
Reordering Decision Diagrams for Quantum
Computing Is Harder Than You Might Think

Stefan Hillmich1, Lukas Burgholzer1, Florian Stögmüller1, and Robert Wille2,3

1 Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
2 Chair for Design Automation, Technical University of Munich, Germany

3 Software Competence Center Hagenberg GmbH (SCCH), Austria
{stefan.hillmich,lukas.burgholzer}@jku.at, robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum/

Abstract. Decision diagrams have proven to be a useful data structure
in both, conventional and quantum computing, to compactly represent
exponentially large data in many cases. Several approaches exist to
further reduce the size of decision diagrams, i.e., their number of nodes.
Reordering is one such approach to shrink decision diagrams by changing
the order of variables in the representation. In the conventional world, this
approach is established and its availability taken for granted. For quantum
computing however, first approaches exist, but could not fully exploit a
similar potential yet. In this paper, we investigate the differences between
reordering decision diagrams in the conventional and the quantum world
and, afterwards, unveil challenges that explain why reordering is much
harder in the latter. A case study shows that, also for quantum computing,
reordering may lead to improvements of several orders of magnitude in
the size of the decision diagrams, but also requires substantially more
runtime.

1 Introduction

Quantum computers are promising to solve important problems significantly
faster than conventional computers ever could. Shor’s algorithm [1] and Grover’s
search [2] are two famous examples, albeit especially Shor’s algorithm cannot
be handled in a scalable fashion by current quantum computers. Still, there are
areas where current quantum hardware can provide an advantage today, such as
machine learning [3] and chemistry [4]. This computational power mainly stems
from the exploitation of superposition, i.e., that quantum states can assume a
state in which all basis states are represented at the same time, and entanglement,
which allows operation on one qubit to also influence other qubits as well. The
potential of quantum computers is witnessed by the vast efforts undertaken by
companies such as IBM, Google, and Rigetti to build the physical hardware and
to develop corresponding design automation tools.

These methods and tools for design automation need to work on conventional
hardware but, at the same time, have to deal with the complexity of the quan-
tum world. To this end, representing a quantum state requires an exponential

https://www.cda.cit.tum.de/research/quantum/

2 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

amount of memory with respect to the number of qubits, often represented
as a 2n-dimensional vector. Rooted in the underlying mathematical principles,
the worst-case complexity will always be of this exponential kind [5]. However,
utilizing more sophisticated and adaptive data structures such as decision dia-
grams (DDs) [6]–[14] can lead to much more compact representations in many
cases.

In the design automation for conventional circuits and systems, decision
diagrams have been established since the 90’s (see, e.g., [15], [16]). There, it has
been shown that the size of decision diagrams significantly depends on the order
in which the variables (in case of decision diagrams for quantum computing, the
qubits) are encoded. Even though determining an optimal variable order is a
coNP-hard problem [17], the potential reductions in size motivated a plethora
of reordering schemes aimed at determining suitable or even the best possible
variable orders for a given decision diagram [17]–[23].

The success of reordering in the conventional design automation raises the
question, whether similar approaches are suitable for the quantum world as
well. A few attempts of employing reordering schemes for decision diagrams for
quantum computing have been made [11], [24]–[26]. However, those attempts have
remained rather rare and considered only a prototypical level with small examples
yet. Moreover, implementations of decision diagrams such as provided in [11]
frequently abort when reordering is applied to larger examples due to inaccuracies
in the floating-point numbers storing the edge weights. This necessitates an
investigation on the challenges that have prevented a fully-fledged application of
reordering in decision diagrams for quantum computing thus far.

In this work, we investigate the challenges of reordering which emerge during
the implementation of this feature for decision diagrams with complex edge
weights. As the challenges arise due to inaccuracies in the floating-point represen-
tation of real numbers, all types with complex edge weights, such as QMDDs [7]
and LIMDDs [13], are susceptible. To this end, it becomes apparent that imple-
menting reordering decision diagrams for quantum computing is much harder
than originally thought considering the simplicity of the concept itself. Using
this knowledge, we present a solution that handles those challenges and evaluate
how this eventually affects the performance of reordering. Our case study shows
that reordering may allow for substantial improvements (in some cases yielding
decision diagrams which are several orders of magnitudes smaller in their size),
but also will require substantially more runtime—showing that designers should
decide whether reordering pays off in their use case. For the first time, this
explains the reluctance of using reordering in decision diagrams for quantum
computing, but also shows the potential still available in this optimization scheme.

The remainder of this paper is organized as follows: Section 2 briefly reviews
the basics of quantum computing and decision diagrams. Section 3 explains
the concepts of reordering in decision diagrams, whereas Section 4 discusses
challenges that arise when implementing reordering in decision diagrams for
quantum computing together with a corresponding solution. In Section 5, we
present the results of our case study. Finally, we conclude the paper in Section 6.

