
Equivalence Checking Paradigms inQuantum Circuit Design
A Case Study

Tom Peham

Chair for Design Automation,

Technical University of Munich,

Germany

tom.peham@tum.de

Lukas Burgholzer

Institute for Integrated Circuits,

Johannes Kepler University Linz,

Austria

lukas.burgolzer@jku.at

Robert Wille

Chair for Design Automation,

Technical University of Munich,

Germany

Software Competence Center

Hagenberg GmbH, Austria

robert.wille@tum.de

ABSTRACT
As state-of-the-art quantum computers are capable of running in-

creasingly complex algorithms, the need for automated methods to

design and test potential applications rises. Equivalence checking

of quantum circuits is an important, yet hardly automated, task

in the development of the quantum software stack. Recently, new

methods have been proposed that tackle this problem from widely

different perspectives. However, there is no established baseline on

which to judge current and future progress in equivalence checking

of quantum circuits. In order to close this gap, we conduct a de-

tailed case study of two of the most promising equivalence checking

methodologies—one based on decision diagrams and one based on

the ZX-calculus—and compare their strengths and weaknesses.

1 INTRODUCTION
Quantum computing [1] has had a surge in research endeavors by

academia and industry in recent years. While quantum computers

have not reached a stage of practical usability yet, they promise to

outperform classical computers in various important tasks, such as

unstructured search, integer factorization, optimization problems,

the simulation of molecules and more [2]–[4]. To keep pace with

the rapid developments in quantum hardware, various tools have

been developed that help in designing corresponding applications.

Initially, a quantum computation is described as a sequence

of (high-level) quantum gates—somehow similar to a classical C

program. However, just like assembly for a classical processor, the

actual machine instructions that may be performed on a given

quantum processor are generally restricted to a small (low-level)

gate set and might only allow interactions between specific pairs

of qubits. Therefore, in order to execute a given circuit on quantum

hardware, it needs to be compiled to a representation that adheres

to all constraints imposed by the targeted device [5]–[8]. Since

quantum computers are heavily affected by noise and decoherence,

it is paramount to optimize circuits as much as possible in order to

maximize the expected fidelity when running the circuit [9]–[12].

Since the compiled quantum circuit might be altered drasti-

cally from its original high-level description, it is of utmost im-

portance that the circuit to be executed on the hardware still im-

plements the same functionality as originally intended. Verifica-

tion of compilation results or, more generally equivalence checking
of quantum circuits, turns out to be an extremely complex, even

QMA-complete [13], task and is in dire need of automation. Al-

though, various methods have been proposed [14]–[21] that tackle

the equivalence checking problem from completely different per-

spectives, a baseline indicating which paradigm is suited best for

which use-case is yet to be established.

In this work, we address this issue by first reviewing the quantum

circuit equivalence checking problem and arising issues unique

to the quantum domain. Then, we show how two of the most

promising and publicly available equivalence checking paradigms—

one based on quantum decision diagrams [21]–[26] and one based

on the ZX-calculus [18], [27]–[29]—tackle the immense complexity.

Based on that, we conduct a detailed case study in order to establish

a baseline for the current state of the art in equivalence checking

of quantum circuits considering a large range of benchmarks.

The remainder of this paper is structured as follows: Section 2

provides the necessary background for this work. Then, Section 3

describes the considered problem and the related work. Based on

that, Section 4 and Section 5 review how decision diagrams as well

as the ZX-calculus, are used to tackle the complexity of equivalence

checking. Section 6 summarizes the results of the conducted case

study and discusses the resulting consequences. Finally, Section 7

concludes this paper.

2 BACKGROUND
To keep this work self contained, the following sections provide a

brief overview of quantum computing and quantum circuit compi-

lation. We refer the interested reader to the provided references for

a more thorough introduction.

2.1 Quantum Computing
In classical computing, information is encoded in classical bits that

can be either 0 or 1. Analogously, in quantum computing, quantum
bits (or qubits in short) are used which can be either in the |0⟩ or |1⟩
state (in Dirac notation). Contrary to the classical domain, qubits

can also be in superposition of multiple states. Formally, the state |𝜙⟩
of a qubit is written as

|𝜙⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ = 𝛼0

[
1

0

]
+ 𝛼1

[
0

1

]
=

[
𝛼0
𝛼1

]
with amplitutes 𝛼0, 𝛼1 ∈ C, |𝛼0 |2 + |𝛼1 |2 = 1.

