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Abstract—We consider the problem of estimating quantum ob-
servables on a collection of qubits, given as a linear combination
of Pauli operators, with shallow quantum circuits consisting of
single-qubit rotations. We introduce estimators based on ran-
domised measurements, which use decision diagrams to sample
from probability distributions on measurement bases. This ap-
proach generalises previously known uniform and locally-biased
randomised estimators. The decision diagrams are constructed
given target quantum operators and can be optimised considering
different strategies. We show numerically that the estimators
introduced here can produce more precise estimates on some
quantum chemistry Hamiltonians, compared to previously known
randomised protocols and Pauli grouping methods.

I. INTRODUCTION

Variational quantum algorithms are based on a quantum-
classical optimisation feedback loop, in which a trial param-
eterised quantum state is prepared on a quantum computer, a
target quantum cost function is estimated on it, and a classical
optimiser changes the quantum parameters to minimise the
target observable. This machinery has been instrumental to
find ground state energies of quantum chemistry systems,
which are the smallest quantum systems believed to deliver
quantum advantage in the field of quantum simulations.

Recent experiments on variational quantum algorithms [1]–
[3] have shown that precise estimates of complex quantum
operators are essential for a successful execution of the algo-
rithms. A finite single-qubit measurement budget can hinder
the performance of the quantum-classical optimisation cycle,
by introducing stochastic noise on the quantum cost function to
be optimised. This problem is particularly severe for quantum
chemistry systems, whose molecular Hamiltonians are com-
posed of a linear combination of Pauli operators that grows,
at worst, with the fourth power of the system size [4].

To alleviate the measurement problem, a variety of algo-
rithms have been proposed. They all ultimately aim at ob-
taining precise estimations of multi-qubit quantum operators,
typically given as linear combination of Pauli operators, with
the smallest amount of single-qubit measurements.

The idea of using the same single-qubit measurements to
estimate grouped Pauli operators that qubit-wise commute,
introduced in [1] as tensor-product basis sets, is at the core of

several measurements protocols. Some of them promise a re-
duction in the number of measurements for quantum chemistry
systems, exploiting Pauli grouping heuristics, at the expense of
an increase depth in the quantum circuits used to prepare the
state to be measured [5]–[7]. However increased circuit depths
can impair the execution on noisy quantum computers prone
to decoherence. Furthermore, even in the fault-tolerant regime,
bigger circuit depths can increase the overall runtime of the
quantum algorithm. Addressing molecular systems, [8] shows
a linear saving in the number of grouped Pauli operators when
addressing molecular systems through unitary partitioning of
a target Hamiltonian, while [9] finds a cubic reduction if the
problem is expressed in plane wave basis, at the expense of
a linear increase in circuit depth. Ref. [7] proposes sorted
insertion to group Pauli operators based on their weights,
preprocessing computations linear in the number of qubits
and quadratic in the number of Pauli operators. Refs. [5]
and [10] exploit simultaneous measurability of partitions of
commuting Pauli strings. Exploiting the automated search for
symmetries introduced in [11], [12] shows a linear scaling
when applied to chemistry problems, again at the expense
of increased circuit depth. Ref. [13] considers random Pauli
sets, and uses greedy graph colouring algorithms to determine
partition of Pauli operators of Hamiltonians, conjecturing a
linear saving in number of measurements if arbitrary Clifford
operators before measurement are allowed.

Other approaches address the measurement problem while
not increasing circuit depths. We refer to this specific case as
the shallow-circuit measurement problem. It has been tackled
so far by formulating it in terms of graph colouring, which
was solved with a variety of heuristics [12], [14]. Hybrid
architectures made of quantum computers in conjunction with
trained neural-network quantum states have been employed to
reduce measurement variances [15].

The results contained in this work build on recent techniques
based on randomised sequences of single-qubit measurements.
A framework for efficiently estimating properties of reduced
subsystems of quantum states was introduced in [16]. There,
collections of randomised measurement outcomes, labelled
classical shadows [16], [17], are classically stored to re-
trieve at a later stage expectation values of local observables.
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While this procedure is very well suited for retrieving many
generic local observables, the uniform distribution used to
draw measurement bases is not optimal in estimating with high
precision specific observables such as molecular Hamiltonians.
Building on this result, Ref. [18] uses derandomisation to
deterministically change a sequence of measurement bases
drawn at random, with the goal of improving precision in
estimating specific sets of Pauli operators.

Improving on uniform distribution sampling, biased ran-
domised measurement protocols can be used to improve
estimated precision of given observables. The locally-biased
classical shadows introduced in [19] are collections of random
measurements generated by probability distributions optimised
locally at the single-qubit level. While a bias on single-
qubit product probability distributions can outperform on
uniform random distributions and Pauli grouping heuristics,
it still misses on improvements that can come by consider-
ing generic measurement probability distributions on a set
of qubits. Here we introduce a framework to sample from
probability distributions on measurement bases that generalises
the local product probability distributions considered in [19].
These probability distributions are generated using decision
diagrams, constructed from a target quantum observable, given
as a linear combination of Pauli operators.

Decision diagrams are a well-known graph-based data struc-
ture used in many disciplines of computer science to enable
compact representation of data in many cases. Example appli-
cations include binary decision diagrams representing Boolean
functions [20], zero-suppressed binary decision diagrams with
a focus on sets [21], tagged binary decision diagrams as a com-
bination of both [22], πDDs representing permutations [23],
as well as decision diagrams representing quantum states and
quantum operations [24]–[28]. At their core, decision diagrams
decompose the given data into smaller parts by successively
making decisions to remove degrees of freedom, recording
these decisions, and exploiting the emergence of parts that
are equal. For probability distributions for the measurement
problem, decision diagrams provide a natural way to bias the
selection of the next measurement basis based on the previous
decisions. Decision diagrams have been used for efficient
sampling on large sets by applying dynamic programming
methods [29].

