm based search. The

initial population is created by random reordering of the physi-

cal mapping (q0, . . . , qn−1)→ (Qi, . . . , Qk) and the search is

carried out on the basis of SWAP-cost as fitness estimation of

each permutation. The physical mapping obtained by running

the genetic algorithm may not be optimal as it may contain

redundant gates. The mapped circuit can be further optimized

by canceling or merging set of gates as discussed in the next

section.

D. Optimization

In the IBM QX architecture, all the single qubit gates

are realized using the U(θ, φ, λ) operation with appropriate

values for θ, φ, and λ. The single qubit gates are classi-

fied as U1(λ) = U(0, 0, λ), U2(φ, λ) = U(π2 , φ, λ), and

U3(θ, φ, λ) = U(θ, φ, λ) based on the values of these three

parameters. The realizations of all the single qubit gates from

the Clifford+T library are shown in Table II.

TABLE II: Realization of Single Qubit Gate Operations

Gate θ φ λ Gate θ φ λ
X π 0 π S 0 0

π
2

Y π π
2

π
2

S† 0 0 −π
2

H π
2

0 π T 0 0
π
4

Z 0 0 π T † 0 0 −π
4

A sequence of gates that operates on the same qubit can

be merged into a single gate and potentially canceled if the

sequence implements the identity operation on combining.

Two CNOT(qi, qj) gates can be canceled if there is no gate

present in between them whose target is qi or control is qj .

Based on the classification U1, U2, and U3, single qubit gates

can be merged in 9 different ways:

U1 × U1 U1 × U2 U1 × U3

U2 × U1 U2 × U2 U2 × U3

U3 × U1 U3 × U2 U3 × U3

For merging U1 × U1, U1 × U2, U1 × U3, U2 × U1, and

U3 × U1, the following Z − Y decomposition and merging

rule are used:

U(θ, φ, λ) = Rz(φ)×Ry(θ)×Rz(λ)

Rz(λ+ φ) = Rz(λ)×Rz(φ)

where Rx(θ) = U(θ,−π
2
,
π

2
), Ry(θ) = U(θ, 0, 0), and

Rz(θ) = U(0, 0,
θ

2
).

For the four merging operations U2×U2, U2×U3, U3×U2,

U3×U3, we are restricted to only Clifford+T gates. In general,

merging two gates U(θ1, φ1, λ1) and U(θ2, φ2, λ2) is carried

out in the following way:

i. If λ1 + φ2 = 2π or 0 then

U(θ1, φ1, λ1)× U(θ2, φ2, λ2) = U(θ1 + θ2, φ1, λ2)

ii. Otherwise

U(θ1, φ1, λ1)× U(θ2, φ2, λ2) = U(θ2 − θ1, π + φ1, λ2)

The rule is only applicable to the merging of Clifford+T gates.

The following example illustrates the optimization process.

Example 9. Fig. 9a shows a quantum circuit. The third and

final CNOT gates operate on the same qubits, and can be

canceled as there is no gate in between whose target is their

control qubit or control is their target qubit. The fifth X gate

and the next Z gate similarly can be merged. The optimized

circuit is shown in Fig. 9b.

H • • •
• X Z •

(a) Quantum circuit

H •
• Z ×X •

(b) Optimized circuit

Fig. 9: An example optimization

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed approach, two

sets of experiments are conducted.

In the first set of experiments the benchmarks from

RevLib [36] and pre-compiled quantum algorithms (by the

Scaffold compiler [37]) written in languages like Quipper [32]

or Scaffold [31] are considered for mapping to the IBM QX5

architecture. The results are reported in Table III and also

compared with the recent work by Zulehner et al. [26].

In conducting the second set of experiments, IBM QX2 and

QX4 architectures are used for mapping benchmarks from

Roetteler et al. [38] and Zulehner et al. [26], as well as a

comparison with the results given by Dueck et al. [25] is

presented in Table IV.

The evolutionary algorithm starts with a random population

where the best 13.34% of the current population are directly

considered for the next generation and the remaining popula-

tion is generated with crossover and mutation rates of 0.7 and

0.1, respectively. We have restricted the population size and

generation exploration to 30 and 500, respectively, for larger

benchmarks with 10 or more qubits.

