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ABSTRACT
Most quantum computing architectures to date natively support
multi-valued logic, albeit being typically operated in a binary fash-
ion. Multi-valued, or qudit, quantum processors have access to
much richer forms of quantum entanglement, which promise to
significantly boost the performance and usefulness of quantum de-
vices. However, much of the theory as well as corresponding design
methods required for exploiting such hardware remain insufficient
and generalizations from qubits are not straightforward. A partic-
ular challenge is the compilation of quantum circuits into sets of
native qudit gates supported by state-of-the-art quantum hardware.
In this work, we address this challenge by introducing a complete
workflow for compiling any two-qudit unitary into an arbitrary
native gate set. Case studies demonstrate the feasibility of both, the
proposed approach as well as the corresponding implementation
(which is freely available at github.com/cda-tum/qudit-entanglement-
compilation).
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1 INTRODUCTION
In the future, quantum computers are expected to solve industrial
and scientific problems with a reduced consumption of resources
and greater algorithmic efficiency. Current quantum devices can
host up to hundreds of noisy quantum bits (qubits) and support a
limited number of logical operations on these qubits. For this reason,
they are referred to as Noisy Intermediate-Scale Quantum (NISQ) de-
vices [1]. A variety of technology platforms have now implemented
such NISQ devices, including superconducting circuits [2], trapped
ions [3], and single photons [4]. Notably, while these devices thus
far almost exclusively work with two-level qubits, the underlying
hardware almost always natively supports encoding multi-valued
logic in high-dimensional quantum digits (qudits).
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The research on qudit design and computation has a long history,
with efforts primarily focusing on conceptual studies of algorithms
for idealized qudits and their comparison to qubits [5]. Fundamen-
tally, a qudit can not only store and process more information per
quantum particle, but also features a richer set of logical opera-
tions [6] that make processing more efficient. Proof-of-principle
demonstrations [7]–[10] have shown that qudits enable improve-
ments in circuit complexity and algorithmic efficiency for a wide
class of problems. These results inspired proposals for and demon-
stration of qudit basic control in numerous physical platforms such
as trapped ions [7], [11], photonic systems [8], [12]–[14], super-
conducting circuits [15], [16], Rydberg atoms [17], [18], nuclear
spins [19], cold atoms [20], [21], and nuclear magnetic resonance
systems [9]. More recently, efforts have intensified with the demon-
stration of universal qudit quantum processors with error rates that
are competitive to qubit systems [7], [22].

However, a key task for using qudit quantum processors remains
the efficient compilation of circuits for this hardware. Compared to
qubits, where every entangling gate is equivalent to the CNOT [23]
gate, qudits offer much richer possibilities in the form of many
inequivalent entangling gates. The flip side of these opportunities,
however, are challenges in finding suitable gate sets that are native
to the hardware and, then, compiling algorithms to these gate sets.
Thus far, much of the theory required to address these challenges is
insufficient and, accordingly, no corresponding design methods are
available for this purpose yet—making the compilation of entan-
gling gates a mostly manual task and, thus, preventing the further
exploitation of high-dimensional quantum systems.

In this work, we introduce a workflow for the compilation of ar-
bitrary two-qudit entangling gates in any high-dimensional system.
The core idea is to map the target unitary operating on two qu-
dits to a single-qudit unitary in an appropriately larger space. The
latter can then be decomposed into two-level couplings using estab-
lished techniques [24]. The resulting decomposition will feature at
most 𝑑2 two-level entangling gates of two standardized types. For
decomposing these two standard gates into any hardware-native
gate set, we developed an offline optimization routine, which we
demonstrate on a recently developed gate set for trapped ion qudit
quantum processors [7], [25]. In typical experimental scenarios,
where the native gates act only on a subspace of the full Hilbert
space, the cost of this pre-computation is independent of the size
of the target unitary. The resulting circuit will express the target
unitary using only native gates. Overall, this results in a method-
ology that, for the first time, enables compiling entangling gates
for high-dimensional quantum systems in a fully automatic fash-
ion. The proposed method can be applied to any two-qudit unitary
and is computationally efficient, since the numerical optimization
step is done offline. Case studies demonstrate the feasibility of the
proposed method and a corresponding implementation is avail-
able in open-source via github.com/cda-tum/qudit-entanglement-
compilation, along with other components of the Munich Quantum
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Toolkit (MQT). The proposed tool is only a component of a com-
plete compiler for high-dimensional and mixed-dimensional sys-
tems, that realizes a fully automated and computationally scalable
workflow for the compilation of entangling operations. Therefore
the results proposed are not necessarily efficient to the point of
practical applicability on a quantum system, both in terms of gate
count and possible requirement of additional circuit optimization.

The remainder of this paper is structured as follows: Section 2
briefly reviews the basics of quantum information processing (QIP)
and entanglement. Section 3motivates the problem of entanglement
compilation for qudits. Section 4 describes the proposed approach to
tackle entanglement compilation. Section 5 provides case studies on
the feasibility of the proposed approach. Finally, Section 6 concludes
the paper.

2 BACKGROUND
In this work, we provide the basis for efficient compilation of en-
tangling operations for high-dimensional systems. To this end, this
section first briefly reviews the fundamentals of QIP (with a focus
on high-dimensional quantum logic) and entanglement.