We propose and discuss different strategies to build de-
cision diagrams and to optimise them in order to reduce
the variance of quantum observable estimators that rely on
them. We show numerically that they can improve estimation
precision on some molecular Hamiltonians, compared to lo-
cally biased probability distributions. The implementation we
base the results on is available github.com/iic-jku/dd-quantum-
measurements.

Outline of the paper

We introduce the shallow-circuit measurement problem in
Section II together with the general probabilistic measurement
framework, reviewing the locally-biased approach. We define
the decision diagrams and present the main idea in Section III,

followed by strategies to construct decision diagrams given
target Hamiltonian operators in Section IV. In Section V, we
numerically benchmark the estimators bases on decision dia-
grams versus existing approaches, on quantum Hamiltonians
of increasing sizes, representing quantum chemistry models.
We summarize the results obtained and draw conclusions
in Section VI. Some technical details on the variances of
the estimation by decision diagrams, their implementation,
optimisation, and relation with previous work are given in the
Appendix of [30].

II. THE SHALLOW-CIRCUIT MEASUREMENT PROBLEM

This section precisely establishes the problem of shallow-
circuit measurement and a general framework of its solutions
as search problems over probability distributions. The gen-
eral framework allows us not only to describe the existing
probabilistic solutions, such as, the Pauli grouping via graph
colouring and the (locally-biased) classical shadows, but also
to derive the new probabilistic solution using decision di-
agrams that overcome the drawbacks of existing solutions.
This requires us to introduce some notation which we do
progressively in the following subsection.

A. Problem Definition

Consider an n-qubit Hamiltonian

H =
∑

P∈{I,X,Y,Z}n
αPP (1)

with poly(n) number of real coefficients αP acting on a
quantum processor, we say P is a Pauli operator consisting
of n single-qubit Pauli operators and write P =

(
⊗i∈[n]Pi

)
∈

{I,X, Y, Z}n where I,X, Y, Z are 2× 2 Pauli matrices. The
Hilbert space is H := (C2)⊗n = C2n

. Let D(H) denote the
space of quantum densities and fix some unknown ρ ∈ D(H).
Our task is to estimate Tr(Hρ) to some additive accuracy
ε > 0.

We restrict our attention to algorithms for Tr(Hρ) which
are compatible with quantum processors of the current gen-
eration (see Remark 1). Specifically we assume that the
measurement bases in which we may measure ρ are of the
form B = ⊗i∈[n]Bi where Bi = xiX + yiY + ziZ and
x2
i + y2

i + z2
i = 1. If we then prepare ρ many times, say

S ∈ N, and for each s ∈ [S] choose a measurement basis B(s)

in which to measure ρ we can estimate, with progressively
increasing accuracy, the value of Tr(Hρ). We will make two
further assumptions: the choice of B(s) is independent of B(s′)

for s′ < s; any such basis B is a Pauli operator B ∈ Pn where
P = {X,Y, Z}. The shallow-circuit measurement problem is
how to best choose the measurement bases in order to estimate
Tr(Hρ) within accuracy ε with as few preparations of ρ as
possible.
Remark 1. Quantum computers of the current generation
are not fault-tolerant. This naturally imposes restrictions on
the type of measurement schedules we should consider. The
precision with which we can implement non-entangling gates
(single-qubit unitaries) is significantly greater than that of
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entangling gates (multi-qubit unitaries). It is therefore natural
to consider the restriction of the problem of estimating Tr(Hρ)
to the constrained setting of measuring ρ in bases which do
not require entangling gates. In general, reducing entangling
gates is beneficial in computational time even for fault-tolerant
quantum computers.
Remark 2. The two further assumptions have been chosen
to ease the exposition. The first assumption, that the choice
of a basis is independent of previous choices is important. It
prevents the situation where a potentially expensive classical
computation is performed between each shot. This is similar to
the distinction between adaptive and non-adaptive scheduling
in annealing schedules. The second assumption, that measure-
ment bases are full-weight Pauli operators, allows us, in the
following section, to talk about probability distributions which
are over finite sets. This assumption should be considered
minor.

B. The General Probabilistic Measurement Framework

We can solve the shallow-circuit measurement problem by
viewing it as the problem of how to best pick a probability
distribution β over the measurement bases Pn. In order to see
the relationship we fix some notation. First, for a fixed Pauli
operator P , let

Cover(P ) := {B ∈ Pn |Bi = Pi whenever Pi 6= I} . (2)

This is the set of measurement bases which allow us to esti-
mate Tr(Pρ). (We shall say that any such B covers P .) Next,
if B = ⊗i∈[n]Bi ∈ Pn, then measuring qubit i in the Bi basis
returns an eigenvalue µ(B, i) ∈ {±1}. For a subset A ⊆ [n] let
us declare µ(B,A) :=

∏
i∈A µ(P, i) with the convention that

µ(P,∅) = 1. If we set supp(P ) := {i ∈ [n]|Pi 6= I} then we
find that Tr(Pρ) is estimated by µ(B, supp(P )) whenever B
covers P . Penultimately, let 1Ω represent the indicator function
of a set Ω. That is 1Ω(x) returns 1 if x ∈ Ω and 0 if x 6∈ Ω.
Finally, if β : Pn → R+ is a probability distribution then the
probability that a basis B is chosen such that Tr(Pρ) may be
estimated is

ζ(P, β) =
∑
B∈Pn

1Cover(P )(B) · β(B) =
∑

B∈Cover(P )

β(B). (3)

The shallow-circuit measurement problem reduces to find-
ing β : Pn → R+ which minimizes the variance of the
estimator ν produced by Algorithm 1.