All the experiments are carried out on an Intel Xeon ES

26S0v4, 2.2 GHz server with 16 GB memory. In both these

experiments, the observed run-time t is reported in seconds

as the total time taken including selection of physical qubits,

initial mapping to logical qubits, insertion of SWAP gates

to satisfy coupling-map constraints, and optimizing the final

mapped netlist.

A. Mapping to the 16-qubit Architecture

Table III shows the mapping results of benchmarks for the

IBM QX5 architecture using the proposed approach, which

is compared with the earlier reported work by Zulehner et

al. [26]. In the first four columns the benchmark name, the

number of logical qubits n, the number of gates g and the

circuit depth d are presented. The next three columns represent

the number of gates g, the circuit depth d and the time t taken

7

to realize the final quantum circuits satisfying the coupling-

map constraint using the A*-based heuristic search approach

proposed by Zulehner et al. [26]. The results observed by the

proposed approach are presented in the form of number of

gates g, circuit depth d and time t taken to obtain the mapped

circuit in the next three columns. Finally, the percentage

improvement (%) observed in terms of the number of gates

∆g and the depth ∆d over the results from Zulehner et al. [26]

are presented in the last two columns.

It can be seen from the table that, although the run-time

of the proposed approach is higher, it provides better results

in terms of the number of gates. On average, compared to

the A*-based method proposed by Zulehner et al. [26], 8%
reduction in the number of gates is observed while the circuit

depth increases by 0.6% using the proposed method. This is

mainly due to the fact that for circuits like ising model 13 and

ising model 16 our proposed approach—although reducing

the number of gates extensively compared to the result from

Zulehner et al. [26] (17% and 26.5%, respectively)—fails to

improve the depth of the final circuit over the corresponding

circuit depth observed by the authors in [26]. The circuit depth

of these benchmarks are increased to a great extent, i.e. 31.9%
and 25% increase in depth are observed in mapping the bench-

marks ising model 13 and ising model 16 to the IBM QX5

architecture over results presented by Zulehner et al. [26].

B. Mapping to the 5-qubit Architecture

In the second stage of evaluation, the mapping results of

the proposed approach for IBM QX2 and QX4 architectures

are compared with the results presented by Dueck et al. [25].

The details are presented in Table IV. The names of the

benchmarks and number of logical qubits n are presented in

the first two columns of the table. In the next two columns,

the best mapping results to IBM QX2 architecture using swap

transformation and template transformation approaches given

by Dueck et al. [25] are presented in terms of the number

of gates g and circuit depth d. Following this the mapping

results obtained by the proposed approach are presented as

the number of gates g, circuit depth d and run-time t. The

improvements gained by the proposed approach over the best

mapped result observed by Dueck et al. [25] in reducing

number of gates ∆g and circuit depth ∆d to map to IBM QX2

are listed next. It can be verified that on average 18.2%
reduction in the number of gates and 11.8% reduction in

circuit depth are observed when mapping to the IBM QX2

architecture using our proposed approach. Similarly, the best

results obtained from mapping to IBM QX4 using swap trans-

formation and template transformation approaches proposed

by Dueck et al. [25] are presented in the next two columns,

i.e. the number of gates g and circuit depth d. The outcome

of mapping the circuits by running the proposed approach are

listed next as the number of gates g, circuit depth d and time

taken to produce the mapped circuit t. Finally the decrease in

the number of gates ∆g and circuit depth ∆d over the best

results from Dueck et al. [25] are presented. Our approach

shows an average improvement of 10.1% in the number of

gates and 3.8% in the depth of the final mapped circuit.

V. CONCLUSION

In this work, we presented a generic framework for compil-

ing quantum circuits to the IBM QX architectures, satisfying

the coupling-map constraints. For mapping quantum circuits

to a specific IBM QX architecture, the proposed approach

addresses this mapping problem in three stages: (i) a greedy

approach for the initial selection of n out of m (m ≥ n)

physical qubits available in the architecture for mapping a

quantum circuit composed of n logical qubits, (ii) define a

fitness measure for the initial permutation of n logical qubits

for mapping physical qubits and perform an evolutionary

search using a genetic algorithm to find the best initial

permutation π0, and (iii) devise a strategy for obtaining the

local qubit permutation πi at the circuit depth i that further

reduces the overhead of additional gate operations while

satisfying the coupling-map constraints for the remaining gates

starting from depth i. For completeness, we further discussed

the post-mapping optimization methods in this work. The

proposed method provides better results for the number of

gates while not providing improvement over circuit depth for

some circuits. A reduction in the number of gates further

increases the reliability of quantum circuits by reducing the

noise introduced by every gate involved in realizing the desired

operation. The proposed generic approach addresses the issue

of efficient mapping of quantum circuits to any of the current

or projected IBM QX architectures.