The basis states of multi-qubit systems are obtained as the tensor
product of single qubit states. So a basis state of a 3-qubit system
would for example be written as |1⟩ ⊗ |1⟩ ⊗ |0⟩ = |110⟩ =: |6⟩. In
general, an 𝑛-qubit state |𝜙⟩ is described by a linear combination

of basis vectors, i.e.,

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩ with
2
𝑛−1∑︁
𝑖=0

|𝛼𝑖 |2 = 1 and 𝛼𝑖 ∈ C.

Any operation manipulating the state of a quantum system

must again yield a valid quantum state. As a consequence, any
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(a) GHZ state preparation circuit𝐺
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(b) System matrix𝑈 of𝐺

Figure 1: GHZ state preparation

such operation 𝑈 must be unitary, i.e., it must obey the equation

𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 where𝑈 † is the conjugate transpose of𝑈 and 𝐼 is

the identity transformation.

Example 1. Consider the Hadamard transform 𝐻 = 1√
2

[
1 1

1 −1
]
.

It can be easily checked by matrix multiplication that 𝐻 is a unitary
transformation. The Hadamard transform maps Z-basis states to
X-basis states, i.e.,

𝐻 |0⟩ = 1

√
2

|0⟩ + 1

√
2

|1⟩ =: |+⟩ , 𝐻 |1⟩ = 1

√
2

|0⟩ − 1

√
2

|1⟩ =: |−⟩ .

An important unitary acting on two qubits is the controlled not or

CNOT gate. It is defined by the matrix
[
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

]
and flips the second

qubit (the target) when the first qubit (the control) is in state |1⟩.

A quantum computation is a unitary transformation acting on

some initial state (usually the qubits are all prepared to be |0⟩).
Instead of writing the system matrix (i.e., the unitary describing

the behaviour of the whole circuit) explicitly, a common way to

describe the unitary evolution of a quantum system is through quan-
tum circuit notation [1]. There, qubits are represented by wires

and operations (called gates) are annotated as boxes and circles

on the wires. The evolution of the initial state is read from left to

right. Thus, a quantum circuit𝐺 is described as a sequence of gates

𝑔0 . . . 𝑔𝑚−1. Due to their unitary nature, quantum circuits are inher-

ently reversible. More specifically, the inverse of a quantum circuit

𝐺 = 𝑔0 . . . 𝑔𝑚−1 is obtained by inverting each gate and reversing

the order of operations, i.e., 𝐺† = 𝑔
†
𝑚−1 . . . 𝑔

†
0
.

Example 2. The circuit𝐺 in Fig. 1a represents a 3-qubit system.
The box annotated with H is a Hadamard transform on qubit 𝑞0 and
the connected circles and dots are CNOT gates with 𝑞0 as control
and 𝑞1 and 𝑞2 as target qubit, respectively. The circuit maps |000⟩
to 1√

2

|000⟩ + 1√
2

|111⟩, the well-known GHZ state [30]. The system
matrix describing the unitary this circuit realizes is given in Fig. 1b.

2.2 Quantum Circuit Compilation
Quantum algorithms are typically designed at a rather high ab-

straction level without considering specific hardware restrictions.

In order to execute a conceptual quantum algorithm on an actual

device, it has to be compiled to a representation that conforms to

all restrictions imposed by the targeted device. Since quantum com-

puters typically only support a limited gate set, every high-level

operation has to be decomposed into that gate set [31]–[33]. In addi-

tion, many architectures (such as those based on superconducting

qubits) restrict the pairs of qubits that operations may be applied to.

Hence, it is necessary to map the decomposed circuit to the device

such that it adheres to the device’s coupling constraints [34]–[36].

In general, this is accomplished by establishing a mapping between

the circuit’s logical qubits and the device’s physical qubits. Since it

is generally not possible to determine a conforming mapping in a

static fashion, SWAP gates are inserted into the circuit that allow

to dynamically change the logical-to-physical qubit mapping.