Let us say that β is compatible with the Hamiltonian H if
ζ(P, β) > 0 whenever αP 6= 0. In [30, Appendix A] we prove
two results: we show that this algorithm returns an unbiased
estimator for Tr(Hρ) provided β is compatible with H; we
also calculate the variance of the estimator. We record these
statements below.

Lemma 1. If β is compatible with H then the first moment
of the estimator ν(s) from Algorithm 1 is

E(ν(s)) =
∑
P

αP Tr(Pρ). (4)

Algorithm 1 Shallow-measurement estimation of Tr(Hρ)
given β.

for shot s ∈ [S] do
Prepare ρ
Select basis B ∈ Pn from β-distribution
for qubit i ∈ [n] do

Measure qubit i in basis Bi giving µ(P, i) ∈ {±1}
Estimate observable expectation

ν(s) =
∑
P

αP ·
1Cover(P )(B)

ζ(P, β)
· µ(B, supp(P ))

return ν = 1
S

∑
s∈[S] ν

(s)

Lemma 2. If β is compatible with H then the second moment
of the estimator ν(s) from Algorithm 1 is

E(ν(s)ν(s)) =
∑
P,Q

αP αQ g(P,Q, β) Tr(PQρ) (5)

where

g(P,Q, β) :=
1

ζ(P, β)
· 1

ζ(Q, β)
·∑

B∈Pn

1Cover(P )(B)·1Cover(Q)(B)·β(B). (6)

Proposition 1. If β is compatible with H then the estimator
in Algorithm 1 is an unbiased estimator of Tr(Hρ) and has
variance

Var(ν) =
1

S

((∑
P,Q

αP αQ g(P,Q, β) Tr(PQρ)

)

−
(

Tr(Hρ)
)2)

. (7)

The task is to prescribe β in order to obtain a measurement
schedule with small variance. In the subsequent sections we
show how existing solutions, i.e., the Pauli grouping and
(locally-biased) classical shadows can be cast as instances of
choosing specific probability distributions and point out their
drawbacks. We then show how decision diagrams offer an
excellent prescription for prescribing β.

Remark 3. Although we have derived a formula for the
variance of the estimator, we would like to point out the role of
ζ(P, β) to the variance. Clearly, the square root of the variance
(or, the standard deviation of) ν(s) at Algorithm 1 is at most
maxB

∑
P 1Cover(P )(B) · |αP |/ζ(P, β). Thus, a rule of thumb

to minimise the variance is by choosing the distribution β so
that maxP 1/ζ(P, β) is minimised. This intuition is indeed
true as we show later for problems of estimating a set of Pauli
terms: our inconfidence of the correctness of the estimator is
proportional to maxP 1/ζ(P, β).

Remark 4. How much knowledge of ρ should we allow
ourselves in order to prescribe β? The obvious application of
our subroutine is in the context of finding the ground energy



of a Hamiltonian using variational quantum eigensolvers. In
this context, it is natural to assume we already have an ansatz
for the ground state hence we may assume ρ is always close
to the ground state of the system. Quantifying this phrase
is subtle, however in order to illustrate the strength of our
proposal, it is not unreasonable to do the following: Prescribe
the distribution β using no knowledge of ρ and then calculate
the variance of ν when given access to the true ground state
of the system. Already in this regime, we show significant
improvements over existing protocols.

C. Existing Solutions and Drawbacks

In the following two subsections, we review briefly some
existing solutions to the shallow measurement problem and
their drawbacks that motivate us to develop a new framework
with decision diagrams. It is useful to observe that they can
be easily seen as instances of Algorithm 1.

1) Pauli Grouping via Graph Colouring: Pauli grouping
via graph colouring has been used experimentally in [1]. A
detailed explanation may be found in [19, Section A.2]. The
core idea is to group the Pauli operators {P}αP 6=0 occurring
in H into K collections and assign one measurement basis
B(k) ∈ Pn to each collection k ∈ [K] such that B(k) allows
all Pauli operators in the kth collection to be estimated. That
is, if P belongs to the kth collection then B(k) ∈ Cover(P ).

The grouping is performed by colouring a specific graph
using any graph-colouring heuristic. The graph is constructed
first by assigning vertices to each Pauli operator appearing
in the Hamiltonian. Second, if two vertices represent Pauli
operators P = ⊗i∈[n]Pi, and Q = ⊗i∈[n]Qi, then an edge is
added to the graph precisely when there exists a qubit i ∈ [n]
such that Pi, Qi ∈ P and Pi 6= Qi. It follows that any vertices
with the same colour may be assigned a single measurement
basis. Graph colouring heuristics lead to collections for which
K � |Pn|.

The best assignment of the probability β:{B(k)}k∈[K]→R+

has not been rigorously studied. In [1], the measurement bases
{B(k)}k∈[K] are effectively sampled uniformly, but this is due
to hardware considerations. In [19, Section A.2] an improved
sampling is proposed which is based on the `1 weight of the
coefficients of the Pauli operators appearing in each collection.
This proposal may be improved slightly by observing that
some Pauli operators may be assigned to several collections.
That is, sometimes, several bases from {B(k)}k∈[n] may be
used to estimate a single Pauli observable. This will decrease
slightly the variances obtained in [19, Tables 1, 2].