Reordering Decision Diagrams for Quantum Computing 3

2 Background

In order to keep the work self-contained, we briefly review the basics on quantum
computing and decision diagrams in this section.

2.1 Quantum Computing

In quantum computing, the basic unit of information is the quantum bit or
qubit [5], [27]. As a conventional bit, it can assume the corresponding computa-
tional basis states |0〉 and |1〉 (in Dirac notation). However, qubits can additionally
assume linear combinations of the basis states. They are, justifiably, in both
states at the same time. A more precise notion is |ψ〉 = α0 · |0〉+ α1 · |1〉 where
α0, α1 ∈ C are referred to as amplitudes. If both α0 and α1 are non-zero, the
quantum state is said to be in superposition. Additionally, in systems with more
than one qubit, the quantum state can be entangled, meaning that an operation
on one qubit may affect other qubits as well.

The amplitudes are fundamentally opaque in a physical quantum computer.
The only way to retrieve information on a quantum state is measurement. Mea-
surement is probabilistic and results in a single basis state while, at the same
time, superposition and entanglement are destroyed. The probability to measure
any basis state is determined by its amplitude: Given αi, the squared magnitude
|αi|2 is the probability to measure the basis state |i〉. Therefore, the amplitudes of
the quantum state are constrained such that the sum of the squared magnitudes
must equal one—referred to as normalization constraint. For a one-qubit system
|α0|2 + |α1|2 = 1 must hold. Quantum states with n qubits have 2n basis states,
each with a corresponding amplitude. Multi-qubit states are also subject to the
normalization constraint

∑
i∈{0,1}n |αi|2 = 1. Commonly, quantum states are

represented as 2n-dimensional vectors containing the amplitudes, implemented
as arrays of floating-point numbers.

Example 1. Consider the pure two-qubit quantum state |ψ〉, which is set to
|ψ〉 = 1/

√
2 · |00〉+ 0 · |01〉+ 0 · |10〉+ 1/

√
2 · |11〉 .

This state is valid, since |1/√2|2 + |0|2 + |0|2 + |1/√2|2 = 1 satisfies the normaliza-
tion constraint. As a vector, the state is written as |ψ〉 = [1/

√
2 0 0 1/

√
2]

T
. Due

to the superposition, measuring this state yields either of the two basis states
|00〉 or |11〉 with a probability of |1/√2|2 = 1/2 each. After the measurement, the
superposition is destroyed and the quantum state is fixed to the measured state,
i.e., subsequent measurements yield the same result.

2.2 Decision Diagrams

Quantum states require 2n-dimensional vectors to represent n qubits if this
straightforward representation is chosen. In many cases decision diagrams (DDs)
can drastically reduce this exponential complexity by exploiting redundan-
cies [6], [8]–[12], although the worst-case complexity remains exponential.

4 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

|q2q1q0〉
|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

1

−1
0

2

0

0

0

2i





1√
10

(a) Vector

q2

q1 q1

q0 q0

1

√
6√
10

2i√
10

0

√
2√
6

2√
6

0
1√
2

−1√
2

(b) DD

Fig. 1. Two quantum states with vector and DD representation, respectively

The structural redundancies in vectors can be exploited by shared structures
in decision diagrams. More precisely, the vector is split into equally sized upper
and lower sub-vectors. There are n levels of splitting for an n-qubit state until the
individual elements are reached. If identical sub-vectors occur in this procedure,
they are detected and represented by shared nodes. The consistent application
of a normalization scheme guarantees a canonical representation of quantum
states and thus maximally compact decision diagrams (given a fixed variable
ordering). In the resulting decision diagram, the amplitudes are encoded in the
edge weights. To get the amplitude of a basis state the edge weights along the
corresponding path have to be multiplied.

Example 2. Consider the state vector in Fig. 1a. The annotations on the right
denote the basis state each amplitude corresponds to. In Fig. 1b, a decision
diagram representing the same state is depicted with the normalization introduced
in [28]. To access the amplitude of basis state |001〉, the bolded path in the decision
diagram has to be traversed and the edge weights along this path have to be
multiplied, e.g., (q2 = 0, q1 = 0, q0 = 1) yielding 1 ·

√
6/
√
10 ·
√
2/
√
6 ·−1/√2 = −1/

√
10.

3 Reordering Decision Diagrams

This section reviews the effect of the variable order in decision diagrams and
the conceptual approach to reordering. To this end, we take the findings from
reordering decision diagrams in the conventional world (e.g., from [17], [19]–[23])
and adapt them to the corresponding representation of quantum states. After-
wards, we use this as basis to show that certain corner cases frequently occur
in reordering of decision diagrams for quantum computing—providing an expla-
nation why reordering has been investigated only in a theoretic or prototypical
fashion in the quantum world (e.g., in [10], [11], [24]–[26]).