𝑄0

𝑄1

𝑄2

𝑄3

𝑄4

𝑞0 ↦→
𝑞1 ↦→
𝑞2 ↦→

Initial layout

SWAP decomposition

Output permutation

Architecture

× 𝑐1

× 𝑐2

H • • 𝑐0

•
• •

Figure 2: Compilation of GHZ state preparation circuit

Example 3. Consider again the GHZ preparation circuit shown
in Fig. 1a and assume it shall be mapped to the 5-qubit, linear archi-
tecture shown on the left-hand side of Fig. 2. Assume that, initially,
logical qubit𝑞𝑖 is mapped to physical qubit𝑄𝑖 for 0 ≤ 𝑖 ≤ 2. Then, the
first two operations can be directly applied, while the last operation
cannot — due to the fact that 𝑄0 and 𝑄2 are not directly connected
on the architecture. Hence, a SWAP operation between 𝑄2 and 𝑄1 is
introduced, which allows to execute the final gate. At the end of the
circuit 𝑞0 is measured on 𝑄0, 𝑞1 on 𝑄2 and 𝑞2 on 𝑄1.

Eventually, compilation yields a new circuit that might look

quite different to the original high-level description. It is essential

for the successful execution of a quantum computation to verify

that the compiled circuit still implements the same functionality as

the original one. To this end, methods to check the equivalence of

quantum circuits are necessary.

3 EQUIVALENCE CHECKING
In general, given two quantum circuits

𝐺 = 𝑔0 . . . 𝑔𝑚−1 and 𝐺 ′ = 𝑔′
0
. . . 𝑔′𝑚′−1

with corresponding system matrices

𝑈 = 𝑈𝑚−1 · · ·𝑈0 and𝑈
′ = 𝑈 ′𝑚′−1 · · ·𝑈

′
0
,

the equivalence checking problem for quantum circuits asks whether

𝑈 = 𝑒𝑖\𝑈 ′ or, equivalently,𝑈 †𝑈 ′ = 𝑒𝑖\ 𝐼 ,

where \ ∈ (−𝜋, 𝜋] denotes a physically unobservable global phase.

So, in principle, checking the equivalence of two quantum cir-

cuits reduces to the construction and the comparison of the respec-

tive system matrices. While this is straight-forward conceptually, it

quickly becomes a difficult task due to the exponential scaling of the

involved matrices in the number of qubits. Equivalence checking of

quantum circuits has even been shown to be QMA-complete [13].

One of the biggest, yet hardly talked about, practical issue when

actually conducting equivalence checking concerns numerical inac-

curacies. Because quantum gates are described by matrices over C,
they are hard to accurately represent in memory. Usually, these

matrices are stored using floating point numbers which leads to

imprecisions and rounding errors. Therefore, Comparing two ma-

trices for exact equality becomes pointless in many practical cases.

Instead, the Hilbert-Schmidt inner product can be used to quan-

tify the similarity between two matrices. Let tr denote the trace

of a matrix, i.e., the sum of its diagonal elements. Then, because

tr(𝐼 ) = 2
𝑛
for the identity transformation on𝑛 qubits, one can check

whether | tr(𝑈 †𝑈 ′) | ≈ 2
𝑛
in order to conclude the equivalence of

both circuits up to a given tolerance.

Further considerations have to be made when comparing circuits

which might have different initial layouts and output permutations.

Compilation flows use a circuit’s initial layout and output permuta-

tion as an additional degree of freedom for saving SWAP operations,

as, e.g., illustrated in Example 3. Hence, in order to verify the equiva-

lence of compilation flow results, any equivalence checking routine

must be able to handle these kind of permutations.

In order to avoid the emergence of a verification gap as for classi-

cal systems, automated software solutions for equivalence checking
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(b) 𝑛-qubit Identity
Figure 3: Decision Diagrams

of quantum circuits have to be developed. To this end, various meth-

ods have been proposed [14]–[21]. However, most of them either

only work on small circuits, lack publicly available implementa-

tions, or are based on paradigms established in classical computing

that do not take the full picture of quantum computing into account.

Few methods exist that approach equivalence checking entirely

from the perspective of quantum computing [18]–[20]. Even these

existing approaches view the equivalence checking problem from

completely different perspectives and a baseline indicating which

paradigm is suited best for which use-case is yet to be established.

In the following two sections, we review how two of the most

promising and publicly available equivalence checking paradigms—

one based on decision diagrams [21]–[26] and one based on the

ZX-calculus [18], [27]–[29]—provide means to efficiently check the

equivalence of quantum circuits.

4 DECISION DIAGRAMS
We have seen in the previous section that verification of quantum

circuits by constructing their system matrices is infeasible in gen-

eral due to the exponential growth of the matrices’ dimensions with

respect to the number of qubits. But it might actually not be neces-

sary to explicitely represent every entry of the matrix in memory.