ACKNOWLEDGMENTS

This work was supported by the Dept. of Science and

Technology, Govt. of India, by the Austrian Agency for

International Cooperation in Education and Research (OeAD),

and the LIT Secure and Correct System Lab funded by the

State of Upper Austria.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Symp. on Foundations of Computer Science, Nov 1994,
pp. 124–134.

[2] L. Grover, “A fast quantum mechanical algorithm for database search,”
in ACM Symp. on Theory of computing, Jul 1996, pp. 212–219.

[3] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson,
M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya,
S. Sim, L. Veis, and A. Aspuru-Guzik, “Quantum chemistry in the age
of quantum computing,” arXiv preprint arXiv:1812.09976, 2018.

[4] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-

mation. Cambridge Univ. Press, Oct 2000.
[5] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.

Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National

Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, 2017.
[6] “IBM Q,” https://www.research.ibm.com/ibm-q/, [Accessed: 2019-03-

20].
[7] A. Kole and K. Datta, “Improved NCV gate realization of arbitrary size

Toffoli gates,” in Int’l Conf. on VLSI Design, Jan 2017, pp. 289–294.
[8] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-

middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 6, pp. 818–830, June 2013.
[9] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler, “Improving the

mapping of reversible circuits to quantum circuits using multiple target
lines,” in Asia and South Pacific Design Automation Conf., Jan 2013,
pp. 145–150.

8

TABLE III: Mapping to the IBM QX5 Architecture Compared to Zulehner et al. [26]