The main drawback of this approach is observational. That
is, on Hamiltonians thus far studied in the literature, the
variances are large compared to other proposals. This is despite
the preprocessing steps to solve a graph colouring problem
to reduce the choices of measurement bases. This may be
caused by two reasons. First, the Pauli grouping stage makes
no reference to the coefficients {αP }. Second, the current
proposals may not be optimally assigning the distribution over
{B(k)}k∈[K].

2) Locally-Biased Classical Shadows: One method of
choosing the distribution β : Pn → R+ has been proposed
in [19] and is called locally-biased classical shadows (LBCS).
It may be seen as an extension of a proposal to perform
tomography, called classical shadows using random Pauli
measurements [16], to the problem of estimating a single
observable. LBCS fits precisely into the framework discussed
in the preceding subsection. First, the class of distributions
from which β may be chosen is restricted: only product
probability distributions are considered, which we may write
as β =

∏
i∈[n] βi where βi : P → R+ is the probability

distribution for choosing to measure the ith qubit in a basis
Bi ∈ P . Second, after assuming this restriction on the class of
probability distributions, the choice of β is made by optimising
a convex cost function associated with the Hamiltonian:

costdiag(β) :=
∑
P

α2
P

1∏
i∈supp(P ) βi(Pi)

(8)

A motivation for this choice of cost function can be obtained
from [30, Appendix A]. Note that since β is assumed to be
a product distribution, the denominator

∏
i∈supp(P ) βi(Pi) is

precisely ζ(P, β). In [19], it was shown that this method leads
to significant reductions in the variance of energy estimation
in the context of quantum chemistry over the method of Pauli
grouping via graph colouring.

Remark 5. Classical shadows, as originally proposed, may be
seen as the uniform version of LBCS. That is, βi(P ) = 1

3
for P ∈ P . A recent result derandomises this idea and shows
promise for estimating single observables [18]. Derandomi-
sation should also prove useful to the general framework of
decision diagrams. See [30, Appendix F] where the main result
of [18] is generalised to the setting of decision diagrams.

Both Classical Shadows and LBCS appear to be attractive
when Pauli operators in the Hamiltonian are low-weight. That
is, when | supp(P )| is small relative to n, since in this case the
denominator of Eq. (8) remains relatively small. This intuition
leads to the following setup showing a shortcoming of LBCS.
Consider the toy Hamiltonian H = ⊗i∈[n]Xi + ⊗i∈[n]Zi.
LBCS would assign, for each qubit, the probability 1/2 to
measure it either in the X or the Z basis. The lack of
correlation in these choices implies that the only two bases Xn

and Zn which are useful for energy estimation are rarely
chosen. In the parameter n it is with exponentially vanishing
probability that such bases are chosen. Pauli grouping via
graph colouring would perform much better on this exam-
ple. This example motivates the search for distributions β
from a wider class of probabilities. Although the preceding
Hamiltonian is a toy example, there does occur Hamiltonians
with similar structure. For example, for the purpose of self-
testing quantum devices, the Hamiltonian H = X1Z2 · · ·Zn+

1
n−1

∑
i≥2 Z1Xi is evaluated to test Bell-type inequalities on

star graphs [31], [32].



III. ESTIMATORS OF QUANTUM OBSERVABLES
WITH DECISION DIAGRAMS

This section introduces a new type of decision diagrams.
Any such decision diagram (DD) provides a compact repre-
sentation of a probability distribution over full-weight Pauli
operators associated with a given Hamiltonian. To this end,
we first briefly review the main idea of decision diagrams in
general, before we define and detail the proposed type. Based
on that, we show how the new decision diagram can be used
to improve the sampling process when measuring quantum
Hamiltonians on quantum processors of the current generation.
Overall, this section provides the motivation and main idea,
while details on the technical implementation are covered in
the next section.

A. Decision Diagrams in General

Decision diagrams are a tried and tested data structure in
many areas of computer science to provide a compact repre-
sentation of entities in various domains. Example applications
include binary decision diagrams representing conventional
Boolean functions [20], zero-suppressed binary decision di-
agrams with a focus on sets [21], tagged binary decision dia-
grams as a combination of both [22], and πDDs representing
permutations [23]. Also in the domain of quantum computing,
decision diagrams representing quantum states and quantum
operations received interest [24]–[28] and found application,
e.g., in the synthesis [24], [33], simulation [26], [34], and
verification [25], [35] of quantum circuits.

The common idea of all decision diagram-based representa-
tions is to decompose a given original representation (e.g., of
a Boolean function or quantum state) in a structured fashion
that recognizes and exploits redundancies of the decomposed
data in order to provide a more compact representation.
The repeatedly conducted decompositions are represented by
means of a directed and acyclic multi-graph, where vertices
represent the decomposed data and redundancy is exploited
through shared vertices.

Example 1. Consider a Boolean function f : {0, 1}4 →
{0, 1} = x̄1x̄2x̄3x4 + x̄1x2x3x̄4 + x1x̄2x3x̄4 + x1x2x̄3x4.
A straightforward complete representation of this function
would require the representation of a total of 24 input-
output mappings, e.g., in terms of a truth table. Encoding
the function as decision diagram results in a graph with
only 9 nodes as illustrated in Figure 1. Here, the overall
function f is first decomposed with respect to variable x1 into
two sub-functions f6 (assuming x1 = 0) and f5 (assuming
x1 = 1). This is recursively continued for all remaining
variables until only terminals 0 and 1 result. Whenever this
decomposition yields equivalent (and, hence, redundant) sub-
functions (as it is the case, e.g., for f4), the sub-function is
represented by a single shared node only—providing a more
compact representation.

