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Abstract—The classical simulation of quantum circuits is
essential in the development and testing of quantum algorithms.
Methods based on tensor networks or decision diagrams have
proven to alleviate the inevitable exponential growth of the
underlying complexity in many cases. But the complexity of
these methods is very sensitive to so-called contraction plans or
simulation paths, respectively, which define the order in which
respective operations are applied. While, for tensor networks,
a plethora of strategies has been developed, simulation based
on decision diagrams is mostly conducted in a straight-forward
fashion thus far. In this work, we envision a flow that allows
to translate strategies from the domain of tensor networks to
decision diagrams. Preliminary results indicate that a substantial
advantage may be gained by employing suitable simulation
paths—motivating a thorough consideration.

I. INTRODUCTION

The current costs, reliability, and availability of quantum
computers often prohibits the evaluation of possible applica-
tions or prototypes thereof on the actual hardware. As a result,
classical simulations of quantum computations are essential in
the rapid development and testing of quantum algorithms and
applications. Such simulations entail computing the evolution
of a quantum state under the application of the sequence of
operations described by a quantum circuit. Conceptually, this
can be translated to the problem of conducting a sequence
of matrix-matrix and matrix-vector multiplications. However,
since the underlying representations of the state of a quantum
system and the operations to be applied grow exponentially
with respect to the number of qubits, classical simulation
of quantum circuits quickly becomes a challenging task. Be-
sides using powerful supercomputing clusters [[1]]-[3[], clever
data structures such as tensor networks [4]]-[6]], or decision
diagrams [7]-[9] have been demonstrated to alleviate this
complexity in many practically relevant cases.

The tensor network corresponding to a quantum circuit is
formed by representing each gate of a quantum circuit, as well
as the initial quantum state, as a tensor which is connected
to the other tensors via shared indices. Classically simulating
the circuit then translates to contracting the respective tensor
network into a single tensor. But, in general, the complexity
of tensor network-based simulation is extremely sensitive to
the order in which the individual tensors are contracted.
Accordingly, a plethora of methods have been proposed to
determine corresponding contraction paths [10]—[13]—a task
proven to be NP-hard [[14].

Decision diagrams, on the other hand, take a more structural
approach in the sense that they try exploit redundancies in the
representations of quantum states and operations in order to
allow for a more compact representation and also efficient

manipulation in many cases. To this end, they represent
these quantities as directed, acyclic graphs with complex edge
weights. Similar to tensor networks, the initial quantum state
and each gate of a quantum circuit are first translated to
their (typically linearly-sized) decision diagram representation.
Simulation then amounts to multiplying the respective decision
diagrams until the final state vector representation is obtained.

Therein, the complexity of multiplying decision diagrams
scales with the product of their sizes, i.e., their number of
nodes. Whenever the respective intermediate decision dia-
grams remain rather compact, an efficient scheme for classical
simulation is obtained. But this compactness and, by this,
the complexity of decision diagram-based quantum circuit
simulation is very sensitive to the order in which the individual
multiplications are performed (called a simulation path in the
following). In contrast to the contractions of tensor networks,
this effect has hardly been studied yet.

In this work, we investigate this issue and envision a flow
that allows to employ existing techniques from the tensor net-
work domain also for decision diagrams. Preliminary results
demonstrate the potential for simulations based on decision
diagrams, showing substantial advantages over the state of the
art.

The rest of this paper is structured as follows: |Section I
introduces the necessary background on quantum circuit sim-
ulation and decision diagrams. Then, illustrates the
considered problem and reviews the related work.
shows how simulation paths can be handled in general and
describes the flow for using existing techniques from the tensor
network domain. Afterwards, summarizes initial

results, before concludes the paper.
II. BACKGROUND

To keep this paper self-contained, this section briefly covers
the basics on quantum circuit simulation followed by a brief
review of decision diagrams—which provide the basis of the
simulation approach considered in the rest of this work.