[26] Proposed solution Improvement (%)
Benchmark n g d g d t g d t ∆g ∆d

hwb9 10 207 775 116 199 655 220 375 105 1422.33 605 385 367 472 24 924.80 7.61 2.03
ising model 10 10 480 70 251 47 4.14 149 47 89.19 40.64 0.00
max46 10 27 126 14 257 84 914 46 270 185.82 79 236 46 652 640.56 6.69 −0.83
mini alu 10 173 69 474 225 1.25 489 219 223.77 −3.16 2.67
qft 10 10 200 63 447 170 1.25 371 138 150.98 17.00 18.82
rd73 10 230 92 656 301 1.52 673 315 302.30 −2.59 −4.65
sqn 10 10 223 5458 32 095 17 801 68.97 30 172 17 907 316.78 5.99 −0.60
sym9 10 21 504 12 087 66 637 38 489 145.37 62 620 38 057 415.30 6.03 1.12
sys6-v0 10 215 75 613 250 1.36 641 258 296.69 −4.57 −3.20
urf3 10 125 362 70 702 440 509 239 702 873.84 413 778 242 256 9856.78 6.07 −1.07
9symml 11 34 881 19 235 116 508 64 279 254.25 104 360 62 623 880.59 10.43 2.58
dc1 11 1914 1038 5946 3378 12.38 5661 3342 164.22 4.79 1.07
life 11 22 445 12 511 74 632 41 767 166.95 67 764 40 799 575.46 9.20 2.32
sym9 11 34 881 19 235 116 508 64 297 251.42 104 361 62 588 907.26 10.43 2.66
urf4 11 512 064 264 330 1 650 845 878 249 3534.79 1 501 254 840 075 149 023.00 9.06 4.35
wim 11 986 514 2985 1711 6.30 2816 1638 229.29 5.66 4.27
z4 11 3073 1644 9717 5335 20.92 9162 5412 223.80 5.71 −1.44
cm152a 12 1221 684 3738 2155 8.02 3401 2068 142.83 9.02 4.04
cycle10 2 12 6050 3386 19 857 11 141 42.26 18 131 11 045 193.95 8.69 0.86
rd84 12 13 658 7261 45 497 24 473 99.89 42 413 24 800 421.34 6.78 −1.34
sqrt8 12 3009 1659 9744 5501 19.66 9149 5386 229.93 6.11 2.09
sym10 12 64 283 35 572 215 569 118 753 501.02 192 500 115 651 2112.40 10.70 2.61
sym9 12 328 127 955 425 2.08 897 415 472.86 6.07 2.35
adr4 13 3439 1839 11 301 6205 23.17 10 358 5962 266.83 8.34 3.92
dist 13 38 046 19 694 125 867 66 318 291.90 116 175 66 991 1040.44 7.70 −1.01
ising model 13 13 633 71 329 47 5.11 273 62 167.64 17.02 −31.91
plus63mod4096 13 128 744 72 246 439 918 243 861 1086.48 398 142 239 826 10 436.10 9.50 1.65
radd 13 3213 1781 10 441 5872 22.00 9637 5702 463.61 7.70 2.90
rd53 13 275 124 942 469 1.93 903 496 491.87 4.14 −5.76
root 13 17 159 8835 57 874 30 068 120.82 52 580 30 022 359.35 9.15 0.15
squar5 13 1993 1049 6267 3448 12.96 5887 3424 398.76 6.06 0.70
clip 14 33 827 17 879 114 336 60 882 327.55 106 540 62 388 975.25 6.82 −2.47
cm42a 14 1776 940 5431 3013 11.95 5267 3120 145.31 3.02 −3.55
cm85a 14 11 414 6374 37 746 21 189 242.80 35 538 21 845 491.87 5.85 −3.10
plus63mod8192 14 187 112 105 142 640 204 354 076 1443.33 571 600 344 156 21 845.80 10.72 2.80
pm1 14 1776 940 5431 3013 11.10 4956 2927 174.04 8.75 2.85
sao2 14 38 577 19 563 131 002 66 975 283.90 117 695 67 365 1219.05 10.16 −0.58
sym6 14 270 135 852 456 1.84 935 443 591.03 −9.74 2.85
co14 15 17 936 8570 63 826 30 366 133.71 55 388 31 009 694.89 13.22 −2.12
dc2 15 9462 5242 30 680 17 269 72.53 28 711 17 012 418.14 6.42 1.49
ham15 15 8763 4819 28 310 15 891 68.75 26 590 15 834 356.11 6.08 0.36
misex1 15 4813 2676 15 185 8729 33.11 14 549 8837 169.46 4.19 −1.24
rd84 15 343 110 971 353 2.33 1016 441 740.70 −4.63 −24.93
square root 15 7630 3847 25 212 13 205 55.35 24 010 14 091 298.19 4.77 −6.71
urf6 15 171 840 93 645 580 295 313 011 1436.16 530 843 293 405 19 046.20 8.52 6.26
cnt3-5 16 485 209 1376 669 3.00 1380 712 794.36 −0.29 −6.43
inc 16 10 619 5863 34 375 19 176 72.85 32 471 19 543 359.61 5.54 −1.91
ising model 16 16 786 71 426 48 6.47 313 60 264.41 26.53 −25.00
qft 16 16 512 105 1341 404 16.43 994 320 1397.78 25.88 20.79

TABLE IV: Mapping to the IBM QX2 and QX4 Architecture Compared to Dueck et al. [25]

QX2 QX4
[25] Proposed solution Improvement (%) [25] Proposed solution Improvement (%)

Benchmark n g d g d t ∆g ∆d g d g d t ∆g ∆d

17 4 101 68 97 65 8.98 3.96 4.41 87 56 79 51 9.22 9.20 8.93
a2x c 4 55 40 39 30 4.18 29.09 25.00 40 28 37 29 4.25 7.50 −3.57
a3x c 5 86 56 43 32 7.93 50.00 42.86 56 43 46 34 6.14 17.86 20.93
07 5 112 73 105 67 14.19 6.25 8.22 111 64 88 57 13.05 20.72 10.94
Full Adder c 4 27 22 27 20 2.89 0.00 9.09 26 23 31 24 2.44 −19.23 −4.35
Toffoli c 3 17 14 16 15 0.92 5.88 −7.14 17 14 16 15 0.92 5.88 −7.14
4mod5-v0 18 5 152 98 111 75 26.7 26.97 23.47 132 80 138 91 16.36 −4.55 −13.75
3 17 e 3 41 23 33 23 2.72 19.51 0.00 41 23 26 18 2.68 36.59 21.74
01 5 77 38 60 38 8.93 22.08 0.00 77 40 64 40 8.13 16.88 0.00