The compaction decision diagrams can achieve significantly depends on the
order in which the variables (or qubits) are represented. In fact, the variable order
has a great influence on the size of the decision diagram [17] and, in particular
cases, can be the difference between a compact and an exponential representation

Reordering Decision Diagrams for Quantum Computing 5

q2

q1 q1

q0 q0

1

w0
w1

w′0
w′1 w′0

w′1

0

(a) DD with order q2 < q1 < q0

q1

q2

q0 q0

1

w′0
w′1

w0
w1

0

(b) DD with order q1 < q2 < q0

Fig. 2. Variable swap between q2 and q1 decreases the number of nodes

with respect to the number of variables/qubits. The variable order is denoted
as qi0 < qi1 < . . . < qin−1

for a system with n variables/qubits and orders the
variables/qubits in the decision diagram from the root node at the top to the
qubit that appears in the last level before the terminal node.

Example 3. Consider the decision diagrams in Fig. 2, both of which represent the
same quantum state. In (a), the application of variable order q2 < q1 < q0 yields a
decision diagram with five non-terminal nodes whereas, in (b), the variable order
q1 < q2 < q0 yields a decision diagram with only four non-terminal nodes—a
20% reduction of non-terminal nodes.

Changing the variable order is termed reordering [19]–[23]. The simplest
change in the variable order is exchanging variables/qubits that are adjacent in the
current variable order. For two adjacent variables/qubits qi+1 < qi, this requires
swapping the “inner edges” representing |qi+1qi〉 = |01〉 and |qi+1qi〉 = |10〉.
Keeping in mind that the decision diagrams for quantum states represent vectors,
this swap corresponds to the following transformation:


A
B
C
D


|qi+1qi〉
|00〉
|01〉
|10〉
|11〉

swap−−−−−−−→
qi+1 and qi


A
B
C
D


|qiqi+1〉
|00〉
|10〉
|01〉
|11〉

sort−−−−→
indices


A
C
B
D


|qiqi+1〉
|00〉
|01〉
|10〉
|11〉

.

In this description, A, B, C, and D can be complex numbers (if qi+1 and qi are
the only qubits) or sub-vectors themselves (if the system has more qubits). Of
course, there may be multiple nodes labeled qi. In this case, these the variable
swapping has to be applied to each such node.

Example 4. The general simplicity of swapping two adjacent variables/qubits in
a decision diagram is illustrated in Fig. 3. Only the inner outgoing edges on the
lower level need to be swapped and the node labels have to be exchanged.

6 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

qi+1 qi

qi qi qi+1 qi+1

swap

qi+1 and qi

A

00
B

01
C

10
D

11
A

00
C

10
B

01
D

11qi+1qi

Fig. 3. Conceptually swapping two variables/qubits

Changing the variable order from one to another is realized by iteratively
exchanging adjacent variables/qubits in the current variable order until the desired
variable order is attained. Doing so is also commonly required by heuristics trying
to a find good variable order. Finding the minimal solution is an coNP-hard
problem [17] and often done via exhaustive search.

In the conventional world, reordering is a standard approach to reduce the size
of decision diagrams such as BDDs [17], [19]. A well-known reordering heuristic is
sifting, which has a quadratic complexity in the number of variables/qubits [23].
This approach repeatedly selects a qubit and moves it up and down in the decision
diagram to find the minimal position for said variable/qubit. Hence, for a decision
diagram with n variables/qubits, there are n− 1 positions to consider for each
variables/qubit—yielding an efficient heuristic which often yields good enough
results. Besides that, a plethora of further works exist which aim to determine
good orders or even try to obtain the best possible order as efficiently as possible
(see, e.g., [18], [20]–[23]).

4 Challenges in Reordering
Decision Diagrams for Quantum Computing

In the quantum world, decision diagrams recently were established as a data
structure to efficiently handle quantum states and quantum function descriptions
for simulation, synthesis, and verification. However, while reordering is a tried
and tested procedure for conventional decision diagrams, it has been rarely used
in decision diagrams for quantum computing yet. In fact, reordering for the
quantum world has been considered only on a rather conceptual level with small
examples [11], [25], [26]. In this section, we discuss why this might be the case
and particularly show the challenges of reordering which emerge in quantum
computing when more complex decision diagrams are considered.

