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1 INTRODUCTION
In this work, we present JKQ—a set of corresponding tools developed at the Johannes
Kepler University (JKU) Linz. JKQ provides a variety of software solutions for quantum
computing that addresses the respective tasks and challenges, e.g., for quantum circuit
simulation, compilation, or verification in a fashion that explicitly utilizes the potential and
the expertise of the design automation community. More precisely, the methods realized
in JKQ rest on dedicated data-structures (e.g., decision diagrams) or solving methods (e.g.,
reasoning engines) which are established and got perfected for design automation of
conventional circuits in the past decades, but have been re-developed in order to take the
particular characteristics of quantum computing into account.
The JKQ tools are publicly available as open-source implementations under the MIT

license at https://github.com/iic-jku/. In this talk proposal, we briefly summarize the main
tools (covering quantum circuit simulation, compilation, and verification). We particularly
focus on how to use the tools, but additionally provide references/links that offer detailed
descriptions of the underlying methods as well as summaries of corresponding case studies
and evaluations demonstrating the performance.

2 SIMULATION
Simulating quantum circuits on a classical machine is essential for the development of
(prototypes of) quantum algorithms, for considering the behavior of physical quantum
computers, as well as for studying error models. In fact, classical simulations of quantum
computations provide deeper insights, since it allows to observe the individual amplitudes
of a quantum state (which is impossible when executing a quantum computation on a
quantum device). Moreover, costly executions on real quantum devices—whose availability
is still rather limited—can be avoided when using simulators.
The classical simulation of quantum circuits is commonly conducted by performing

consecutive matrix-vector multiplication, which many simulators realize by storing a dense
representation of the complete state vector in memory and evolving it correspondingly (see,
e.g., [1–5]). This approach quickly becomes intractable due to the exponential growth of the
quantum state with respect to the number of qubits—quickly rendering such simulations
infeasible even on supercomputer clusters. Simulation methodologies based on decision
diagrams [6, 7] are a promising complementary approach that frequently allows to reduce
the required memory by exploiting redundancies in the simulated quantum state.

https://github.com/iic-jku/
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JKQ offers the decision diagram-based quantum circuit simulator DDSIM which allows
to simulate quantum circuits defined in either .qasm [8] or .real [9] format alongside,
e.g., parametrized instances of Grover’s [10] or Shor’s [11] algorithm. Using JKQ DDSIM
requires cloning the GitHub repository https://github.com/iic-jku/ddsim and building the
tool as follows1:

$ git clone https://github.com/iic-jku/ddsim
$ cd ddsim
$ cmake -DCMAKE_BUILD_TYPE=Release -S . -B build
[...]
$ cmake --build build --config Release --target ddsim_simple
[...]
$ ./build/ddsim_simple --help
[displays available commands]

Example 1. Simulating Grover’s algorithm with a two qubit oracle using the JKQ DDSIM
simulator can be conducted as follows:

$ ./ddsim_simple simulate --simulate_grover 2 --shots 1000 --ps
{
"measurements": {
"000": 503,
"100": 497

},
"non_zero_entries": 2,
"statistics": {
"simulation_time": 0.125837,
"measurement_time": 0.000180,
"benchmark": "grover_2",
"shots": 1000,
"n_qubits": 3,
"applied_gates": 16,
"max_nodes": 8,
"seed": 0

}
}

Here, the parameters define the number of measurements to be performed on the final quantum
state (--shots 1000) and cause the simulator to print statistics (--ps). The output is formatted
according to the JSON standard and, hence, machine readable for further processing.

Simulations of a given circuit file can be started with the parameter --simulate_file <file>

(the respective format is derived from the extension). The full set of parameters can be
listed via ./ddsim_simple --help. This includes advanced techniques such as emulation [12]
(which enable significant speedups for certain quantum algorithms), weak simulation [13]
(which more faithfully mimics a physical quantum computer), approximate simulation [14]
(which allows to perform simulations as efficient as possible while remaining as accurate as
needed), and stochastic noise-aware simulation [15] (which allows to classically simulate
the effects of noise on a circuit’s execution).
1Building requires a C++17-compatible compiler, CMake ≥ 3.14, and boost (program_options).