9

[10] D. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate real-
izations for multiple-control Toffoli gates,” in Int’l Symp. on Multiple-

Valued Logic, May 2011, pp. 288–293.
[11] K. Matsumoto and K. Amano, “Representation of quantum circuits with

Clifford and π/8 gates,” arXiv preprint arXiv 0806.3834, 2008.
[12] A. Barenco, C. H. Bennet, R. Cleve, D. DiVincenzo, N. Margolus,

P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467,
Nov 1995.

[13] A. Paler, A. Zulehner, and R. Wille, “NISQ circuit compilers: search
space structure and heuristics,” CoRR, vol. abs/1806.07241, 2018.

[14] A. Kole, K. Datta, and I. Sengupta, “A new heuristic for N -dimensional
nearest neighbor realization of a quantum circuit,” IEEE Trans. on CAD

of Integrated Circuits and Systems, vol. 37, no. 1, pp. 182–192, Jan
2018.

[15] R. Wille, A. Lye, and R. Drechsler, “Exact reordering of circuit lines for
nearest neighbor quantum architectures,” IEEE Trans. on CAD, vol. 33,
no. 12, pp. 1818–1831, Dec 2014.

[16] A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number
of swap gates for multi-dimensional nearest neighbor quantum circuits,”
in Asia and South Pacific Design Automation Conf., Jan 2015, pp. 178–
183.

[17] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization
of 1D and 2D quantum circuits,” in Asia and South Pacific Design

Automation Conf., Jan 2016, pp. 292–297.
[18] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum

circuits for interaction distance in linear nearest neighbor architectures,”
in Design Automation Conf., May 2013, pp. 41:1–41:6.

[19] M. Alfailakawi, L. Alterkawi, I. Ahmad, and S. Hamdan, “Line ordering
of reversible circuits for linear nearest neighbor realization,” Quant. Info.

Proc., vol. 12, no. 10, pp. 3319–3339, Oct 2013.
[20] A. Matsuo and S. Yamashita, “Changing the gate order for optimal

LNN conversion,” in Int’l Conf. of Reversible Computation. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 89–101.

[21] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits
for linear nearest neighbor architectures,” Quant. Info. Proc., vol. 10,
no. 3, pp. 355–377, Jun 2011.

[22] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient
conversion of quantum circuits to a linear nearest neighbor architecture,”
Quantum Info. Comput., vol. 11, no. 1, pp. 142–166, Jan 2011.

[23] M. Perkowski, M. Lukac, D. Shah, and M. Kameyama, “Synthesis of
quantum circuits in linear nearest neighbor model using Positive Davio
Lattices,” Elec. Energ., vol. 24, no. 1, pp. 71–87, 2012.

[24] A. Zulehner and R. Wille, “Compiling SU (4) quantum circuits to IBM
QX architectures,” in Asia and South Pacific Design Automation Conf.,
2019, pp. 185–190.

[25] G. W. Dueck, A. Pathak, M. M. Rahman, A. Shukla, and A. Banerjee,
“Optimization of circuits for IBM’s five-qubit quantum computers,” in
Euromicro Conf. on Digital System Design, 2018, pp. 680–684.

[26] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology
for mapping quantum circuits to the IBM QX architectures,”
IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 38, no. 7, pp. 1226–1236, 2019. [Online]. Available:
http://iic.jku.at/eda/research/ibm qx mapping/

[27] “Qiskit Python SDK,” https://github.com/Qiskit/qiskit-terra, [Accessed:
2019-03-20].

[28] M. Y. Siraichi, V. F. dos Santos, S. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Int’l Symp. on Code Generation and Optimization, 2018,
pp. 113–125.

[29] A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of
quantum circuit compilation,” in Int’l Symp. on Combinatorial Search,
2018, pp. 138–142.

[30] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and H
operations,” in Design Automation Conf., 2019, p. 142.