Conceptually, reordering decision diagrams of quantum states is conducted
similarly to reordering in conventional decision diagrams and consists of one
or more variable swaps as illustrated in Fig. 3: Each variable swap involves
two adjacent levels swapping their inner out-going edges on the lower level and
accordingly relabeling the nodes. However, while this is a conceptually simple
procedure and easy to realize for conventional decision diagrams, a corresponding

Reordering Decision Diagrams for Quantum Computing 7

q1

q0 q0

1

may have several
predecessors

ŵ

w0 w1

w00 w01
w10 w11

(a) Original order

w00 · w0

= w00,0

1

w10 · w1

= w10,1

1

w01 · w0

= w01,0

1

w11 · w1

= w11,1

1

(b) Create new edges for each path

q1 q1

1 1

w00,0
w10,1

w01,0
w11,1

(c) Creating new nodes for q1

q1 q1

1 1

w′0 w′1

w′00 w′01
w′10 w′11

(d) Normalizing nodes

q0

q1 q1

1

ŵ

reused and relabeled
node from (a)

w′0 w′1

w′00 w′01
w′10 w′11

(e) Swapped order after relabeling

Fig. 4. Step-by-step variable swap for a single node q1

realization for the quantum world has to consider the increased complexity. Indeed,
decision diagrams for quantum computing additionally need to represent complex
numbers, which are commonly encoded in the edge weights (see Section 2.2).
This may lead to severe challenges that have not been considered thus far and
are investigated in the following.

4.1 Floating-Point Accuracy

Quantum computing uses complex numbers to describe states and functions, so
decision diagrams for quantum have to incorporate complex numbers as well (1/√2

is an example of a common irrational factor in quantum computing occurring
in the real or imaginary parts of a complex number). For design automation
tasks on conventional computers, we are left with two choices: Do calculations
symbolically to retain absolute accuracy or use some form of approximation,
such as floating-point numbers. Exact representations, such as the algebraic
representation proposed in [29], are too computationally expensive for all but small
benchmarks. In the case of [29], which uses tuples of integers for representation,
the integers quickly become larger than natively representable with 64 bits and
the implementation therefore introduces an overhead by using arbitrary large

8 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

integers. Hence, most implementations use floating-point numbers. However, the
edge weights encoding the amplitudes of the quantum state are affected by most
operations, such as multiplying edge weights of decision diagrams in simulation
and reordering. Thus, due to the limited accuracy of floating-point numbers, each
modification of the edge weights carries the risk of losing tiny bits of information.

Example 5. Fig. 4 illustrates the required computations on the edge weights,
when swapping two adjacent qubits in a decision diagram. As illustrated in
Fig. 4a (showing the original order) and in Fig. 4e (showing the resulting order),
the procedure follows the original idea from the conventional world (see Fig. 3)
and just adjusts the inner outgoing edges and the node labels. In addition to
that, however, the edge weights also need to be adjusted when decision diagrams
for quantum computing are considered. This is particularity shown in Fig. 4b
and 4d—and provides a challenge to be addressed. In fact, multiplying numbers
that are not exactly representable with floating-point numbers, such as 1/

√
2 or

1/3, will result in a product that might be slightly off its real value. This difference
in actual number and exact number interferes with the detection of identical
sub-structures and, hence, leads to larger decision diagrams.

Most state-of-the-art implementations tackle the challenge of lost sharing
due to floating-point inaccuracies by employing some form of tolerance when
comparing floating-point numbers Commonly, two complex numbers a and b are
regarded as equal if |Re(a)− Re(b)| < T and | Im(a)− Im(b)| < T for some tol-
erance T . However, using such a tolerance to mitigate floating-point inaccuracies
causes another challenge when trying to do reordering.

4.2 Node Collisions

The inaccuracy of floating-point numbers and the common usage of tolerances
for comparisons eventually creates a more severe problem for reordering nodes.
In theory, doing a variable swap between qi+1 and qi does not change the number
of nodes on the level of qi+1. However, in practice, a loss of precision may cause
two hitherto different nodes to become identical.

Example 6. Consider the decision diagram shown in Fig. 5 and assume that a
tolerance of T = 0.01 is applied. Now, the qubits q1 and q0 should be swapped.
Note that both nodes labeled q1 are very similar before the variable swap, but
the edge weights differ by at least the tolerance. During the swapping procedure,
weights of outgoing edges from the left-hand side of q1’s successors are multiplied
as shown in Fig. 4b. Because the two q1-nodes were similar to begin with, the
products from the left-hand side q1-node will be similar to the products from the
right-hand side q1-node as well. During the next steps (see Fig. 4c) this may lead to
a situation where, due to the applied tolerance, nodes will be considered identical
during lookup of existing nodes to exploit redundancies—a collision occurs. More
precisely, consider the left successors in the decision diagram shown in Fig. 5 as
an example (bolded in the figure). Here, we get the products 0.45 · 0.5 = 0.225
and 0.46 · 0.49 = 0.2254. Due to the tolerance, both weights will be treated as

Reordering Decision Diagrams for Quantum Computing 9

q2

q1 q1

q0 q0 q0 q0

1

0.45
0.51

0.46
0.5

0.5
0.5

0.49
0.2
0.49

0.51
0.5

0.21

q2

q0

q1 q1

1

?