Remark 6. Albeit decision diagrams are directed graphs, edges
in illustrations do not include arrow tips since, by convention,

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

Figure 1: Decision diagram representing the Boolean function
f = x̄1x̄2x̄3x4 + x̄1x2x3x̄4 + x1x̄2x3x̄4 + x1x2x̄3x4

the direction is fixed—most commonly from the top strictly
to the bottom.

B. Proposed Decision Diagram

In this work, we propose a type of decision diagrams aiming
for a compact representation of a probability distribution over
a given Hamiltonian. To this end, we first start by providing
the definition of the proposed type:

Definition 1. The decision diagram we propose is a rooted
directed acyclic multi-graph G = (V,E) such that all maximal
directed paths consist of precisely n edges. Each edge e ∈ E
is equipped with two pieces of data: A traceless Pauli operator
B(e) ∈ P and a weight w(e) ∈ (0, 1] such that

1) for each vertex v ∈ V , there is at most one out-going
edge for each traceless Pauli operator, and

2) for each vertex v ∈ V and outgoing edges e ∈ out(v),
the weights are probabilistic, i.e.,

∑
e∈out(v) w(e) = 1

(therefore, each vertex except for the terminal has at least
one out-going edge).

Having this structure, the edge weights in the decision
diagram provide the probabilities by which a random walk
should follow each edge. Multiplying the edge weight along
a path gives the probability of encountering this path in a
random walk. Intuitively, the probability of a path corresponds
to the weight of the Pauli operators it covers. More precisely,
the sum of the absolute values of the coefficients |αP | with
P covered by the path is used as relative probability and is
encoded in the decision diagram. An example illustrates the
idea.

Example 2. Consider the Hamiltonian H for the hydro-
gen molecule H2 with 4 qubits and Bravyi-Kitaev encoding,
namely:

H=− 0.811IIII + 0.120IZII − 0.045XZXI + 0.045XIXZ

+ 0.045XIXI − 0.045XZXZ + 0.120IZIZ + 0.172ZIII

− 0.225IZZZ − 0.228ZZII + 0.172IIZI + 0.168ZIZI

+ 0.166ZZZZ + 0.166ZZZI + 0.174ZIZZ
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(b) Jordan-Wigner

Figure 2: Decision diagrams for H2 with 4 qubits

The full-weight terms XZXZ or ZZZZ cover every Pauli
term in the Hamiltonian, hence, the corresponding decision
diagram encoding the probability distribution only has to
include these two terms.

Figure 2a illustrates a compatible decision diagram that
has only two maximal paths XZXZ and ZZZZ . The edges are
labelled with a probability (edge weights of 1 are omitted for
the sake of readability). Using the decision diagram, one can
obtain the respectively desired probabilities by traversing the
decision diagram starting at the top-most node and following
the edges strictly downwards until the terminal vertex (de-
picted as rectangle) is reached. Generating measurements from
this decision diagram will result in XZXZ with a probability
of 0.147 or ZZZZ with 0.853.

In Figure 2a, the encoded terms end with the Z operator
regardless of previous choices, hence the last decision is
presented by a single vertex and edge. This may seem like a
small gain, but generally larger instances have more potential
for sharing.

In a similar fashion, a decision diagram representing the
Jordan-Wigner encoding can be generated—yielding the struc-
ture as shown in Figure 2b.

C. Sampling Using the Proposed Decision Diagrams

The definition in the previous subsection does not make
explicit reference to the prescribed Hamiltonian. In order to
use one such instance of these decision diagrams we augment
the definition with the following

Definition 2. The decision diagram is called compatible with
the Hamiltonian H if all Pauli observables P with αP 6= 0 are
able to be estimated. Precisely, if αP 6= 0 then we require at
least one directed path (e1, . . . , en) such that B ∈ Cover(P )
where B is the full-weight Pauli operator ⊗i∈[n]B(ei).

Let us make two observations that bring decision diagrams
into the probabilistic setup of the shallow measurement prob-
lem as explained in the previous section. First, the decision
diagram provides a probability distribution over full-weight

Pauli operators β : Pn → R+. For B ∈ Pn such that
B = ⊗i∈[n]B(ei) for some maximal directed path (e1, . . . , en)
then we set β(B) =

∏
i∈[n] w(ei). If no such maximal

directed path exists, then we set β(B) = 0. Condition 2
in Definition 1 ensures that

∑
B β(B) = 1. Indeed, using

the decision diagrams proposed above, samples can be drawn
by performing a random walk. Starting at the root vertex, a
successor vertex is randomly selected according to the weights
on the out-going edges. This process is repeated at the selected
vertex until the terminal vertex is reached. Second, if the
decision diagram is compatible with H then, for any quantum
density ρ ∈ D(H), the estimator ν of Algorithm 1 is an
unbiased estimator of the energy. That is, Lemma 1 establishes
E(ν) = Tr(Hρ).

Example 2 (continued). Consider again Figure 2a. Sampling
from this decision diagram, one starts at the root vertex and
randomly chooses the X or Z edge, according to the edge
weights. Continuing from successor vertex of the chosen edge,
the remaining decisions are fixed since each following vertex
only has one out-going edge, again, resulting in either XZXZ
or ZZZZ .

Decision diagrams provide a more powerful way to solve
the shallow measurement problem. Indeed Pauli grouping
via graph-colouring from Section II-C may be seen as one
instance of a decision diagram according to Definition 1 and 2.
Therefore any Pauli term which is covered by multiple bases
under that proposal will be estimated more often under the
framework here. Also, LBCS from Section II-C is a very
simplistic instance of a decision diagram. We establish the
decision diagram link in [30, Appendix C]. As previously
commented, LBCS (which observationally is better than Pauli
grouping) suffers from the lack of correlation between choices
of measurement bases on each qubit. The more general deci-
sion diagram framework presented here allows such correlated
choices.