Decision Diagrams [21]–[26] have proven effective in efficiently rep-

resenting and manipulating quantum states and transformations in

many cases. By exploiting redundancies in the vectors and matrices,

it is often possible to significantly reduce the necessary memory,

sometimes even exponentially.

Given a matrix𝑈 , the matrix is divided into equally-sized subma-

trices𝑈 =

[
𝑈00 𝑈01

𝑈10 𝑈11

]
, where 𝑈𝑖 𝑗 denotes the action of U given the

considered qubit is mapped from 𝑗 to 𝑖 . Every (sub-)matrix is rep-

resented by a node in the decision diagram and an edge is created

for each𝑈𝑖 𝑗 connecting its node to the node representing𝑈 . This

procedure is then recursively applied to each of the matrices 𝑈𝑖 𝑗

until only complex numbers remain, thus building up the decision

diagram. If any two sub-matrices are identical up to a constant

factor their decision diagrams can be identified with each other

and, therefore, do not have to be represented twice. The factors are

stored as edge-weights in the diagram. This sharing of structure is

what allows compact representations of many quantum circuits.

Example 4. Consider again the systemmatrix shown in Fig. 1b. We
can see that𝑈00 = 𝑈01 and𝑈10 = (−1)𝑈11.The decision diagram for
the system matrix is given in Fig. 3a. To this end, we adopt the decision
diagram visualization method proposed in [37], where thickness and
color of an edge represent the edge weight’s magnitude and phase,
respectively. Obviously, the decision diagram representation is much
more compact than the whole matrix.

4.1 Equivalence Checking using Decision Diagrams
Decision diagrams are predestined for verification, because they are

canonical (with respect to a particular variable order and normaliza-

tion criterion), i.e., there are no two different decision diagrams for

2

1

0

initial

layout of𝐺

𝑄2 ←� 𝑞2

𝑄1 ←� 𝑞1

𝑄0 ←� 𝑞0

𝑞2

𝑞1

𝑞0

𝑞2

𝑞1

𝑞0
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• • H
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𝑞2 ↦→ 𝑄2

𝑞1 ↦→ 𝑄1

𝑞0 ↦→ 𝑄0

𝑞1

𝑞2

𝑞0

𝑞1

𝑞2
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permutation of𝐺 ′

×
×
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Permution
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Identity

Linear
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Figure 4: Verifying equivalence with decision diagrams

the same functionality. Once the decision diagrams for both circuits

𝐺 and 𝐺 ′ in question are constructed, it suffices to compare their

root pointers and the corresponding top edge weight [23]. While

this is true in theory, the diagrams might not be exactly identical

due to numerical impreci7sions (as discussed in Section 3). Thus,

further, potentially expensive, operations might be necessary to

decide the equivalence of both circuits. Furthermore, the resulting

decision diagrams are still exponentially large in the worst case.

If 𝐺 and 𝐺 ′ are equivalent, then it holds that 𝐺 ′𝐺† = 𝐼 , i.e., con-

catenating one circuit with the inverse of the other implements the

identity. Since the identity has a perfectly compact representation

as a decision diagram, being linear in the number of qubits (as

shown in Fig. 3b), the decision diagram for the combined circuit

𝐺 ′𝐺† can be constructed instead. However, building up the decision
diagram of 𝐺 ′𝐺† sequentially from left to right might still result

in an exponentially large decision diagram, since eventually the

whole decision diagram for 𝐺 ′ is constructed in the middle of the

computation. The solution is to start constructing the functionality

of the combined circuit from the “middle” and alternating between

applications of 𝐺† and 𝐺 ′, such that the decision diagram being

constructed remains as close to the identity as possible [20]. The

strategy when to choose gates from which circuit is dictated by

an oracle. If more information about the relation between 𝐺 and

𝐺 ′ is known, a more sophisticated oracle can be employed, e.g.,

for verifying the results of compilation flows [38]. This method

also makes it easier to check equivalence of circuits up to some

precision using the inner product tr(𝑈 †𝑈 ′), since the product𝑈 †𝑈 ′
is inherently constructed during the equivalence check—saving a

potentially expensive decision diagram multiplication.