https://github.com/iic-jku/ddsim
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3 COMPILATION
Since superconducting quantum computers in the NISQ era are bound by connectivity
constraints, only support a limited set of elementary gates, and are heavily affected by
noise, high-level descriptions of quantum algorithms have to be compiled through different
layers of abstraction before being executable on the actual quantum computer. A major
part of this compilation flow consists of mapping, i.e., making an already decomposed
circuit conform to the device’s connectivity constraints (usually provided as a coupling
map).
A circuit is typically mapped to the actual device by inserting SWAP operations into the

circuit—dynamically permuting the location of the logical qubits on the device’s physical
qubits such that each operation conforms to the couplingmap. Due to the inherent influence
of noise and short coherence times of today’s quantum computers, it is of utmost importance
to keep the overhead induced by the mapping procedure as low as possible. As this problem
has been shown to beNP-complete [16], there is a high demand for automated and efficient
solutions.
JKQ offers the quantum circuit mapping tool QMAP that allows to generate circuits

which satisfy all constraints given by the targeted architecture and, at the same time, keep
the overhead in terms of additionally required quantum gates as low as possible. More
precisely, two different approaches based on design automation techniques are provided,
which are both generic and can be easily configured for future architectures: The first one
is a general solution for arbitrary circuits based on informed-search algorithms [17]. The
second one is a solution for obtaining mappings ensuring minimal overhead with respect
to SWAP gate insertions [18]2. Similar to our simulator, JKQ QMAP can be obtained from
the GitHub repository https://github.com/iic-jku/qmap and can subsequently be used by
either building the qmap_heuristic or the qmap_exact CMake target. However, there is
an even easier way for users to get started with the JKQ QMAP tool. Specifically, the tool is
also provided as a Python package, which can be easily installed with pip install jkq.qmap

and also provides native integration with IBM Qiskit.

Example 2. Assume we want to perform the computation simulated in Ex. 1 on the five-
qubit IBMQ London quantum computer and assume the circuit has already been decomposed
into a sequence of single-qubit and CNOT gates. Then, compiling the circuit merely requires
the following lines of Python:

1 from jkq import qmap

3 qmap.compile("grover_2.qasm", qmap.Arch.IBMQ_London)

A complete list of the available methods as well as additional configuration options
can be listed via help(qmap.compile). This includes the recently published work on
exploiting quantum teleportation in quantum circuit mapping [19].

2In order to use this method the Z3 theorem prover library (https://github.com/Z3Prover/z3) needs to be
installed.

https://github.com/iic-jku/qmap
https://github.com/Z3Prover/z3
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4 VERIFICATION
Compiling quantum algorithms results in different representations of the considered
functionality, which significantly differ in their basis operations and structure but are still
supposed to be functionally equivalent. Consequently, checking whether the originally
intended functionality is indeed maintained throughout all these different abstractions
becomes increasingly relevant in order to guarantee an efficient, yet correct design flow.
Existing solutions for equivalence checking of quantum circuits suffer from significant
shortcomings due to the immense complexity of the underlying problem—which has been
proven to be QMA-complete [20]. However, certain quantum mechanical characteristics
provide impressive potential for efficient equivalence checking of quantum circuits.
JKQ offers the quantum circuit equivalence checking tool QCEC which explicitly exploits

these characteristics based on the ideas outlined in [21–23]. Similar to other JKQ tools,
JKQ QCEC can be obtained from the GitHub repository https://github.com/iic-jku/qcec
and can subsequently be used by building the qcec_app CMake target. Additionally, as for
QMAP, the tool is also provided as a Python package, which can be easily installed with
pip install jkq.qcec and also provides native integration with IBM Qiskit.

Example 3. Verifying that the quantum circuit from Ex. 1 has been compiled correctly in
Ex. 2 merely requires the following lines of Python:

1 from jkq.qcec import Configuration, verify

3 # potentially set configuration options
4 config = Configuration()

6 # verify the compilation result
7 result = verify("grover_2.qasm", "grover_2m.qasm", config)

A complete list of the available methods as well as configuration options can be listed
via help(Configuration) in Python or qcec_app --help when using the commandline
app. This includes a strategy especially suited for verifying compilation results [24], as
well as dedicated random stimuli generation schemes [25].

5 CONCLUSIONS
In this talk proposal, we presented JKQ—a set of tools for quantum computing utilizing the
potential and expertise of design automation. The descriptions focused on how to use the
tools, but references/links have been provided that allow for a more in-depth treatment.
The JKQ toolset is available at https://github.com/iic-jku.

https://github.com/iic-jku/qcec
https://github.com/iic-jku
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