The larger class of distributions therefore allows us to
ultimately reduce the variance associated with our estimator.
Importantly, our proposal for building decision diagrams also
leads to an efficient proposal for assigning weights locally
such that an attractive distribution β is ultimately found. We
reemphasize the possibility that such an algorithm could be
extended further with the techniques of derandomisation.

D. Optimising the Probability Distribution

It is a computationally difficult problem to find the opti-
mal β. This would be the minimum-variance unbiased esti-
mator (MVUE) over all such distributions β : Pn → R+.
It would be interesting to understand how close decision
diagrams get to approximating the MVUE. Nevertheless,
following the method of Lagrange multipliers used in [19]
to optimise the probability distribution of LBCS, we can
derive similar iterative procedure to fine tune the probability
distribution β based on the diagonal cost function described
in [30, Appendix E]. The computational cost of the iterative
updates is proportional to the size of the decision diagram.



Algorithm 2 Construction of a decision diagram (DD) from Hamiltonian H

Take absolute values of coefficients in H
Merge compatible terms to get reduced positive Pauli list R(H) . Preprocessing
for Each term and coefficient in R(H) do . Initialisation of DD

Take existing path covering the longest prefix of term
Create new edges for remaining Pauli operators up to the last
Create edge to terminal with the last Pauli op and coefficient as edge weight

for Vertex in decision diagram in breadth-first order from terminal do . Normalisation of DD
Calculate sum of weights on out-going edges
Divide weights on out-going edges by sum and multiply sum to in-coming edge weights

for Vertex in decision diagram in breadth-first order from terminal do . Merge equivalent vertices in DD
Calculate hash of vertex and if equivalent vertex exists, merge both

Remove identities in DD
Replace “lonely” identity edges with virtual edges
Remove identity edges where other edge with same source and target exists
Merge targets of identity edges with target vertices of other edge

for Vertex in decision diagram in breadth-first order from terminal do . Merge equivalent vertices in DD
Calculate hash of vertex and if equivalent vertex exists, merge both

return decision diagram

A direct implication of the use of probability-optimised
decision diagrams is to generalise and improve previous results
(Theorem 3 in [36] and Theorem 1 in [18]) on estimating
the expectation values of a collection of Pauli operators (e.g.,
for partial tomography [37]) thanks to the ability to compute
ζ(P, β) efficiently from a decision diagram. For example, the
error bounds of previous results provide non-trivial bounds
when the size of supp(P ) for all Pauli P is small (or, low-
weight Paulis), while those of ours can give non-trivial bounds
even when some of the Paulis are of full weight. We give the
details in [30, Appendix F] because the focus of this paper is
on different topics of measuring quantum Hamiltonians.

IV. EFFICIENT CONSTRUCTION
OF THE PROPOSED DECISION DIAGRAMS

The decision diagrams as introduced in the previous section
promise to give suitable probability distribution. Still, the
question remains how to efficiently transform the Hamiltonian
consisting of coefficients and Pauli terms into a decision
diagram. In the following, we describe the main ideas. The full
implementation is available at github.com/iic-jku/dd-quantum-
measurements.

In a high-level view, the construction of the proposed
decision diagram consists of multiple steps as shown in
Algorithm 2. The first stage is a preprocessing step of the
Hamiltonian to reduce the number of identity-terms. The
second stage is the initialisation and refinement of the decision
diagram. This second stage has several steps. Only after these
steps have been performed are we guaranteed that the decision
diagram conforms to both Definition 1 and Definition 2.
These steps include normalising the information present in
the prepocessed Hamiltonian in order to maximise sharing and
also removing identity-edges through merging. The following
paragraphs explain the individual steps in more detail.

Preprocessing: Consider the Hamiltonian as presented in
Eq. (1). Immediately, we remove the term αInI

n as this term
does not need to be estimated using the quantum processor.
We also map coefficients to their absolute values (αP 7→ |αP |)
giving what we will call the positive Pauli list. Then, compat-
ible Pauli terms in this positive Pauli list are merged to reduce
the number of paths in the initial decision diagram. More
precisely, for each of Pauli terms the number of compatible
terms is determined. The Pauli term Phigh with the highest
number of compatible terms ncomp is subsequently merged
into these compatible terms and the fraction

αPhigh

ncomp
is added

to the coefficient of each compatible term. This merging
procedure is repeated until no further merging is possible. This
preprocessing provides what we shall refer to as the reduced
positive Pauli list and shall denote it by R(H).

Initialisation of DD: From the reduced positive Pauli list
R(H), an initial decision diagram whose maximal paths are
all of length n is constructed. Each term in R(H) is associated
with a unique maximal path and the coefficients of R(H) are
assigned to the final edges in the respective path, i.e., to the
edge pointing to the terminal vertex.

Normalisation of DD: Afterwards the edge weights are
normalised such that the sum of weight of out-going edges
equals 1. This decision diagram at this stage has sharing for
common prefixes (but not suffixes) and at this point may
include edges with the identity operator.