0.225
0.2499

0.225
0.102

�
with tolerance

T = 0.01

Fig. 5. Decision diagram where exchanging q1 and q0 leads to a collision

identical since |0.225−0.2254| < 0.01—the same holds for the remaining products.
As a result, the resulting nodes will be considered equal during lookup of existing
nodes.

At a first glance, collisions (a term borrowed from unwanted collisions in hash
tables) may seem desirable since the number of nodes is reduced. In fact, the
number of nodes in a fully populated reduced decision diagram is invariant to the
variable ordering (assuming sufficient accuracy in represented numbers), whereas
collisions possibly reduce the number of nodes. However, since the nodes on the
upper level of the variable swap are re-used to avoid reconstructing the whole
decision diagram, this invalidates all edges pointing to the colliding node. Worse
yet, keeping nodes regardless of a collision creates a conflict with the commonly
used unique table. The unique table holds pointers to all inserted nodes and is
essential to efficiently identifying identical sub-structures for sharing. As the
name suggests, it is supposed to hold unique entries—forcibly inserting duplicates
creates unreachable nodes.

Example 6 (Continued). Consider again Fig. 5. Edges pointing to the left-hand
side q1-node in the original decision diagram would work as expected in the
reordered version. However, edges pointing to the right-hand side q1-node in
the original decision diagram are invalid in the reordered version. The resulting
decision diagram would not correctly represent the state anymore if the collision
were ignored.

Previous works (such as [11], [24]–[26]) did not consider collisions and, hence,
failed when node collisions occurred. This may be due to collisions only occurring
with increasingly complex decision diagrams and previous works considered
rather small examples in their evaluations. In cases where an implementation is
available (e.g., [11]), the execution is aborted with an error message if a node
collision happens. However, our case study in Section 5 confirms that collisions
are a common problem in more complex quantum states and, hence, need to be
considered.

10 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

We propose to mitigate the problem of colliding nodes by readjusting edges
pointing to the collided node. To this end, the corresponding parts of the unique
table are scanned to find the address of the collided node and substitute the
address of the original node. Further, the decision diagram may contain nodes
that are yet to be inserted into the unique table and, thus, the current decision
diagram is scanned as well. Note that neither scan approach is sufficient: Multiple
decision diagrams can exist in the same unique table to increase the sharing
potential, so nodes outside the current decision diagram may be affected.

Depending on the structure above the collision, it may be necessary to
perform cascading substitutions up to one level below the root node. Handling
node collisions, especially when they cascade, drastically increase the overhead
of reordering since parts of the decision diagram have to be reconstructed. In
addition, the merging of nodes to handle collisions is an irreversible operation.
The evaluations in the next section show how this eventually makes the entire
reordering process harder with respect to runtime. Before, however, another
challenge is considered.

4.3 Normalization

Finally, the canonicity of decision diagrams with the same variable order should be
preserved. While canonicity might not be a must-have requirement for an efficient
data structure (e.g., in tasks such as simulation or synthesis), it is essential in
design tasks such as equivalence checking. However, even if it is not required in
tasks such as simulation, canonicity increases the likelihood of detecting identical
sub-structures—resulting in a more compact decision diagram.

In conventional BDDs, canonicity is achieved by fixing the variable order and
ensuring there are no two different nodes representing the same sub-structure—
the decision diagrams have to be ordered and reduced [17]. For decision diagrams
in the quantum world, edge weights have to be considered additionally. Here,
edge weights are normalized to guarantee canonicity. Unfortunately, normaliza-
tion schemes may cascade upwards through the decision diagram and thus limit
efficiency of this desirable, if not required, operation during reordering. The intro-
duction of normalization factors in the nodes as explained in [11] mitigates the
premature normalization through the whole decision diagram during the reorder-
ing procedure. Nonetheless, after the reordering is performed, the normalization
factors have to be applied to the out-going edges with subsequent normalization
through the whole decision diagram. This may significantly increase the runtime
required to conduct reordering.

5 Case Study

The investigations from above showed that, although core principles can be
re-used from the conventional world, reordering of decision diagrams is signif-
icantly harder in the quantum world. This raises the question of whether this
optimization technique, which is well known and established for conventional

Reordering Decision Diagrams for Quantum Computing 11

T
ab

le
1.