As discussed in Section 3, a compiled circuit might act on differ-

ent qubits than the original circuit due to the logical-to-physical

qubit mapping. This can be accounted for by tracking the permu-

tation of each circuit’s qubits throughout the equivalence check

and applying all operators according to that permutation. During

this process, any SWAP operation can be translated to a change of

the corresponding permutation. To maximize this potential, decon-

structed SWAP operations (as in Fig. 2) are reconstructed. In the

end, the tracked permutation is compared to the expected one and

SWAP operations are executed to correct any potential mismatch.

In this fashion, circuits with permuted inputs and/or outputs can

be verified using the same methodology. The initial layout and the

output permutation need to be known a-priori in order to properly

check the equivalence of circuits.

Example 5. Consider the circuits 𝐺 and 𝐺 ′ shown in Fig. 1a and
Fig. 2, respectively. Fig. 4 shows an example of how the two circuits are
verified using the decision diagram-based approach described above.
Note that the decomposed SWAP has been reconstructed in 𝐺 ′.

The equivalence checking process starts off with the identity dia-
gram (shown in the middle of Fig. 4). Then, gates are applied in an
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Figure 5: Axioms of the ZX-calculus

alternating fashion from 𝐺† and 𝐺 ′. First, the Hadamard from 𝐺†

is applied to the decision diagram. After applying the corresponding
Hadamard from𝐺 ′ the diagram is reduced back to the identity. Then,
the CNOT gates on both sides are applied and the diagram is again
back to the identity. After applying the last operation from the left, in-
stead of applying the SWAP gate to the decision diagram, the tracked
permutation of 𝐺 ′ is updated. Because of this the last CNOT gate on
the right-hand side is applied to qubits 𝑄2 and 𝑄0 instead of 𝑄1 and
𝑄0—again yielding the identity. In the end, the tracked permutation
is compared to the expected one. Because they are identical, no correc-
tions have to be made. Since the final decision diagram resembles the
identity, it can be concluded that the circuits are equivalent.

5 ZX-CALCULUS
The ZX-calculus [18], [27]–[29] is a graphical notation for quantum

circuits equipped with a powerful set of rewrite rules that enable

diagrammatic reasoning about quantum computing. A ZX-diagram

is made up of colored nodes (called spiders) that are connected

by wires. Each spider can either be green (Z-spider ) or red (X-

spider ) and is attributed a scalar phase which is omitted if the

phase is 0. Any quantum circuit can be interpreted as a ZX-diagram

(but not the other way around). ZX-diagrams have the following

interpretation as transformations of qubits:

.

.

.
𝜶

.

.

. = |0 . . . 0⟩ ⟨0 . . . 0| + 𝑒𝑖𝛼 |1 . . . 1⟩ ⟨1 . . . 1|
.

.

.
𝜶

.

.

. = |+ · · · +⟩ ⟨+ · · · +| + 𝑒𝑖𝛼 |− · · · −⟩ ⟨− · · · −|
Spiders without inputs are called states, whereas spiders with no

outputs are called effects. Even though wires connected to spiders

can be thought of as inputs and outputs the "only topology matters"

paradigm of the ZX-calculus makes this distinction redundant.

ZX-diagrams can be composed just like quantum circuits. Hori-

zontal composition is achieved by connecting the outputs of one

diagram to the input of another. Vertical composition is achieved

by simply “stacking” two diagrams on top of each other. Addition-

ally, a ZX-diagram can carry a global phase that is annotated along

the diagram. Since global phases are negligible in most cases, they

are frequently omitted from ZX-diagrams and equations in the

ZX-calculus usually hold up to a global phase.

The power of ZX-diagrams becomes evidentwhen adding rewrite

rules to the language. The axioms of the ZX-calculus are given in

Fig. 5. The Hadamard box is a notation for the ZX-diagram

𝝅
2

𝝅
2

𝝅
2 and represents theHadamard-gate. For an in-depth

introduction to the ZX-calculus, we direct the reader to [27], [39].

Example 6. To give a feel for how to work with ZX-diagrams, we
are going to prove the well-known equivalence of a SWAP with 3
CNOT operations (as shown in Fig. 2). For this, we first need to prove
another rule, which can be derived from the axioms as follows

(f )
=

(b)
=

(c)
= = . (1)

(a) ZX-diagram of Circuit𝐺 (b) ZX-diagram of Circuit𝐺 ′

Figure 6: ZX-diagrams of GHZ state preparation circuits

With this we can proceed with

=
(b)
=

(f )
=

(1)

= . (2)

5.1 Equivalence Checking using the ZX-Calculus
The ZX-calculus has proven useful as an intermediate language

when compiling and optimizing quantum circuits [18], [28], [40].