2.1 Quantum Information Processing
The fundamental unit of classical information is the bit (binary
digit), which can exclusively take the values 0 or 1. Generalizing
this concept to quantum computers gives rise to the qubit as the
corresponding unit of quantum information. The crucial difference
to the classical case, however, is that qubits can be in any linear
combination of the basis states |0⟩ and |1⟩ (using Dirac’s bra-ket
notation).

Since there are no ideal two-level systems in nature, qubits are
usually constructed by restricting the natural multi-level struc-
ture of the underlying physical carriers of quantum information.
These systems, therefore, natively support multi-level logic with
the fundamental unit of information termed a qudit. A qudit is the
quantum equivalent of a 𝑑-ary digit with 𝑑 ≥ 2, whose state can be
described as a vector in a 𝑑-dimensional complex Hilbert spaceH𝑑 .
The quantum state |𝜓 ⟩ of a qudit can thus be written as a linear
combination |𝜓 ⟩ = 𝛼0 · |0⟩ +𝛼1 · |1⟩ + . . .+𝛼𝑑−1 · |𝑑 −1⟩, or simplified
as vector |𝜓 ⟩ = [ 𝛼0 𝛼1 ... 𝛼𝑑−1 ]T, where 𝛼𝑖 ∈ C are the amplitudes
relative to the computational basis of the Hilbert space—given by
the vectors |0⟩, |1⟩, |2⟩, . . . , |𝑑 − 1⟩. The squared magnitude of an
amplitude |𝛼𝑖 |2 gives the probability with which the corresponding
basis state 𝑖 would be observed when measuring the qudit in the
computational basis. Normalization of probabilities further requires
that

∑𝑑−1
𝑖=0 |𝛼𝑖 |2 = 1.

Example 2.1. Consider a single qudit with three levels (also re-
ferred to as qutrit).

The quantum state |𝜓 ⟩ =
√︁
1/3 · |0⟩ +

√︁
1/3 · |1⟩ +

√︁
1/3 · |2⟩ is a

state with equal probability of measuring each basis. A different
notation for the same quantum state may be

√︁
1/3 · [ 1 1 1 ]T.

Two key properties that distinguish quantum computing from
classical computing are superposition and entanglement. A qudit
is said to be in a superposition of states in a given basis when at
least two amplitudes are non-zero relative to this basis. Entangle-
ment, instead, describes a powerful form of non-classical correla-
tion born from interactions in multi-qudit systems. Quantum com-
puter operations are represented by unitary matrices𝑈 , satisfying
𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 .

2.2 Entanglement Structures
Classically, the state of a bipartite system can always be written
as a product of the state of the individual systems (or a mixture

of such products). Entangled quantum states encode information
in a non-local way, such that it can only be extracted from the
full system, but not from the constituent qudits. More precisely,
two or more quantum systems are in an entangled state, whenever
their state cannot be written as a product of states of the individual
subsystems (or a convex mixture of such products) [23]. While
systems of two qubits are quite well understood, entanglement in
multi-partite or higher dimensional systems still present a range of
open questions [26].

The central scope of the work are quantum logic operations gen-
erating quantum entanglement, with a special focus on bipartite
entangling gates, which enable the core aspect of error correction.
Generalizations to multipartite entangling operations will be tack-
led where appropriate. The first notable observation is the much
richer entanglement structure of qudits compared to qubits.

Specifically, for qubits, all entangling operations are related to
the controlled-NOT (CNOT ) gate via local operations on the sub-
systems [23]. Hence, for qubit systems, it is sufficient to compile
the CNOT gate to the native operations of the quantum hardware.
For qudit systems, instead, this is no longer true and they can be
entangled in many inequivalent ways. Consequently, while any
single entangling gate is sufficient for universal quantum computa-
tion [27], not all entangling gates are equally useful for any given
application.

Example 2.2. Consider, the controlled-exchange gate CEX [7]
defined by

CEX𝑐,𝑡1,𝑡2 :
{
|𝑐, 𝑡1⟩ ↔ |𝑐, 𝑡2⟩
| 𝑗, 𝑘⟩ → | 𝑗, 𝑘⟩ for 𝑗 ≠ 𝑐, 𝑘 ≠ 𝑡1, 𝑡2 .

(1)

This qudit-embedded version of the CNOT gate generates qubit-
level entanglement in a high-dimensional Hilbert space. However,
there are gates that directly generate genuine qudit entanglement,
such as the controlled-SUM gate defined by

CSUM : |𝑖, 𝑗⟩ ↦→ |𝑖, 𝑖 ⊕ 𝑗⟩, (2)
where ⊕ denotes addition modulo 𝑑 . These are just two examples
of a more general theme in qudit systems, where entangling gates
differ in their entangling power or structure, that corresponds to the
amount of entanglement generated by an operation. The reasons
why genuine qudit gates produce more entanglement than the first
one are more intuitively explained in Ref. [25]. While the CEX gate
has a low entangling power, since it only generates two-level entan-
glement, it is very flexible and can be used to intuitively build up
any entanglement structure. In turn, however, it is quite inefficient
for constructing highly entangling unitaries such as the CSUM gate
out of two-level entangling operations. Too much entangling power,
however, is not always helpful either. It may happen that a qudit
circuit requires the generation of entanglement only within a small
subspace of the Hilbert space, in that case applying CSUM becomes
disadvantageous and the CEX is preferable.