E
ffe

ct
of

R
eo
rd
er
in
g
fo
r
Q
ua

nt
um

St
at
es

B
en

ch
m
ar
k

Q
ub

it
s

Si
m
ul
at
io
n

Si
m
ul
at
io
n
+

R
eo
rd
er
in
g
(S
ift
in
g)

of
R
es
ul
ti
ng

Q
ua

nt
um

St
at
e

T
im

e
[s
]

T
im

e
[s
]

M
in
.N

od
es

M
ax

.N
od

es
A
bs
.D

iff
.

R
el
.S

iz
e

C
ol
lis
io
ns

qf
t_

21
21

1.
2

1.
7

22
22

0
1.
00

0
0

qf
t_

23
23

1.
5

1.
8

24
24

0
1.
00

0
0

qf
t_

24
24

1.
5

2.
6

25
25

0
1.
00

0
0

qf
t_

25
25

1.
1

1.
5

26
26

0
1.
00

0
0

gr
ov
er
_
11

12
0.
4

0.
5

23
81

2
78

9
0.
02
8

15
3

gr
ov
er
_
14

15
0.
5

0.
8

29
2
70

0
2
67

1
0.
01

1
50
8

gr
ov
er
_
17

18
3.
1

41
.5

35
41

65
9

41
62

4
0.
00
1

7
55

9
gr
ov
er
_
20

21
51

8.
5

1
80

8.
2

41
15

6
41

4
15

6
37

3
<
0.
00

1
34

52
7

gr
ov
er
_
22

23
4
58

4.
3

T
im

eo
ut

–
–

–
–

–
gr
ov
er
_
23

24
11

31
3.
4

T
im

eo
ut

–
–

–
–

–

in
st
_
4x

4_
10

_
0

16
3.
0

16
4.
0

54
17

4
64

44
5

10
27

1
0.
84

1
3
44

0
in
st
_
4x

4_
10

_
1

16
1.
7

60
.7

24
84

9
61

84
6

36
99

7
0.
40

2
3
36
4

in
st
_
4x

4_
11

_
0

16
6.
7

14
8.
6

49
92

5
65

46
2

15
53

7
0.
76

3
2
26

9
in
st
_
4x

4_
11

_
1

16
2.
0

23
.9

24
61

7
36

90
9

12
29

2
0.
66

7
12

0
in
st
_
4x

4_
12

_
0

16
9.
7

24
2.
9

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
12

_
1

16
1.
3

48
.9

32
76

9
49

15
2

16
38

3
0.
66

7
0

in
st
_
4x

4_
13

_
0

16
12

.2
21

0.
6

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
13

_
1

16
1.
9

17
7.
2

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
14

_
0

16
15

.8
26

2.
7

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
14

_
1

16
3.
2

15
8.
3

36
69

7
65

53
6

28
83

9
0.
56

0
5
48

0
in
st
_
4x

4_
15

_
0

16
23

.1
28

2.
0

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
16

_
0

16
29

.3
28

2.
3

65
53

6
65

53
6

0
1.
00

0
0

in
st
_
4x

4_
16

_
1

16
9.
0

93
.3

32
87

1
65

53
6

32
66

5
0.
50

2
2
00
7

in
st
_
4x

5_
10

_
0

20
1
30

2.
5

T
im

eo
ut

–
–

–
–

–
in
st
_
4x

5_
10

_
1

20
1
00

7.
1

T
im

eo
ut

–
–

–
–

–

T
im

eo
ut

of
si
m
ul
at
io
n
an

d
si
ft
in
g
co
m
bi
ne

d
w
as

se
t
to

24
h.

12 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

decision diagrams, is still applicable on a larger scale for decision diagrams
for quantum computing as well. To evaluate the applicability, we conducted a
case study in which we considered quantum benchmarks such as the Quantum
Fourier Transform [30], Grover’s search [2], and Google’s quantum-supremacy
benchmarks [31] (using conditional phase-gates) and studied the effect of reorder-
ing corresponding decision diagrams representing the resulting quantum states
from them with a tolerance T = 10−13. Additionally, the reordering was only
conducted on decision diagrams with at least 1000 nodes and less than 90% of a
complete decision diagram (i.e., 0.9 · 2n−1 nodes with n denoting the number of
qubits). The evaluations were performed on a server running GNU/Linux using an
AMD Ryzen 9 3950X and 128GiB main memory with GNU parallel [32] to orches-
trate the execution. The implementation is based on [11], [12], [33] and extended
by the schemes proposed in Section 4 to address the investigated challenges and
available at https://github.com/cda-tum/ddsim/tree/reordering under the
MIT license.