A. Quantum Circuit Simulation

A quantum state |p) of an n-qubit quantum system can be
described as a linear combination of 2" basis states, i.e.,

lo) = Z a; i) with o; € C and Z |Oéz‘|2 =1

i€{0,1}" 1€{0,1}"
This state is commonly represented as a vec-
tor [ag..0,...,1. 1], referred to as state vector. Measuring

this state leads to a collapse of the system’s state to one of
the basis states |i) each with probability |«;|? for i € {0,1}".
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Fig. 1. Circuit for the 3-qubit quantum Fourier transform

In the following, we will always identify |)

with its
corresponding state vector, i.e., |¢) = [ag..0,- - - T

, Q1

Example 1. An important example of a quantum state is the
3-qubit Greenberger—Horne—Zeilinger or GHZ state [15]]:

1 1

V2 V2

The state of any quantum system can be manipulated by
quantum operations, also called quantum gates. Any such
gate g acting on k qubits can be identified by a unitary
matrix U of size 2¥ x 2% i.e., g = U. Its action on a quantum
state corresponds to the matrix-vector product of the matrix
with the vector representing the stateﬂ ie., |¢) =Ulp).

A quantum circuit is now described as a composition
of quantum gates. Consequently, the evolution of an initial
quantum state |@) through a quantum circuit G = g ... g|g|
is described by the subsequent application of the individual
gates to this initial state, i.e.,

|GHZ) = —(]000) + |111)) = —[1,0,0,0,0,0,0,1]"

)G =10)g1...91c1 =Ujg) *---xUr x|g) .

If this task is conducted on a classical computer, it is com-
monly referred to as quantum circuit simulation.

Example 2. shows a 3-qubit quantum circuit realiz-
ing an important quantum algorithm, namely the quantum
analog to the Fourier transform. It consists of three single-
qubit Hadamard gates (indicated by boxes labeled H ), three
two-qubit controlled-phase rotations (indicated by boxes la-
beled S and T connected to e), and a two-qubit SWAP gate
(indicated by x). Given an initial state in the computational
basis, this circuit outputs the state’s representation in the
Fourier basis.

B. Decision Diagrams

The representations of a quantum system state and the
operations manipulating it are exponentially large w.r.t. the
number of qubits involved. This quickly limits straight-forward
approaches for representing (and manipulating) even moder-
ately sized state vectors, such as arrays, without resorting to
supercomputing clusters. For example, representing the dense
state vector of a 32-qubit system already requires 64 GiB of
memory (assuming 128 bit complex numbers).

Decision diagrams [7]-[9] have been proposed as a comple-
mentary approach for efficiently representing and manipulating
quantum states by exploiting redundancies in the underlying
representation. A decision diagram representing a quantum
state (or operation) is a directed, acyclic graph with complex
edge weights. To this end, a given state vector with its complex

!Technically, the matrix first needs to be extended to the full system
size (by forming appropriate tensor products with identity matrices) for the
multiplication to make sense.

(a) |GHZ) (b) Color wheel (c) Controlled-S gate (d) H gate

Fig. 2. Decision diagrams for 3-qubit states and gates

amplitudes «; for ¢ € {0,1}" is recursively decomposed into
sub-vectors according to

[060...0, ceey al...l]T
[O‘OI]T [alx]—r
[OZOOy]T [040131]T [Oéloy]T [04111/]T

with z € {0,1}""! and y € {0,1}"2, until only individual
amplitudes remain. The resulting graph has n levels of nodes,
labelled » — 1 down to 0. Each node ¢ has exactly two
successors indicating whether the path leads to an amplitude
where qubit 4 is in state |0) or |1).

By extracting common factors into edge weights (and em-
ploying suitable normalization schemes, see [7]], [9]), any two
sub-vectors that only differ by a constant factor can be unified
and need not be represented by separate nodes in the decision
diagram. Exploiting such redundancies frequently allows to
obtain rather compact representations (in the best case linear
with respect to the number of nodes) for the, in general,
exponentially large state vectors.

Example 3. shows a graphical representation (pro-
posed in [|16]) of the decision diagram for the GHZ state con-

sidered previously in To this end, the thickness of
an edge indicates the weight of the corresponding magnitude,
while the color wheel shown in is used to encode its
phase. Furthermore, edges with a weight of 0 are denoted as
o-stubs. In general, the decision diagram for an n-qubit GHZ
state requires 2n—1 nodes for representing the 2" -dimensional
state vector.