In practice, of course, neither of the gates from Example 2.2 might
be natively supported by the quantum hardware. However, potent
qudit quantum devices are expected to support several primitive
entangling gates, with a range of entangling powers. Hence, it
becomes crucial to be able to compile arbitrary qudit unitaries
into the native set of operations, while making the best use of the
available resources.

3 MOTIVATION
Based on the general setting introduced above, the compilation of
entangling operations into native gate sets is of central importance
for efficient QIP. Since the general problem is NP-hard already for
qubits [28], quantum computers critically depend on efficient, if
not optimal, compilation methods. Given the more complicated
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entanglement structure of qudits, compared to their binary coun-
terpart, the compilation problem becomes much more challenging
in high-dimensional spaces.

3.1 Problem Formulation
Qubit circuits may be written using several entangling gates, all
equivalent to the CNOT gate [29]. For qudit systems, the situation
is very different. With the structure of entanglement becoming
much richer, there is not just more freedom in designing quantum
circuits, but also more opportunities for optimizing their efficiency
with the right set of operations. The challenge for qudit compilation
is then to understand and to harness this entanglement structure
for efficient decompositions while at the same time, keeping the
problem computationally tractable.

Example 3.1. In order to make the problem more intuitive for
the qubit expert, the use of a metaphor can help. Using color coding
as an analogy: Information encoded in one qubit is like a single
grayscale pixel. Information encoded in a qutrit (𝑑 = 3) is like an
RGB pixel that can combine 3 different colors and all their possi-
ble shades inbetween. Now, adding a second pixel, the qubits will
only have two parameters, where qutrits have 6 parameters for
leveraging the full potential of the two pixels. This highlights the
drastically higher information density in qutrits (and subsequently
qudits of even higher dimensions). However, the qutrit, just like
the color pixel, requires a vastly more complex control system, to
efficiently use the capability.

The problem of entanglement compilation can now be formu-
lated as follows: Given a unitary 𝑈 representing an interaction be-
tween two qudits of dimension 𝑑 , find a decomposition of 𝑈 into
arbitrary local unitaries and a pre-defined set of entangling gates, in
a way that is as close to the optimum as possible. In an application
setting, the native gate set will be defined by the used quantum
hardware, which will also set the cost of each component of the
decomposition. While it is in general not known how complex the
optimal solution is, the general figure of merit will be the gate
fidelity given the experimental noise sources for the various gates.
Here, we will focus on two-qudit gates, although the methods we
present generally also apply to the multi-qudit setting, at the cost
of decomposing the tensor product in two-qudit unitaries.

3.2 State of the Art
In this section, we briefly review existing approaches to compile
entangling operations in high-dimensional Hilbert space. While
some results exist for special cases [24], [30], these are of limited
use in actual quantum hardware, which typically does not natively
support the types of interactions we might want to work with.

More precisely, in pioneering work, Ref. [24] introduced a syn-
thesis algorithm for qudit entangling gates that produces decompo-
sitions in terms of controlled-householder rotations. They prove a
lower and a constructive upper bound on the number of two-qudit
controlled-rotation gates required for an arbitrary two-qudit uni-
tary. These results, however, only apply to the specific controlled
rotations used, without considering the constraints or indeed op-
portunities of physical qudit quantum processors. In Ref. [31], a
compilation algorithm for generic qudit unitaries is presented. The
final goal of the mathematical procedure is to reduce the number
of gates that use magic state injection protocols. The entanglement
complexity of qudit systems is ignored, and although an elegant
solution is found, the restricted scalability of the algorithm and the
final output, too far from being applied to a physical quantum pro-
cessor, make the work still theoretical. Other previous works [32]
try to lay out routines for the synthesis of qudit circuits, in this
particular case for qutrits only.

Related to this, Ref. [30] presents a method to construct circuits
for generating different forms of qudit entanglement using a specific
gate set including the controlled-exchange gate. While the goal is
the generation of specific quantum states from a fixed input, it is
unclear to what extent these methods can be transferred to the
more complicated compilation of entangling unitaries.

In Ref. [33], the challenge of multi-qubit compilation is tack-
led. The authors use parametrized quantum circuits and numerical
optimization of the fidelity function, for solving an incremental
structure of alternating local and entangling gate layers. More pre-
cisely, the work focuses on the compilation of global entangling
gates based on an ansatz made of alternating global entangling gates
and specific equatorial rotations; the approach cannot be directly
applied to qudit entanglement compilation, due to the inefficient
search strategy. Moreover, the solution provided in [33] is unable
to express the richer variety of local and partial entangling oper-
ations available in this new setting. Finally, in Ref. [34] arbitrary
controlled unitaries are proved to be physically implemented using
auxiliary levels in the qudit Hilbert space, regardless of their form.