[31] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati,
C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong, “Scaffold: Quantum
programming language,” Princeton univ nj dept of computer science,
Tech. Rep., 2012.

[32] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” in ACM SIG-

PLAN Notices, vol. 48, no. 6, 2013, pp. 333–342.
[33] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open

quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.
[34] “IBM QX backend information,” https://github.com/Qiskit/ibmq-device-

information, [Accessed: 2019-03-20].

[35] P. Z. Ingerman, “Algorithm 141: path matrix,” Communications of the

ACM, vol. 5, no. 11, p. 556, 1962.
[36] R. Wille, D. Große, L. Teuber, G. Dueck, and R. Drechsler, “RevLib: An

online resource for reversible functions and reversible circuits,” in Int’l

Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is available
at http://www.revlib.org.

[37] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: A framework for compilation and analysis
of quantum computing programs,” in Computing Frontiers Conference,
2014, pp. 1:1–1:10.

[38] M. Roetteler, M. Soeken, and N. Wiebe, “Reversible logic synthesis and
quantum computing benchmarks,” https://github.com/knsmith/optimal-
single-target-gates, [Accessed: 2019-05-23].

Abhoy Kole (M’16) received the M.Tech. degree in
information and communication technology from the
Indian Institute of Technology Kharagpur, Kharag-
pur, India, in 2015.

He is currently pursuing his Ph.D. degree in Ra-
jendra Mishra School of Engineering Entrepreneur-
ship at the Indian Institute of Technology, Kharag-
pur, India. He has published eleven papers in peer
reviewed journals and conferences. His current re-
search interests include reversible and quantum com-
puting, synthesis and optimization of quantum cir-

cuits, nearest neighbor realizations, and quantum fault tolerance.

Stefan Hillmich (S’19) received the B.Sc. and M.Sc.
in Computer Science from the University of Bremen,
Germany, in 2015 and 2018, respectively.

Since 2018, he is a researcher at the Johannes
Kepler University Linz, Austria, and is working
towards his PhD. His research interests include
simulation, compilation, and verification as parts of
design automation for quantum computing.

Kamalika Datta (S’07-M’13) completed her Master
of Science (MS) from Indian Institute of Technology
Kharagpur, India in 2010, and Ph.D. from Indian
Institute of Engineering Science and Technology
(IIEST), Shibpur, India in 2014.

She joined the National Institute of Technology
Meghalaya, India as an Assistant Professor in the
Department of Computer Science and Engineering
in the year 2014. She is presently working as a Re-
search Fellow at the Nanyang Technological Institute
Singapore. She has published more than 60 papers

in peer reviewed journals and conferences. Her research interests include
logic design using emerging technologies, and synthesis and optimization of
reversible and quantum circuits.

10

Robert Wille (M06SM15) is Full Professor at the
Johannes Kepler University Linz, Austria. He re-
ceived the Diploma and Dr.-Ing. degrees in Com-
puter Science from the University of Bremen, Ger-
many, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University
Dresden. Since 2015, he is working in Linz. His
research interests are in the design of circuits and

systems for both conventional and emerging technologies. In these areas, he
published more than 250 papers in journals and conferences and served in
editorial boards and program committees of numerous journals/conferences
such as TCAD, ASP-DAC, DAC, DATE, and ICCAD. For his research, he
was awarded, e.g., with a Best Paper Award at ICCAD, a DAC Under-40
Innovator Award, a Google Research Award, and more.

Indranil Sengupta (SM’13) obtained his B.Tech.,
M.Tech. and Ph.D. degrees in Computer Science
from the University of Calcutta in the years 1983,
1985 and 1990 respectively.

He joined Indian Institute of Technology Kharag-
pur, India, as a faculty member in the year 1988,
in the Department of Computer Science and Engi-
neering, where he is presently a Full Professor. He
had been the former Heads of the Department of
Computer Science and Engineering, and School of
Information Technology. He has over 30 years of

teaching and research experience, guided 21 PhD students and published over
200 papers in peer reviewed journals and conferences. He has served as the
Program Chair / General Chair in several International Conferences in the
areas of reversible computing, VLSI design/test and information security. His
research interests include reversible and quantum computing, VLSI design
and test, and network security.