But it can also be used to verify the equality of two quantum circuits,

either by rewriting the diagram of both circuits into one another

(as in Ex. 6) or, similarly to the approach described in the previous

sections, by inverting one diagram, composing the diagrams and

simplifying as much as possible. If the composed diagram simplifies

to a diagram composed only of bare wires, it is either the identity

or contains swaps, i.e., resembles a permutation. As with decision

diagrams, the permutation of the wires can be checked against the

expected permutation. If they match, the circuits are equivalent.

Example 7. Consider again the circuits𝐺 from Fig. 1a and𝐺 ′ from
Fig. 2. Their respective ZX-diagrams are shown in Fig. 6a and Fig. 6b.
Since all phases in all spiders are 0, the inverse of each diagram is
obtained by just reversing the diagram. Using the rewrite rules of the
ZX-calculus to prove the identity of the circuits proceeds as follows:

(2)

= =

(hh)
=

(f)
=

(1)

=

(id)
=

(f)
=

(1)

=
(id)
=

The diagram contains a SWAP which permutes qubit𝑄1 and𝑄2. Since
this is what we expect from the output permutation shown in Fig. 2 it
can be concluded that the circuits are equivalent.

This example shows that the ZX-calculus can not only show the

equivalence of circuits but that it can also provide a proof certificate

in the form of the order of rewrite rules that are applied to derive

the identity. A natural question to ask is whether the ZX-calculus is

powerful enough to derive the identity for any pair of functionally

equivalent circuits. The good news is that the ruleset provided

in this paper is complete for circuits solely composed of Clifford

gates [41]. The bad news is that, in order to achieve completeness for

universal quantum computing, the ruleset has to be extended with

a rule involving complicated iterated trigonometric functions [42],

which makes it difficult to apply in automated reasoning.

Another important property of rewriting systems, such as the ZX-

calculus, is the existence of normal forms. Normal forms are needed

to determine whether a rewrite procedure terminates. Again, the

basic ZX-calculus described here does not have a simple notion of a

normal form. For some derivations (like Eq. (1)), the complexity of

a diagram has to increase in order to eventually simplify. In [29] the

authors define a normal form for ZX-diagrams called reduced gadget
form which are based on graph-like diagrams from [28] . With the
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addition of several rewriting rules, graph-like diagrams provide a

formalism that can be used to automatically simplify diagrams by

simply repeatedly applying these rules until a (non-unique) reduced

gadget form has been obtained. As discussed above the ZX-calculus

as presented here is not complete for universal quantum computing.

It is therefore not guaranteed that this algorithm can reduce all

circuits in an equivalence checking problem to the identity.

Of course such a simplification procedure is subject to any nu-

merical problems that arise from working with finite precision

representations of complex numbers due to rounding errors. Due to

these numerical problems, the simplification procedure might not

be able to derive the identity. But because the number of spiders

are non-increasing during the equivalence checking procedure, the

size of the diagram does not blow up. Therefore, the size of the

diagram — in terms of the number of spiders — is bounded by the

initial ZX-diagram representation of the quantum circuit. Especially,

ZX-diagrams are not as sensitive to the structure of the underlying

system matrix as decision diagrams. It is also not expected that the

run time of the equivalence check increases because it only depends

on the number of rewrites that can be applied. Due to the inability

to derive the identity diagram, the simplification procedure actually

terminates prematurely.

6 CASE STUDY
Both methods presented in the previous sections are implemented

and publicly available as Python libraries called QCEC (which is

part of the JKQ toolset [43]) and pyzx [44]. Using either method

merely requires a few lines of code. Even though both methods

are presented as out-of-the-box solutions, some precautions still

have to made to allow for a fair comparison. To this end, we first

describe the experimental setup and, afterwards, provide a detailed

discussion on the obtained results.

6.1 Experimental Setup
While there is no explicit configuration for pyzx, QCEC has differ-

ent methods with their respective parameters based on [20], [38],

[45]. For all the evaluations, we compare the equivalence checking

routine of pyzx with the combined approach as presented in [20].