4 EFFICIENT COMPILATION OF
ENTANGLEMENT

Motivated by the challenges described in Section 3, we now propose
a workflow that enables the compilation of any two-qudit unitary
into any target gate set. The proposed solution consists of two steps.
First, a synthesis method, which takes the target two-qudit unitary
and returns a high-level circuit comprised of only two types of
two-level entangling gates, regardless of the initial unitary. This
step is crucial for making the technique scalable to arbitrary dimen-
sions. Second, a compilation step that uses parametrized circuits
and numerical optimization to decompose the two standardized
two-level entangling gates into any target gate set. Although this
step can be computationally intensive, it can be pre-computed, since
the structure from the first step is fixed. Hence, this step does not
affect the scalability of the method.

4.1 Step 1: QR Decomposition of Entangling
Operations

Qudit quantum hardware typically exploits two-level couplings
between the various qudit levels, despite having access to a full
high-dimensional Hilbert space. It has been shown that this is
sufficient for implementing arbitrary single-qudit operations with
a cost that is at most quadratic in the size of the Hilbert space [24].
In the simplest instance, the resulting sequence of operations is
composed of two-level Givens-rotations between adjacent sites 𝑉𝑖
and a diagonal phase matrix Θ in 𝑈 = 𝑉𝑘 · 𝑉𝑘−1 · . . . · 𝑉1 · Θ [24].
This algorithm is universally valid. However, it scales quadratically
in the Hilbert space dimension and, due to the rigid structure, it can
introduce redundant operations. Hence, for efficiently compiling
local qudit unitaries, more advanced algorithms, that take into
account the structure of the qudits and experimental constraints,
can be beneficial. For the purpose of the present work, however,
it is precisely the standardized structure of the QR decomposition
that is beneficial.

In more detail, we start by interpreting the target two-qudit uni-
tary𝑈 as a single qudit unitary in dimension 𝑑2. This is achieved
by mapping the two-qudit states to a single qudit as |𝑖, 𝑗⟩ ↦→
|𝑑 · 𝑖 + 𝑗⟩. We then apply the QR decomposition algorithm to that
higher-dimensional local unitary. Without loss of generality, we
thereby assume a ladder-type coupling, where each of the virtual
single-qudit states is coupled to its neighboring states | 𝑗⟩ ↔ | 𝑗 ±1⟩.
The QR decomposition then applies successive rotations between



ASP-DAC ’23, January 16–19, 2023, Tokyo, Japan Kevin Mato, Martin Ringbauer, Stefan Hillmich, and Robert Wille

adjacent state in the virtual single qudit. The result of the decom-
position is a set of two-level rotations of the form

𝑅(𝜃, 𝜙) =
[

cos 𝜃
2 sin 𝜃

2 (−𝑖 cos𝜙 − sin𝜙)
sin 𝜃

2 (−𝑖 cos𝜙 + sin𝜙) cos 𝜃
2

]
followed by a phase matrix, which can be represented as a se-
quence of phase rotations on neighboring states, which again can
be decomposed into two-level rotations using the identity Z (𝜃 ) =
𝑅( 𝜋2 , 0) · 𝑅(𝜃,

𝜋
2 ) · 𝑅(−

𝜋
2 , 0).

As a consequence of our choice of ladder-type coupling, the
two-level rotations all occur between adjacent states and are thus
embedded into the 𝑑2 dimensional Hilbert space as

𝑅𝑖 (𝜃, 𝜙) =
[1 · · · 0
0 · · · [𝑅(𝜃, 𝜙)]𝑖,𝑖+1 · · · 0
0 · · · 1

]
,

where the subscript 𝑖, 𝑖 + 1 denotes the affected states. The resulting
matrix is a two-level rotation R̂ embedded in a higher-dimensional
space that translates to an entangling operation in the original
two-qudit system. The next challenge is now decomposing these
entangling gates into the native gate set of the target hardware.

A straightforward approach would be to simply try and compile
each of the O(𝑑2) entangling gates in the sequence into the target
gate set, although computationally very costly. Instead, one can
notice that only two different gates need to be compiled. This is most
easily seen at a simple example with two qutrits. By design, each
of the two-level rotation 𝑅𝑖 is represented as 2 × 2 block matrices
in a 𝑑2 × 𝑑2 identity matrix as in Eq. (3).

· · · · · · · · ·
· 𝑐𝑅 𝑐𝑅 · · · · · ·
· 𝑐𝑅 𝑐𝑅 · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · 𝑝𝑆 𝑝𝑆 · ·
· · · · · 𝑝𝑆 𝑝𝑆 · ·
· · · · · · · · ·
· · · · · · · · ·


(3)

Here, the horizontal and vertical lines indicate the tensor product
structure of the original two-qutrit unitaries. We note that when-
ever the rotation 𝑅𝑖 acts on levels that do not cross these lines, it
physically corresponds to a controlled-rotation gate cRot in the
two-qudit system (indicated above as cR). When 𝑅𝑖 does cross a
boundary, it corresponds to a partial Swap operation pSWAP in
the bipartite system (indicated above as pS). While mathematically
very similar, these operations are fundamentally different in their
complexity, so they must be treated separately. Fortunately, it is
sufficient to compile just one example of each, since the other cases
(for different qudit indices) can be obtained simply by permuting
the states of one operation of the same type. For simplicity and
generality, we focus in the following on gates that act in the 0-1
subspace of the qudit Hilbert space.