Example 3. Consider the 4 qubit Hamiltonian for the hydro-
gen molecule in Jordan-Wigner encoding:

H =− 0.810IIII + 0.045YYXX + 0.045YYYY

+ 0.045XXXX + 0.045XXYY + 0.172ZIII

− 0.225IZII + 0.172IIZI − 0.225IIIZ

+ 0.120ZZII + 0.168ZIZI + 0.166ZIIZ

+ 0.166IZZI + 0.174IZIZ + 0.120IIZZ

https://github.com/iic-jku/dd-quantum-measurements
https://github.com/iic-jku/dd-quantum-measurements
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Figure 3: First steps of decision diagram construction from reduced positive Hamiltonian of H2 JW (4 qubits)

0

1

0.5I 0.5X

0

1

X 

(a) Combining identities

0

1

I

0

1

1
3 Ẋ
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Figure 4: Removing identity edges from the decision diagram

The reduced positive Pauli list from H is

R(H) = 0.045YYXX + 0.045YYYY + 0.045XXXX

+ 0.045XXYY + 1.714ZZZZ .

Figure 3a illustrates the initial decision diagram created from
R(H) and Figure 3b illustrates the same decision diagram
with normalised edge weights.

Before considering removing potentially remaining identity
edges in the decision diagram, functionally equivalent vertices
are merged. Two vertices are equivalent if they have the
same successors considering the Pauli operator and respective
weight. Given a suitable hash function, finding equivalent
nodes is linear in the number of nodes [28].

Example 3 (continued). Consider again Figure 3b. The two
vertices highlighted by a bold border are equivalent and, thus,
are combined to exploit the redundancy. This results in the
decision diagram as already shown before in Figure 2b.

After the previous steps, the decision diagram may still have
identity edges, which have to be removed to get a proper
probability distribution over the Hamiltonian. The potentially
remaining identity edges are removed in three steps.

The first two steps are local operations. Given two fixed
vertices u, v ∈ V the following checks are performed:

1) For fixed u, v ∈ V , if there is an edge u I−→ v and any
u
{X,Y,Z}−−−−−→ v: Remove u

I−→ v and add the weight to
the remaining edge from u

{X,Y,Z}−−−−−→ v with the smallest
weight. Figure 4a illustrates this step in an example with
one further edge.

2) Again, for fixed u, v ∈ V , if there is only one edge u I−→ v

(referred to as “lonely” in Algorithm 2): Split u I−→ v
into virtual edges (denoted by a dot above the operator)

u
Ẋ−→ v, u Ẏ−→ v, and u

Ż−→ v with weights 1
3 each.

Figure 4b illustrates this step.

The remaining identity edges cannot be removed by only
considering individual pairs of nodes, but require a more
global approach. Recall that at this point there are no two
vertices with only an identity edge between them. So for
u

I−→ v and any u
{X,Y,Z}−−−−−→ v′ we merge v into v′ and

adjust the weights accordingly. More precisely, the merging
is handled by checking the following list for each out-going
edge of v:

1) If the target vertex v′ does not have an out-edge with the
same Pauli operator as the currently considered out-edge
of v, add this edge to v′.

2) If the currently considered out-edge of v and the out-edge
of v′ with the same operator point to same vertex (which
may be the terminal vertex), the weights stay the same.

3) Otherwise the merging process has to recurse to merge the
successors of v and v′ with corresponding Pauli operators.

During the merging of two edges, the resulting edge is only
virtual if both previous edges were virtual. Performing the
merging process from the terminal vertex upwards ensures that
the recursive applications never encounter an identity edge. At
this point there may be superfluous virtual edges left, which
are removed to reduce the number of paths. After the merging
process is completed, the decision diagram is renormalised
to ensure the sum of weights of out-going edges on a node
equals 1. An example illustrates the idea.

Example 4. Consider the left-hand side of Figure 5. This
decision diagram has a top vertex with two out-going edges
with the operators I and Y . To remove the identity edge, the
target vertex of the identity edge (1) is merged into the target
vertex of the Pauli-Y edge (2) (indicated by a solid an arrow
labelled “merge into”). Since both (1) and (2) have an out-
going Pauli-X edge to different target vertices, theses targets
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Figure 5: Merging two vertices

(3) and (4) have to merged as well in a recursive fashion
(indicated by a dashed arrow).

The following section provides the experimental evaluation
on decision diagrams constructed as described above.

V. NUMERICAL EXPERIMENTS

In this section, we give numerical experiments demon-
strating the efficacy of decision diagrams (DDs) to
solve the shallow-circuit measurement problem using the
implementation available at github.com/iic-jku/dd-quantum-
measurements. In particular, the experiments are to confirm
that DDs allow to encode probability distributions β from a
wider class of probabilities than with known approaches, such
as, the Pauli grouping and LBCS. Following the experimental
setting of [19], we consider five molecular Hamiltonians that
range from 4 to 14 spin orbitals. Excepting the 8-qubit H2

(hydrogen) that uses a 6-31G basis, all Hamiltonians are
represented in a minimal STO-3G basis. Each of the molec-
ular Hamiltonians is turned into a qubit Hamiltonian using
three encodings: Jordan-Wigner (JW), Parity, and Bravyi-
Kitaev (BK) [11]. The resulting qubit Hamiltonians are those
requiring 4 to 14 qubits that are defined in the molecular basis,
and therefore their Hartree-Fock states are those of computa-
tional basis. We compare the variances of the measurements
obtained from decision diagrams against those from the Pauli
grouping and LBCS as shown in Table I.

In the table we list the variances of estimators according
to Eq. (7) with S = 1 of two established approaches (LDF,
LBCS) and four proposed DD-based approaches:
• LDF Pauli grouping [19]
• Locally-biased classical shadows [19]
• Decision diagrams constructed as described in Section III.
• Decision diagrams with the same construction but up

to ten optimisation passes as described in Section III-D
(denoted as DD+opt10)

• Decision diagrams with paths constructed from the LDF
Pauli grouping (denoted as DD+LDF)

• The DD+LDF with ten optimisation passes as described
in Section III-D (denoted as DD+LDF+opt10)

As shown in Table I, the variances of the DD-based proba-
bility distributions are lower than those of LBCS for H2, LiH,

and BeH2, but show deterioration for larger molecules such
as H2O. For the smallest considered molecule (4-qubit H2),
DDs provide a slightly lower variance for the JW encoding
compared to LDF grouping but consistently beat LBCS. Also,
we can confirm the efficacy of the DDs from the variances of
DD+LDF which are always better than those of Pauli grouping
for all considered molecules, except 4-qubit H2 in the Parity
and BK encodings.