The results are listed in Table 1 and discussed in the following. The table’s
first columns list the benchmarks as well as the number of qubits using the
following notation:

– “qft_A” denotes the Quantum Fourier Transform with A qubits,
– “grover_A” denotes Grover’s algorithm with A being the size of the oracle,

and
– “inst_AxB_C_D” denotes a quantum-supremacy circuit on an A×B grid

with C cycles and D being a running number from https://github.com/
sboixo/GRCS/ to unambiguously identify individual benchmarks.

The following column lists the runtime needed to simulate the corresponding
benchmark and, by this, obtain the desired state as a decision diagram. After-
wards, we applied a reordering scheme (namely sifting as reviewed in the end of
Section 3) to optimize the resulting decision diagrams. The respectively needed
runtime for that as well as the minimal number and maximal number of obtained
nodes are listed in Columns 4–6 of Table 1. The remaining columns provide the
corresponding absolute and relative difference in the number of nodes as well as
the number of collisions that occurred during this process (see Section 4.2).

Firstly, the results clearly show that the effect of reordering really depends on
the considered benchmark. For example, the number of nodes needed to represent
the QFT-state is always linear with respect to the number of qubits for all
considered orders (including the minimal and maximal cases). This is in-line with
observations from the conventional world (where, e.g., functions like AND, OR, etc.
are also oblivious to the variable order). On the other hand, there are benchmarks
where the applied order is essential for a compact representation; most notably
shown by the benchmark “grover_20” which, according to the applied order,
either may require close to 160 000 nodes (maximal case) or can be represented by
just 41 nodes (minimal case)—a difference of several orders of magnitude. Also for
the quantum-supremacy benchmarks substantial optimizations can be achieved
in some cases, despite the fact that these benchmarks are designed to contain

https://github.com/cda-tum/ddsim/tree/reordering
https://github.com/sboixo/GRCS/
https://github.com/sboixo/GRCS/

Reordering Decision Diagrams for Quantum Computing 13

little to no redundancy and, therefore, are considered worst-case scenarios for
decision diagrams. These benchmarks also showcase a consequence of collisions: A
fully populated decision diagram in theory will remain fully populated regardless
of the reordering. In practice however, given the limited accuracy of floating
point numbers, collisions may decrease the number of nodes as can be seen for
the benchmark “inst_4x4_16_1”.

Secondly, the results confirm that reordering of decision diagrams is very
much a time-consuming task in the quantum world. Just applying the heuristic
sifting scheme on the considered state representations already required substantial
computation times (see Column 4 in Table 1) which frequently exceed the runtime
needed to generate the state by simulation in the first place (see Column 3 in
Table 1). That is, in contrast to conventional decision diagrams, designers really
should consider the trade-off between the runtime of reordering and the size
of the decision diagram. In most cases of quantum circuit simulation based on
decision diagrams fixing the variable order in the beginning is the preferable
approach. A rough guideline favors positioning the control qubits on a lower
index compared to the position of the target qubits and minimizing the distance
between control index and target index.

Finally, the results provide evidence that, indeed, reordering in decision
diagrams for quantum computing is harder than originally thought: Challenges
such as the node collisions discussed in Section 4.2 (whose handling causes a
significant portion of the increased computation time) are not rare corner cases,
but frequently occur (see Column 9 in Table 1). While previous work such
as [11], [24]–[26] did not consider collisions (leading to decision diagrams where
reordering only works for small examples and/or whose execution is aborted with
an error message), the solution presented and evaluated in this work shed light
on this.

6 Conclusions

The size of decision diagrams significantly depends on the order in which the
corresponding variables/qubits are encoded. Changing the variable order, i.e.,
reordering, is a tried and tested technique to compact decision diagrams in the
conventional world. In the quantum world, however, a similar potential has
not been exploited yet. In this paper, we investigated why this might be the
case and unveiled the challenges that arise in reordering for quantum decision
diagrams. Our findings show that reordering in the quantum world indeed is
harder compared to conventional decision diagrams—explaining why previous
implementations could not handle reordering of larger decision diagrams. A case
study eventually confirms that reordering may lead to improvements of several
orders of magnitude although it requires substantially more runtime.

14 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

Acknowledgments

This work received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 101001318), was part of the Munich Quantum Valley, which
is supported by the Bavarian state government with funds from the Hightech
Agenda Bayern Plus, and has been supported by the BMK, BMDW, and the
State of Upper Austria in the frame of the COMET program (managed by the
FFG).

References

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Jour. of Comp., vol. 26,
no. 5, pp. 1484–1509, 1997.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Symp. on Theory of Computing, 1996, pp. 212–219.

[3] D. Riste, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A.
Smolin, J. M. Gambetta, J. M. Chow, and B. R. Johnson, “Demonstration
of quantum advantage in machine learning,” npj Quantum Information,
vol. 3, no. 1, pp. 1–5, 2017.