After the generation of the abstract sequence of rotations, the
compiler simplifies the complexity of the problem by applying
permutation gates to every 𝑐𝑅𝑜𝑡 and 𝑝𝑆𝑤𝑎𝑝 gate in order to express
the sequence in terms of only two entangling operations, 𝑐𝑅𝑜𝑡1;0,1,
pSwap0,1, and permutation gates. This way, every operation can be
compiled at the expense of compiling efficiently only one 𝑐𝑅𝑜𝑡 and
one 𝑝𝑆𝑤𝑎𝑝 . The two operations cannot, in general, be implemented
directly on the hardware, therefore one further step is needed before
concluding the synthesis.

Since 𝑐𝑅𝑜𝑡1;0,1, pSwap0,1 are parametrized in 𝜃 and 𝜙 , it would
require to compile these default gates for every different value of the
two variables. The default gates chosen will be further decomposed
into a sequence of local operations, that will encode the variables 𝜃
and 𝜙 for the equatorial rotations, plus a static entangling gate that

will provide the necessary entangling strength and that will act on
a two-level subspace.

In this regard, the compiler will follow the decomposition of the
controlled rotation 𝑐𝑅𝑜𝑡1;0,1 (control on the level 1 of the first qudit,
target the subspace 0-1 of the second qudit) as,

𝑐𝑅𝑜𝑡1;0,1 (𝜃, 𝜙) = [𝐼 ⊗ 𝑅(𝜋/2,−𝜙 − 𝜋/2)]· (4)
CEX · [𝐼 ⊗ 𝑍 (𝜃/2)]·
CEX · [𝐼 ⊗ (𝑍 (−𝜃/2) · 𝑅(−𝜋/2,−𝜙 − 𝜋/2)),

where the decomposition uses the CEX1; 0, 1 that will act on the
0,1 subspace of the second qudit, while the partial swap:

𝑝𝑆𝑤𝑎𝑝0,1 (𝜃, 𝜙) = [𝐻 ⊗ 𝐻 ] · CEX · [𝐻 ⊗ 𝐻 ] (5)
[𝐼 ⊗ 𝑅(𝜋/2,−𝜙 − 𝜋/2)] · CEX ·
[𝐼 ⊗ 𝑍 (𝜃/2)] · CEX · [𝐼 ⊗ 𝑍 (−𝜃/2)]·
[𝐼 ⊗ 𝑅(−𝜋/2,−𝜙 − 𝜋/2)]·
[𝐻 ⊗ 𝐻 ] · CEX · [𝐻 ⊗ 𝐻 ]

the CEX1;0,1 is used once again in the pSwap operation.

Example 4.1. In order to better understand the intermediary com-
pilation step, the operations involved, and the new encoding, let us
consider the case where two qutrits are interacting. The controlled
rotation on levels |7⟩ and |8⟩ appears in the decomposition, which
correspond to |21⟩ and |22⟩ in the two-qutrit system. Since the
method requires the controlled rotation to be applied to the 0-1
subspace, we have to permute the levels of the two-qutrit system.
We add local rotations with angle 𝜋 and phase 𝜋/2 that will act as
permutations and route |21⟩ to |10⟩ and |22⟩ to |11⟩.

The decomposed sequence will be:

𝑐𝑅𝑜𝑡2;1,2 (𝜃, 𝜙) =(𝑃0,2 · 𝑃1,2 ⊗ 𝑃0,1 .𝑃1,2)†·
𝑐𝑅𝑜𝑡1;0,1 (𝜃, 𝜙)·
(𝑃0,2 · 𝑃1,2 ⊗ 𝑃0,1 .𝑃1,2),

where 𝑃𝑖, 𝑗 denotes a permutation of levels 𝑖 and 𝑗 .
Note that after executing the controlled-rotation, the sequence

finishes with the uncomputation of the permutation sequence, in
order to restore the original encoding for the subsequent operations.

At this point the synthesis returns a sequence of local operations
that will encode the angles of rotation and the permutation of the
states, interleaved with the chosen CEX gate. This is the default
choice made in the project, but the user could provide a different
one that could act on a different subspace. The compiler will now
proceed with the last step: the compilation of the CEX gate with an
entangling gate input by the user and compatible with the target
machine.

4.2 Step 2: Layered Compilation
This section describes the second step of the compiler and the lowest
abstraction level before getting to a physical implementation. The
software component takes as input the target unitary to compile and
the target entangling gate for the decomposition. The entangling
gates could be a primitive entangling gate of the target quantum
hardware, or it could be a higher-level abstract gate. The software
outputs a compiled sequence made of arbitrary local two-level
rotations and the chosen gate.