In pyzx, the ZX-diagrams of the circuits are combined as discussed

above, transformed into a graph-like diagram and then simplified

as much as possible using the local complementation and pivoting

rules. For QCEC, we run the equivalence checking routine described

in Section 4.1 in parallel with a sequence of 16 simulation runs. If

the simulations manage to prove non-equivalence of the circuits,

the equivalence checking routine is terminated early.

In order to compare both methods, various benchmarks have

been considered. QCEC has been previously evaluated on a bench-

mark set of reversible circuits (from [46]) which are mapped to

suitable quantum architectures. We also use these in our evaluation

as well as a selection of common quantum circuits.

All benchmarks are provided in the form of QASM [47] files,

which serves as a common language for both tools. Because pyzx

does not natively support all gates of the QASM standard (especially,

no multi-controlled Toffoli gates) the circuits need to be compiled to

a gate set that pyzx can work with. All circuits have been compiled

using qiskit-terra 0.18.3 with the default optimization level (𝑂1).
We distinguish two use-cases: The first is concerned with verify-

ing the compilation result of a high-level circuit. To this end, the

circuits are compiled to the 65-qubit IBM Manhattan architecture

with a gate set comprised of arbitrary single qubit rotations and the

CNOT gate. The second use-case is about verifying the equivalence

of two different implementations of the same functionality—an

original circuit and an optimized version.

For each use-case we consider three configurations. First, two

circuits that are indeed equivalent are used as input. Then, two

instances are created where errors are injected into one of the

circuits—one with a random gate removed and one where the con-

trol and target of one CNOT gate has been swapped. In the fol-

lowing, we summarize the results of our evaluations by means of

a representative subset of benchmarks
1
. The obtained results are

shown in Table 1.

All computations were conducted on a 4.2 GHz Intel i7-7700K

machine running Ubuntu 18.04 and 32GiB main memory. Each

benchmark was run with a hard timeout of 1 h for each method.

6.2 Discussion
Both methods managed to prove the correct result for all considered

circuits where a result is obtained within the given time frame.

As discussed before, this is not guaranteed by theory for the ZX-

calculus. In the considered examples it works out because a lot of the

non-Clifford phases cancel in the rewriting procedure because we

are dealing with circuits that are supposedly each others inverses.

On the other hand, the question of completeness for the decision

diagram based approach is trivial. Decision diagrams are a canonical

representation of a matrix. Thus, if the combined circuit 𝐺†𝐺 ′ has
the identity system matrix, the decision diagram for 𝐺†𝐺 ′ has to
be the identity decision diagram as well.

For the set of reversible benchmarks, the two methods finished

within 10 s of each other for 82 % of benchmark instances. The

remaining reversible benchmarks and circuits containing large

reversible parts in their high-level description (such as Grover’s

algorithm and the Quantum Random Walk) favor the decision

diagram-based approach. These circuits can be exactly compiled to

polynomially-sized quantum circuits comprised only of Clifford+T

gates, i.e., circuits only using Hadamard (𝐻 ), Phase (𝑆), CNOT (𝐶𝑋 ),

and 𝑇 gates. As a consequence, the respective functionalities (i.e.,

the system matrices) possess lots of structure that can be exploited

by decision diagrams and, additionally, only feature a very limited

set of complex numbers which limits the effect of numerical in-

stabilities. In contrast, the ZX-calculus based approach does not

benefit from this structure very much. The simplification approach

from [29] separates the ZX-diagram into Clifford phases and so-

called phase gadgets that introduce non-Clifford phases into the

diagrams. Since the circuits in question contain a large number of

non-Clifford gates, there is no apparent benefit for ZX-diagrams.

For circuits containing no or smaller reversible parts (such as

the QFT or Quantum Phase Estimation), the ZX-calculus approach

fairs much better in comparison to decision diagrams. The main

obstacle in these cases is that the considered algorithms feature

many rotation gates with arbitrarily small rotation angles. Due

to numerical instabilities and rounding errors, it might happen

that two decision diagram nodes that should be identical in theory,

differ by a small margin in practice. As a consequence, inherent

redundancies in the underlying representations cannot be captured

accurately anymore. Thus, while the resulting decision diagram is

very close to the identity with respect to the Hilbert-Schmidt norm,

it might grow exponentially large in the worst case. In contrast,

ZX-diagrams do not seem to be susceptible to such exponential

growth under numerical errors in general.