Decision diagram representations for quantum gates are
obtained by extending the decomposition scheme for state
vectors by a second dimension. This corresponds to recursively
splitting the respective matrix into four equally-sized sub-
matrices according to the basis {[3 0], [0 6. [T 0], [0 9] }-

Example 4. Consider again the circuit shown in
Then, |Fig. 2c| and [Fig. 2d| exemplarily show the decision
diagram representations for the 23 x 23 matrices of the
controlled-S and the Hadamard gate at the end of the circuit,
respectively.

As described above, applying a gate to a quantum system
entails the matrix-vector multiplication of the corresponding
matrix with the current state vector. This operation can be
recursively broken down according to

Uopo Uor|  |eo...| _ [(Uoo-ao..+Uot-on..)
U Un| |oa.. (U -ap.. + Ui -a1.)|’



with Uy; € €22 and ;. € C2"' for i,j € {0,1}.
Since the U;; and ¢ directly correspond to the successors
in the respective decision diagrams, matrix-vector (as well as
matrix-matrix) multiplication is a native operation on decision
diagrams and its complexity scales with the product of the
number of nodes of both decision diagrams. Thus, whenever
the decision diagrams remain compact throughout the compu-
tation, the simulation of quantum circuits can be efficiently
conducted using decision diagrams [17]-[22]. While many
practical examples lead to compact decision diagram represen-
tations [22], their worst case complexity remains exponential.

III. CONSIDERED PROBLEM AND RELATED WORK

In this section, we describe the considered problem and
discuss correspondingly related work including how other
types of quantum circuit simulators address this problem.

A. Considered Problem

As reviewed above, the simulation of a quantum circuit
G = g1...9|¢| given an initial state [p) entails the sequence
of computations

o) G =10)g1... 911 =Ujg) * - *Ur x|p) .

Since matrix-matrix and matrix-vector multiplication is asso-
ciative, the order in which the individual multiplications are
conducted can, in principle, be chosen arbitrarily. We refer
to such an order of computations as a simulation path. Since
matrix-vector multiplication is, in general, far less complex
than matrix-matrix multiplication, the most natural simulation
path is to sequentially compute the matrix-vector product of
the individual (and compact) gate matrices with the current
state vector. However, for a circuit G with |G| gates, there
are |G| % (|G| — 1) % ---x 1 = |G|\, i.e., exponentially many,
unique simulation paths—raising the question whether the
most natural path indeed is always the best path.

B. Related Work

The connection between decision diagrams and tensor
networks has already been pointed out in Section [ Both
techniques efficiently represent the initial state as well as
all the individual operations in the form of a dedicated data
structure—decision diagrams on the one hand, and tensors
on the other. Then, they choose a certain path to combine
these individual description in order to eventually form a
representation of the final quantum state—either by multi-
plying decision diagrams or by contracting tensors. Hence,
the problem of determining an optimal simulation path for a
decision diagram poses a similar challenge as determining an
optimal contraction order for a tensor network, which has been
proven to be NP-hard [14]. A plethora of heuristic methods
trying to efficiently solve this challenging task for tensor
networks has been developed in the past (see, e.g., [10]-[13]]).

However, in case of decision diagrams, this question is
hardly studied and almost no heuristics exist for determin-
ing an efficient simulation path. Initial works related to the
problem considered in this work have been conducted in [21]].
But there, only a very small subset of the immense space
of possibilities has been explored, namely the possibility of
performing a couple of matrix-matrix multiplication before
conducting the next matrix-vector multiplication.

Fig. 3. Task dependency graph for one particular simulation path

IV. DETERMINING SIMULATION PATHS

The simulation of a quantum circuit G = g ... g|g Wwith
the initial state |p) entails the computation of the expression
Uig| * - -+ x Uy x |p). Initially, this requires the construction
of decision diagrams for the initial state and the individual
gates. Then, each multiplication in the above expression can
be regarded as a rask that takes two decision diagrams and
returns the result of their multiplication. Thus, a path for the
simulation of G corresponds to a sequence of (multiplication)
tasks that eventually results in the final state vector. It is natural
to represent such a sequence as a task dependency graph. An
example illustrates the idea.