At the core of the second component are parametrized quantum
circuits, that solved for different gates, lead to different decomposi-
tions. More precisely, as Figure 1 shows, results present different
depths and noise characteristics depending on the noise and power
of the single entangling operation.
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𝑈 =

𝐿 𝐿 · · · 𝐿 𝐿 𝐿 · · · · · · 𝐿

𝐿 𝐿 · · · 𝐿 𝐿 𝐿 · · · · · · 𝐿

𝐸 𝐸 𝐸

𝑈 =

𝐿 𝐿 · · · 𝐿 · · · 𝐿

𝐿 𝐿 · · · 𝐿 · · · 𝐿

𝐸 ′ 𝐸 ′

Figure 1: Given a two-qudit unitary 𝑈 , compilation results
depend on the structure and the noise inherent to the chosen
gate 𝐸; new local (𝐿) gates will match the gate 𝐸.

The section will continue with a brief overview of parametrized
quantum circuits, followed by a detailed explanation on the con-
struction of the problem representation and its resolution by the
layered compiler.

4.2.1 Parametrized Quantum Circuits (PQCs). PQCs consist of a
series of quantum gates dependent on a set of continuous or discrete
parameters 𝜃𝑖 that can be optimized. The particular initial choice
of the sequence of gates is called an ansatz. This circuit is then
optimized, typically by a classical algorithm, to minimize a cost
function that encodes the solution of interest.

This approach can be used for a range of computational ques-
tions [35], like Hamiltonian ground-state energy estimation [36] or
compilation [33]. In the following we discuss the important design
choices during the ansatz construction, its resolution and how the
ansatz evolves during the optimization loop.

4.2.2 Construction of Ansatz and Expressibility. The first step con-
sists of choosing the building blocks for our ansatz and then incre-
mentally composing them in order to create the final circuit to be
solved. There are two types of operations involved in the quantum
circuit: local operations and entangling operations.

The initial objective is to find a representation for single-qudit
operations that is parametric and that achieves maximal expressibil-
ity [37] with theminimal number of parameters. Here, expressibility
refers to the circuit’s ability to generate a large fraction of two-qudit
unitaries. The proposed solution exploits theoretical results [38] al-
ready present in literature. The single qudit lives in a 𝑑-dimensional
(𝑑 ≥ 2) complex Hilbert spaceH = C𝑑 spanned by the orthonor-
mal basis |0⟩, . . . , |𝑑 − 1⟩. Local qudit unitaries will be written as
in [38], where elements of the special unitary group SU(𝑑) are
parametrized as:

𝑈 =
[∏𝑑−2

𝑚=0
( ∏𝑑−1

𝑛=𝑚+1 exp(𝑖𝑍𝑚,𝑛𝜆𝑛,𝑚) exp(𝑖𝑌𝑚,𝑛𝜆𝑚,𝑛)
) ]
·[∏𝑑−1

𝑙=1 exp(𝑖𝑍𝑙,𝑑𝜆𝑙,𝑙 )
]

using 𝑑2 − 1 real parameters
{
𝜆𝑚,𝑛

}
in the interval between 0 and

𝜋 for𝑚 > 𝑛, 𝜋/2 for𝑚 < 𝑛, as well as 2𝜋 for𝑚 = 𝑛.
On this space, 𝑍 is a diagonal trace-less operator, a generalized

form of the Pauli 𝜎𝑧 applied to the subspace spanned by |𝑚⟩ and |𝑛⟩,
while 𝑌 is the generalized form of the Pauli 𝜎𝑦 applied to the sub-
space on the subspace spanned by |𝑚⟩ and |𝑛⟩.

𝑍𝑚,𝑛 = |𝑚⟩⟨𝑚 | − |𝑛⟩⟨𝑛 | for 0 ≤ 𝑚 < 𝑛 ≤ 𝑑 − 1
𝑌𝑚,𝑛 = −𝑖 |𝑚⟩⟨𝑛 | + 𝑖 |𝑛⟩⟨𝑚 | for 0 ≤ 𝑚 < 𝑛 ≤ 𝑑 − 1

This formulation comes with the promise of being expressible
for the single qudits and it has the minimum number of parameters
required for representing the special unitary group.

The second objective is an efficient use of user-specified entan-
gling gates in the ansatz compilation. The usage of multiple species
of qudit entangling gates inside the same ansatz is future research.
Although the user can specify the preferred choice for the entan-
gling primitive, here, we focus on using a single entangling gate,
choosing between two gates commonly used in the trapped-ion
platform: the Molmer-Sorenson (MS) gate in Eq. (6) [7] and the

𝑈1 · · · 𝑈𝑓1

𝑈2 · · · 𝑈𝑓2

𝐸

𝑄0

𝑄1

Figure 2: Example of an ansatz. Each layer contains an en-
tangling gate, preceded by a generic unitary 𝑈 on each one
of the qudits and followed by two more generic unitaries; in
this way, every layer is universal.

generalized light-shift (LS) in Eq. (7), a genuine qudit entangling
gate [25], [39].

𝑀𝑆 (𝜃 ) = 𝑒−𝑖
𝜃
4 · (𝐼⊗𝐼+𝜎𝑥01⊗𝜎𝑥01 ) (6)

𝐿𝑆 (𝜃 ) = 𝑒−𝑖𝜃 ·
∑𝑑−1

𝑖=0 |𝑖𝑖 ⟩ ⟨𝑖𝑖 | (7)

These are both well-established operations in quantum computing
hardware with well-characterized noise characteristics. Moreover,
they operate in a distinct way (the light-shift acts on phases, the
MS acts on populations) with different entangling power [25] when
applied to qudit systems.