The variances for DD-based probability distributions can be
further reduced by applying the optimisation procedure from
Section III-D, as can be seen from the column of DD+opt10
and DD+LDF+opt10: Even with limited steps of optimising
the probability distribution, the variances can be reduced
below those of LBCS for almost all considered molecules
and encodings (except H2O in the JW encoding). From the
column of DD+LDF+op10 we can observe that although the
variances are improved by tuning the probability distribution,
the variances are mostly worse than those of DD+opt10, thus
demonstrating the effectiveness of our proposed construction
of the DD against the LDF-based one. Apart from the at-
tained variances, decision diagrams are commonly charac-
terized by their number of vertices, number of edges and
number of paths. Table II provides these details for the re-
spective molecules, encoding, and (optimised) approaches. In
particular, the presented DD-approach generates more compact
decision diagrams (i.e., lower number of vertices) compared to
DD+LDF, but DD generates more or at least the same number
of paths (excepting for LiH at BK encoding). For LDF-based
decision diagrams the number of nodes scales with the product
of the number of qubits and the number of Pauli terms; for
LBCS the decision diagram will have its number of nodes
equal to the number of qubits. This hints at the importance of
designing compact DDs for shallow measurements.

VI. CONCLUSION

We have introduced a new estimator for measuring quantum
operators defined as linear combination of tensor products of
single-qubit Pauli operators. The estimator is defined within
a probabilistic measurement framework, where single-qubit
measurement bases are drawn from probability distributions
obtained using decision diagrams. The decision diagrams used
to sample from measurement bases are constructed from target
quantum operators, typically Hamiltonians, by associating
paths in the diagrams with Pauli operators present in the
Hamiltonians. The diagrams can then be simplified by re-
moving paths with identities operators, and merging equivalent
sub-paths.

We have shown that representing probability distributions
with decision diagrams generalises previous classical-shadow
randomises approaches to the measurement problem, namely
the uniform [16] and the locally-biased one [19]. This gen-
eralisation comes with additional degrees of freedom that
characterize each diagram, and introduce correlations between
measurement bases for each qubit. We presented different
strategies to optimise these additional degrees of freedom,

https://github.com/iic-jku/dd-quantum-measurements
https://github.com/iic-jku/dd-quantum-measurements


Table I: Variance for different estimators computed on the ground states

Variance

Molecule Encoding LDF grouping LBCS DDs DD+opt10 DD+LDF DD+LDF+opt10

H2 (4 qubits) JW 0.402 1.860 0.361 0.398 0.361 0.398
Parity 0.193 0.541 0.307 0.300 0.292 0.285
BK 0.193 0.541 0.307 0.300 0.292 0.285

H2 (8 qubits) JW 22.3 17.7 8.7 6.2 13.2 7.6
Parity 38.0 18.9 10.2 8.5 13.6 8.9
BK 38.4 19.5 7.5 6.4 16.2 9.1

LiH (12 qubits) JW 54.2 14.8 13.5 8.5 33.1 16.3
Parity 85.8 26.5 24.2 12.5 53.8 27.2
BK 75.5 68.0 31.0 14.2 72.0 37.4

BeH2 (14 qubits) JW 135 67.6 51.8 32.8 68.4 35.1
Parity 239 130 72.5 37.2 96.0 55.8
BK 197 238 200.1 64.2 147.9 73.2

H2O (14 qubits) JW 1 040 258 616.7 294.4 829.4 336.3
Parity 2 670 429 915.6 425.3 660.9 368.0
BK 2 090 1 360 1 084.8 527.0 1 403.4 628.1

Table II: Metrics on the generated decision diagrams

Molecule Encoding Approach | Vertices | | Edges | | Paths |

H2 (4 qubits) JW DD 10 12 5
DD+LDF 10 12 5

Parity DD 7 7 2
DD+LDF 7 7 2

BK DD 7 7 2
DD+LDF 7 7 2

H2 (8 qubits) JW DD 77 133 77
DD+LDF 84 130 61

Parity DD 66 119 55
DD+LDF 54 85 34

BK DD 60 101 46
DD+LDF 56 88 34

LiH (12 qubits) JW DD 191 326 273
DD+LDF 321 459 151

Parity DD 289 523 315
DD+LDF 381 550 182

BK DD 413 666 673
DD+LDF 518 749 1 012

BeH2 (14 qubits) JW DD 537 761 289
DD+LDF 552 693 147

Parity DD 570 872 1 508
DD+LDF 636 816 192

BK DD 494 746 2 192
DD+LDF 858 1 051 222

H2O (14 qubits) JW DD 556 894 1 013
DD+LDF 759 983 234

Parity DD 759 1 314 5 711
DD+LDF 762 1 029 290

BK DD 800 1 271 3 914
DD+LDF 1 083 1 395 618

and have shown numerically that they can outperform locally-
biased approaches as well as Pauli grouping strategies, on
selected molecular Hamiltonian models. We foresee that future
refined approaches in the construction and optimisation of
the diagrams could further improve on the improvements
in estimation precision reported here, especially considering
problem-specific decision diagram construction methods.
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