Example 5. Consider again the 3-qubit QFT circuit shown
in Then, the following sequence of tasks describes one

particular simulation path of G:
[(0,1),(2,3),(4,5),(6,7),(8,9), (10,11), (12,13)].

To this end, index O denotes the initial state, index 1 to |G| the
individual operations, and the result of a task is indexed by
the next largest integer not already in use. The corresponding
task dependency graph is shown in

As a result, arbitrary paths for the simulation of a circuit
G using decision diagrams can be specified. The question
remains how to determine suitable ones out of the |G|! options.
As reviewed in a plethora of methods has been
developed for determining efficient contraction paths of tensor
networks. In this work, we envision a flow in Python that
connects both domains and, as consequence, allows to make
use of research conducted towards tensor network contraction.

The flow (as illustrated in [Fig. 4) starts off by im-
porting a circuit (given as OpenQASM file [23|] or Qiskit
QuantumCircuit object [24]]) into the decision diagram frame-
work. Then, a representation of the underlying tensor net-
work is created and fed into the hyper-optimized tensor
network contraction tool CoTenGra [10]], which is used as a
state-of-the-art representative. Afterwards, a task dependency
graph is constructed from the obtained contraction plan and
used for the decision diagram simulation.
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Fig. 4. Automated flow for determining simulation paths

V. EXPERIMENTAL RESULTS

The flow, outlined above, allows to employ strategies devel-
oped in the tensor network domain for decision diagram-based
simulation. Thus, the potential of different simulation paths
can be evaluated. We implemented the proposed flow on top of
the publicly available DDSIM tool (github.com/iic-jku/ddsim)
and used the resulting implementation for our experimental
evaluationsﬂ As benchmarks, we considered quantum circuit
realizations of a broad range of quantum algorithms, including
the Quantum Fourier Transform, Quantum Phase Estimation,
GHZ, and Graph State preparation. We used the flow proposed
in [Section 1V] to translate the circuit to be simulated to
the tensor network domain and employ the contraction path
finding tool CoTenGra [10] to determine a corresponding
simulation patlﬂ The results are summarized in

As shown by these results, applying methods developed
from the domain of tensor networks indeed allows to speed
up the simulation of quantum circuits using decision diagrams
in many cases. Sometimes even several orders of magnitude
compared to the state of the art approach can be observed.

VI. CONCLUSIONS

In this work, we studied the importance of the path that
is chosen when simulating quantum circuits using decision
diagrams connecting it to the domain of tensor networks. We
showcased that translating contraction order strategies from
the domain of tensor networks does allow for speedups of up
to several orders of magnitude compared to the state of the art.
This shows the potential impact of choosing a suitable path
for the simulation of quantum circuits using decision diagrams,
and motivates a thorough investigation of different simulation
paths for a broader range of benchmarks.
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(1]
(2]

3]
[4]
[5]
(6]
(7]
(8]
91

[10]
[11]
[12]
[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]
[24]

TABLE I
EXPERIMENTAL EVALUATIONS

Benchmark Results
Name n |G| tseq [s] teot [s]
GHZ 64 64 0.00 0.00
GHZ 96 96 0.01 0.01
GHZ 128 128 0.01 0.01
Graph_State 46 115 6.71 5.87
Graph_State 48 120 73.52 13.50
Graph_State 50 125 53.32 5.59
Entangled_QFT 16 160 7.66 0.16
Entangled_QFT 17 178 42.76 0.64
Entangled_QFT 18 198 395.62 0.94
Entangled_QFT 19 218 5836.17 3.66
QPE 16 158 475 0.80
QPE 17 177 27.17 7.05
QPE 18 196 118.11 14.17
QPE 19 217 1837.00 282.23

n: Number of qubits |G|: Gate count of G
tseq: Runtime of sequential simulation path [17]
tcot: Runtime of path determined by CoTenGra [10]
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