Example 4.2. The compiler solves an ansatz like the one in Fig-
ure 2.— Consider a two-qudit entangling unitary𝑈 . Figure 1 illus-
trates two different compilation results: (1) The top result uses mul-
tiple pre-selected entangling gates with low entangling power but
potentially less noise. (2) The bottom result uses two pre-selected
entangling gates with high entangling power but more noise per
gate.— The selection of the best result heavily depends on the per-
formance of the gates, i.e., specifics of the underlying hardware.
Both cases will always produce a correct result, as more entan-
glement can be built up with additional gates, and entanglement
generation can also be reduced through judicious use of single qudit
gates between entangling layers.

4.2.3 Solution of the Ansatz. The optimization of the ansatz works
similar to a variational quantum algorithm. In each step, the full
circuit is simulated by multiplying the gate matrices for the chosen
parameters. This is computationally feasible for two-qudit gates in
dimensions of practical relevance given the capabilities of current
and future quantum hardware. For multi-qudit gates, the applicabil-
ity of this approach is expected to be limited. The resulting unitary
matrix in each optimization step is then compared to the target
matrix according to an objective function. Here, the choice was the
fidelity between the unitaries [40], for two-𝑑-dimensional systems:

Fidelity(𝐴, 𝐵) = 1
𝑑2

Tr ⟨𝐴† , 𝐵 ⟩

For the purpose of this work, the fidelity has several desirable prop-
erties that make it desirable for physical applications, compared to
other commonly used objective functions for matrix optimization.

The optimization loop is performed by iteratively simulating the
ansatz and verifying the fidelity achieved by the current solution
of optimization algorithm.

4.2.4 Optimizer. The used optimization method is the dual anneal-
ing method, a combination of classical and fast simulated anneal-
ing, coupled with the L-BFGS [41] algorithm on boxed constraints,
which is a local search method applied on the neighborhood of the
solutions found by the global method in the high dimensional land-
scape of the problem to optimize. We refer the reader to Ref. [42] for
details on this algorithm. Alternatively, the use of gradient-based
methods is left for future work, due to the unclear trainability of
qudit PQCs.
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4.2.5 Binary Search. Although the cost of a circuit depends on its
depth and gates structures, the final resulting circuit should have the
least number of layers that can compile with the desired fidelity the
entangling gate. The maximum number of layers for the search is
heuristically chosen as 2 ·𝑑2. This number was found to be sufficient
for generating maximally entangled qudit states from the least
powerful operation, acting only on two fixed physical levels. The
compiler uses a binary search and the number of layers is decreased
every time the gate can be decomposed for a certain number of
layers under a time period heuristically chosen, otherwise if the
target fidelity is not reached or the optimizer does not converge
before the end of a timer, the number of layers is increased.

5 CASE STUDIES
The considerations made so far in the paper already showed that
the problem of entanglement compilation in high-dimensional
systems is complex. The solution proposed above is supposed to
provide a step forward in the field of compilation for qudit sys-
tems. The implementation is available freely under the MIT licence
at github.com/cda-tum/qudit-entanglement-compilation as part of
the Munich Quantum Toolkit (MQT). It is completely written in
Python 3.8, with exception of the external dependencies Numpy [43]
and Scipy [42]. This section provides corresponding case studies,
in order to demonstrate the feasibility of the workflow and its use-
fulness in compiling any multi-level entangling operation. The use
cases focus on the compilation of the controlled-sum gate CSUM , a
characteristic operation in qudit systems as discussed in the previ-
ous sections.

Although constituted by two compilation steps, the computa-
tional complexity of the workflow is dictated on a high level by
three routines. The first routine is the QR decomposition applied
on the unitary to compile; the algorithm has quadratic complexity
in the number of dimension of the two-qudit interaction with size
𝐷 , therefore O(𝐷2). The result is a sequence of, in the worst case,
𝐷2 operations. The second routine is the translation of every output
operation in term of local operations and CEX ; this algorithm has
complexity O(𝐷2), because linear in the number of output oper-
ations of the QR. Finally, the last routine of the workflow is the
solution by optimization of the ansatz, which has complexity of
O(log𝐷). In fact, the last compilation step is a binary search, with
every step of duration linear in the number of dimensions of the
original unitary.

The evaluations were performed on a server running GNU/Linux
using an AMD Ryzen 9 3950X and 128GiB main memory. The
layered compilation step is performed under a time limit in hours
heuristically chosen as 𝑑/4 (e.g., 4 h for a two-ququarts unitary), at
each step in the binary search. The compiler has minimum target
infidelity (1 − Fidelity) of 10−3. Several runs of the optimization
algorithm could lead to better results and, beyond dimension 16,
the computational time and the fidelity are affected.

The considered example follows the default strategies encoded
in the compiler. Every controlled rotation and partial swap is trans-
formed by local rotations into 𝑐𝑅𝑜𝑡1;0,1 and for the partial swaps
𝑝𝑆𝑤𝑎𝑝0,1, while the automatic choice for generating entanglement
is the controlled exchange gates CEX . More precisely, CEX1;0,1 has
control on the first level of the first qudit and the targets on the
first two levels of the second qudit.