[4] Y. Cao, J. Romero, J. P. Olson, et al., “Quantum chemistry in the age of
quantum computing,” Chemical reviews, vol. 119, no. 19, pp. 10 856–10 915,
2019.

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (10th Anniversary edition). Cambridge Univ. Press, 2016.

[6] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, “Algebraic decision diagrams and their applications,” in
Int’l Conf. on CAD, 1993, pp. 188–191.

[7] D. M. Miller and M. A. Thornton, “QMDD: A decision diagram structure
for reversible and quantum circuits,” in Int’l Symp. on Multi-Valued Logic,
IEEE Computer Society, 2006, p. 30.

[8] A. Abdollahi and M. Pedram, “Analysis and synthesis of quantum circuits
by using quantum decision diagrams,” in Design, Automation and Test in
Europe, 2006, pp. 317–322.

[9] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo, “An XQDD-based verifica-
tion method for quantum circuits,” IEICE Trans. Fundamentals, vol. 91-A,
no. 2, pp. 584–594, 2008.

[10] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum Circuit Simulation.
Springer, 2009.

[11] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipulation,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 1,
pp. 86–99, 2016.

Reordering Decision Diagrams for Quantum Computing 15

[12] A. Zulehner and R. Wille, “Advanced simulation of quantum computations,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 38, no. 5,
pp. 848–859, 2019.

[13] L. Vinkhuijzen, T. Coopmans, D. Elkouss, V. Dunjko, and A. Laarman,
“LIMDD A decision diagram for simulation of quantum computing including
stabilizer states,” CoRR, vol. abs/2108.00931, 2021.

[14] X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying, A tensor network based
decision diagram for representation of quantum circuits, 2021. arXiv: 2009.
02618 [quant-ph].

[15] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Computing Surveys, vol. 24, no. 3, 1992.

[16] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, “Algebric decision diagrams and their applications,” Formal
Methods in System Design, vol. 10, no. 2-3, pp. 171–206, 1997.

[17] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[18] S. J. Friedman and K. J. Supowit, “Finding the optimal variable ordering
for binary decision diagrams,” in Design Automation Conf., 1987.

[19] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” in Int’l Conf. on CAD, 1993, pp. 42–47.

[20] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision
diagrams based on exchanges of variables,” in Int’l Conf. on CAD, 1991,
pp. 472–473.

[21] C. Meinel and A. Slobodova, “Speeding up variable reordering of OBDDs,”
in Int’l Conf. on Computer Design VLSI in Computers and Processors,
1997, pp. 338–343.

[22] F. Somenzi, “Efficient manipulation of decision diagrams,” Int’l Journal on
Software Tools for Technology Transfer, vol. 3, no. 2, 2001.

[23] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision diagrams
and its application in synthesis,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 19, no. 5, pp. 521–533, 2000.

[24] S. V. Schaick and K. B. Kent, “Analysis of variable reordering on the
QMDD representation of quantum circuits,” in Euromicro Conf. on Digital
System Design, 2007, pp. 347–352.

[25] D. M. Miller, D. Y. Feinstein, and M. A. Thornton, “QMDD minimiza-
tion using sifting for variable reordering,” Multiple-Valued Logic and Soft
Computing, vol. 13, no. 4-6, pp. 537–552, 2007.

[26] D. M. Miller, D. Y. Feinstein, and M. A. Thornton, “Variable reordering
and sifting for QMDD,” in Int’l Symp. on Multi-Valued Logic, 2007.

[27] J. Watrous, The theory of quantum information. Cambridge Univ. Press,
2018.

[28] S. Hillmich, I. L. Markov, and R. Wille, “Just like the real thing: Fast weak
simulation of quantum computation,” in Design Automation Conf., 2020.

https://arxiv.org/abs/2009.02618
https://arxiv.org/abs/2009.02618

16 S. Hillmich, L. Burgholzer, F. Stögmüller, and R. Wille

[29] A. Zulehner, P. Niemann, R. Drechsler, and R. Wille, “Accuracy and
compactness in decision diagrams for quantum computation,” in Design,
Automation and Test in Europe, 2019, pp. 280–283.

[30] R. Jozsa, “Quantum algorithms and the fourier transform,” Royal Society
of London. Series A, vol. 454, no. 1969, pp. 323–337, 1998.

[31] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang,
M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing quantum
supremacy in near-term devices,” Nature Physics, vol. 14, no. 6, pp. 595–
600, 2018.

[32] O. Tange, “GNU parallel: The command-line power tool,” login Usenix
Mag., vol. 36, no. 1, 2011.

[33] A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently handle complex
values? Implementing decision diagrams for quantum computing,” in Int’l
Conf. on CAD, 2019.