The above observations are similar in the case of non-equivalent

instances. Although runtimes for both methods are generally lower,

the relative performances are still similar. Since the resulting de-

cision diagram is almost guaranteed to not be very close to the

1
The full benchmark set is publicly available at https://github.com/cda-tum/qcec.

https://github.com/cda-tum/qcec
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Table 1: Benchmarks
Benchmark Equivalent 1 Gate Missing Flipped CNOT

Name 𝑛 |𝐺 | |𝐺 ′ | 𝑡pyzx[s] 𝑡qcec[s] 𝑡pyzx[s] 𝑡qcec[s] 𝑡pyzx[s] 𝑡qcec[s]

Compiled Circuits

Grover 6 1606 2803 3.4 3.40 2.14 0.04 3.17 0.04

Grover 7 4732 8476 25.58 0.30 6.75 0.14 24.60 0.14

Grover 8 12482 22860 198.50 0.91 34.02 0.42 117.76 0.39

QFT 23 1311 3741 3.16 2.00 1.46 >3600 2.60 902.99

QFT 38 3591 10449 14.09 >3600 6.61 >3600 17.55 >3600

Random-Walk 7 6523 8955 166.46 0.24 13.89 0.14 55.44 0.16

Random-Walk 8 14084 19755 1475.85 0.57 672.92 0.33 754.95 0.31

Random-Walk 9 29325 41942 >3600 1.31 >3600 0.59 >3600 0.50

QPE-Exact 22 1217 3006 2.73 0.10 1.47 >3600 2.26 0.82

QPE-Exact 39 3823 11552 8.53 >3600 5.47 >3600 9.42 >3600

GHZ 65 130 493 0.06 <0.01 0.06 <0.01 0.59 0.01

Graph State 62 403 2041 0.36 0.17 0.43 0.17 0.35 0.17

Optimized Circuits

urf2-154 20 52532 44615 2956.58 129.72 90.72 0.27 188.03 0.27

plus63mod4096-163 53 94520 82195 >3600 201.20 378.70 0.655 >3600 0.67

example2-231 53 22016 19411 475.92 18.02 83.51 0.16 602.70 0.14

Grover 8 12479 12287 174.815 0.04 53.85 0.24 137.66 0.04

Grover 9 37193 36881 1521.54 0.14 519.65 129.56 1491.29 0.17

Grover 10 104977 104501 >3600 0.42 2131.22 > 3600 >3600 41.24

QFT 32 2544 2482 1.43 0.04 1.49 3.57 1.89 14.53

QFT 43 4601 4502 2.86 10.837 2.86 17.78 2.81 1.02

QFT 44 4818 4702 3.01 >3600 3.05 1.27 2.90 1.21

Random-Walk 7 6523 5875 150.661 0.02 19.75 0.10 19.75 0.02

Random-Walk 8 14084 12802 938.19 0.04 89.79 0.10 696.34 0.11

Random-Walk 9 29325 26769 >3600 0.09 >3600 0.11 1914.26 0.11

identity during the equivalence check, the alternating scheme dis-

cussed cannot be as efficient as in the equivalent case. Due to this,

QCEC resorts to simulations of the circuit with random inputs

which, as shown in [20], are expected to show the non-equivalence

within a few simulations. Yet, the complexity of decision diagram-

based simulation is still exponential in the worst case. The rewriting

approach of the ZX-calculus is less volatile to errors in the circuit.

During the equivalence check, the combined circuit diagram is

simplified as much as possible until no more rules can be applied.

Depending on the severity and kind of error, the procedure stops

sooner or later. This is not a proof of non-equivalence, but as we

see from our evaluations, it gives a strong indication.

7 CONCLUSION
In this work, we examined the effectiveness of decision diagrams

and the ZX-calculus for the equivalence checking of quantum cir-

cuits. While they show similar performance in many cases, they

differ in key areas. Decision diagrams show significant benefits

for circuits containing large reversible parts, such as oracles or

adders. The sensibility of decision diagrams to numerical impreci-

sion makes them hard to use on quantum algorithms that cannot

be exactly represented using floating points, such as algorithms

relying on arbitrary rotation angles, due to the potential blow-up

of the intermediate representation. The ZX-calculus based equiv-

alence checking procedure is less sensitive to this and is useful

in showing equivalence in these cases. However, the ZX-calculus

tends to be more suitable for verifying smaller building blocks than

whole quantum algorithms due to the large number of involved

gates. In conclusion, we can see that decision diagrams and the

ZX-calculus can serve as complementary approaches for the equiv-

alence checking problem.
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