The designer can decide to follow a different path and impose a
decomposition for which they have a specific implementation in
terms of the entangling gate involved, or compile it directly for the
machine.

In the studies, we considered the implementation of the CSUM
gate for qutrits and ququarts. Table 1 shows the results. Between
the near-term usable physical qudit dimensions [7], the solution

Table 1: Results of the workflow on CSUM for dimension 9
and dimension 16
System Dim. cRot pSwap CEX𝑡𝑜𝑡 MS𝑡𝑜𝑡 LS𝑡𝑜𝑡 (1 − 𝐹 )
two qutrits 9 44 24 184 1472 368 < 10−4
two ququarts 16 92 36 328 9184 10168 10−3 ∼ 10−4

for ququarts proves an already difficult and useful design case. The
columns denote the dimension (“Dim.”), followed by the number of
controlled rotations, and partial swaps, as well as the total number
of CEX , MS, and LS gates required for the decomposition, respec-
tively. The last column gives a bound on the achieved infidelity
(i.e., 1 − Fidelity). In a first phase the synthesis of CSUM for 9 di-
mensions (two qutrits) requires 20 controlled rotations and 6 partial
swaps, while the synthesis on two ququarts (dimension 16) outputs
42 controlled rotations and 6 partial swaps. These decompositions
are, by construction, not necessarily optimal. The controlled rota-
tions are further decomposed into 2 CEXs and the partial swap into
4 CEXs, with the resulting sequence being general for all dimen-
sions.

In order to show to the adaptability of the workflow, in the
smaller case we compile the entangling gate in terms of two native
gates used in the latest ion trap qudit processors [7] [25] and in-
troduced before, the MS and LS gate. The manual decomposition
of the CEX gate dedicated for the two-qutrit case by itself is non-
trivial, even for an experienced quantum information specialists.
The inherent difficulty arises not only from the amount of intuition
needed, but also from the inability to easily generalize the single
result found to higher dimensions. The pen-and-paper optimized
sequence for CEX in dimension 9 is made of two LS gates with
angle 𝜋 , while two MS gates are also required for performing the
same CEX at any dimension, if the sequence is allowed to exploit
auxiliary levels [7].

The layered compiler performs a similar decomposition with
the same number of 𝜋-LS gates autonomously. Without auxiliary
levels, the compiler outputs a sequence of 8 MS gates. For both
the compilation results, the infidelity reached is below 10−4. In the
case of two-ququarts, optimized sequences could not be achieved,
while the layered compiler autonomously decomposes the CEX
with infidelity between 10−3 and 10−4, at the cost of 28 MS gates
and in alternative of 31 LS gates. The number of gates required for
a two-ququarts circuit gives a feeling of the increased complexity
of the problem compared to two-qutrits.

The results are in line with the expected automation overhead in
a first automatic solution. In fact, it was predictable that the used
ansatz would ask for an over-parametrization [44], or using more
layers than necessarily, which allows for a great simplification of the
landscapes by eliminating spurious local minima. Although the re-
sults are not expected be efficient to the point of practical applicabil-
ity on a quantum system, this is only one component of a complete
compiler for high-dimensional and mixed-dimensional systems;
future developments will comprise optimization routines[45]–[49].

In summary, the results show the feasibility of the proposed
workflow to deliver decompositions efficiently for any two-qudit
unitary. Further, the results provide evidence compilation of entan-
gling operations for multi-level systems is not easy, especially com-
pared to binary systems. This work investigates the first key step
towards full automation for qudits. The implementation is available
under the MIT license at github.com/cda-tum/qudit-entanglement-
compilation as part of the Munich Quantum Toolkit (MQT).

6 CONCLUSION
The challenges for efficient and reliable application of entangling
gates inside qudit circuits arise because of the complexity in under-
standing the amount of entanglement generated by an operation

https://github.com/cda-tum/qudit-entanglement-compilation
https://github.com/cda-tum/qudit-entanglement-compilation
https://github.com/cda-tum/qudit-entanglement-compilation
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as well as the corresponding affected levels—commonly referred
to as structure. Consequently, the operations are mostly consid-
ered as black-boxes with the question of whether it is possible to
reach an implementation for a certain qudit platform and with a
given gate-set. So far, the study of feasibility and the implementa-
tion of entangling operations for specific qudit technologies was
performed by quantum information specialists manually, without
the promise of re-utilizing a particular decomposition for a system
certain number of dimension, to those of greater dimensionality.

In this paper, we introduced a complete workflow for compiling
any two-qudit unitary into any target gate set. While the resulting
gate sequences are typically not optimal in terms of gate count, the
method is computationally efficient, since the only step involving
numerical optimization can be pre-computed. The case studies
confirm the feasibility of the workflow as well, for the first time, the
automated results of compilation of generic entangling operations
to any dimensionality. The implementation is available under the
MIT license at github.com/cda-tum/qudit-entanglement-compilation
under the ensemble of the Munich Quantum Toolkit (MQT). In the
future, the proposed approach may be improved up on by utilizing
auxiliary qudit levels, alternative ansatz designs, compression of
synthesis results, and circuit optimization in post-processing.
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