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Abstract—By exploiting quantum mechanical effects, quantum
computers can tackle problems that are infeasible for classical
computers. At the same time, these quantum mechanical proper-
ties make handling quantum states exponentially hard—imposing
major challenges on design tools. In the past, methods such as
tensor networks or decision diagrams have shown that they can
often keep those resource requirements in check by exploiting
redundancies within the description of quantum states. But de-
velopments thus far focused on pure quantum states which do not
provide a physically complete picture and, e.g., ignore frequently
occurring noise effects. Density matrix representations provide
such a complete picture, but are substantially larger. At the
same time, they come with characteristics that allow for a more
compact representation. In this work, we unveil this untapped
potential and use it to provide a decision diagram representation
that is optimized for density matrix representations. By this,
we are providing a basis for more efficient design tools such
as quantum circuit simulation which explicitly takes noise/error
effects into account.

I. INTRODUCTION

Quantum computing [1] promises to solve computational
problems that are infeasible for classical computers. They
achieve this by utilizing quantum mechanical effects such
as superposition (a quantum bit can be in a combination
of states) and entanglement (applying an operation to one
qubit can affect other qubits as well). Famous early examples
for quantum algorithms are Shor’s algorithm for factoring
integers in polynomial runtime [2] and Grover’s database
search algorithm [3]. Since then, plenty of further quantum
algorithms have emerged and are finding several applications
in a mid-term or even near-term perspective—including but
not limited to quantum machine learning [4], quantum chem-
istry [5], and quantum optimization [6].

Together with the emergence of accessible quantum com-
puters (provided, e.g., by Google, IBM, Amazon, and many
more), this also leads to an increasing interest in automatic
methods that support engineers in the design and validation
of quantum algorithms. Recent developments led to a variety
of corresponding design tools, e.g., for simulation [7]–[9],
compilation [10]–[12], verification [13]–[16], and evaluation
of quantum error-correcting codes [17], [18]. However, the
quantum mechanical effects that need to be captured by
these tools yield exponential descriptions of quantum states
and quantum operations—leading to a huge challenge for
corresponding tool developers.

In the past, several solutions, e.g., based on tensor net-
works [19]–[21] or decision diagrams [22]–[29] have been
proposed which often can keep those resource requirements in
check, e.g., by exploiting redundancies within the description
of quantum states. But all those developments mostly focused
on working with pure quantum states. Thereby, ignoring
frequently occurring noise effects caused by the fragile nature
of quantum mechanical effects [30].

Fortunately, noise effects are well understood and, hence,
according descriptions in terms of so-called mixed quantum

states described by means of density matrices exist [1]. But,
although they allow one to properly represent a quantum state
including possible noise effects, they are substantially larger
than the (already exponential) pure quantum state represen-
tations. As a result, most existing design tools either do not
yet support a noise-aware consideration of quantum states or
are heavily limited in their efficiency and scalability (e.g., [7],
[31]–[35]). This urgently motivates further research towards
more optimized density matrix representations.

In this work, we propose an approach towards optimized
density matrix representations based on decision diagrams.
While first works have already demonstrated the potential of
decision diagrams for considering noise using density matrices
(see [36], [37]), the hermitian property of density matrices
has not been exploited yet. However, doing this allows for the
utilization of redundancies which have not been caught before
(leading to a more compact representation in many cases).
We illustrate this untapped potential and use it to provide an
optimized decision diagram representation for density matri-
ces. Afterwards, we discuss the magnitude of the resulting
potential and empirically confirm these findings (using noise-
aware quantum circuit simulation as a representative design
tool). By this, we are providing a basis for more efficient
noise-aware quantum circuit design tools.

The remainder of this paper is structured as follows: In
Section II, the preliminaries including quantum computing
and mixed states are reviewed. Section III discusses the
shortcomings of current representations of density matrices
in terms of decision diagrams and illustrates the potential that
is yet untapped. Section IV then presents how this leads to
an optimized density matrix representation. Afterwards, we
discuss the magnitude of the unveiled potential in Section V
and present empirical results confirming that in Section VI.
Finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we review the basics of quantum computing
and mixed states—both, providing the preliminaries of this
work.

A. Quantum Computing
Similar to the classical realm, the smallest unit of infor-

mation in the quantum realm is a bit, which can assume
the states 0 and 1. However, in quantum computing they are
called quantum bits or qubits and, in contrast to classical bits,
these qubits can not only be in a state 0 or 1, but also in
an (almost) arbitrary combination of those states. The states
0 and 1 are called basis states and—using Dirac notation—
are written as |0⟩ and |1⟩. States which are a combination of
those basis states are said to be in superposition. In general,
such a state can be described as |ψ⟩ = α0 · |0⟩ + α1 · |1⟩
with amplitudes α0, α1 ∈ C. The amplitudes describe how
strongly the qubit relates to each of the basis states and



must satisfy the normalization constraint that the sum of their
squared magnitudes is equal to 1, i.e., |α0|2 + |α1|2 = 1 for a
single qubit. Measuring a qubit collapses it to |0⟩ (|1⟩) with
probability |α0|2 (|α1|2). The measurement is destructive and
destroys possible superposition. Thus, repeated measurements
always return the same result.

This state description can be extended for multiple qubits.
For example, a two-qubit state is fully characterized by 22 = 4
amplitudes described as α00 · |00⟩+ α01 · |01⟩+ α10 · |10⟩+
α11 · |11⟩. Often, this state description is shortened to a state
vector containing only the amplitudes, e.g., [α00 α01 α10 α11]

⊤

for n = 2 qubits.

Example 1. Consider a quantum register which is in a state
|ψ⟩ = 1/

√
2·|00⟩+0·|01⟩+1/

√
2·|10⟩+0·|11⟩ . The correspond-

ing vector description |ψ⟩ is given as [1/
√

2 0 1/
√

2 0]
⊤. This

represents a valid state, since |1/√2|2 +02 + |1/√2|2 +02 = 1
satisfies the normalization constraint. Since |ψ⟩ is in a super-
position, measuring it would yield either |00⟩ or |10⟩—both
with probability |1/√2|2 = 1/2.

Quantum states are altered by quantum operations, which
are characterized by unitary matrices, i.e., square matrices
whose inverse is their complex conjugate transpose. Important
operations include H = 1/

√
2
[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

The H operation transforms a basis state into a superposition,
the X operation being the quantum counterpart of flipping a
bit and the Z gate flipping the phase of a qubit. Operations
can also affect multiple qubits at the same time. An important
example of a two-qubit operation is the controlled-X (also
known as CNOT) operation, which negates the state of a qubit,
iff the chosen control qubit is |1⟩. Operations are applied to
the quantum state by matrix-vector multiplication.

Example 2. Consider again the state |ψ⟩ from Example 1.
Applying a CNOT operation on it flips the basis of the second
qubit if the first qubit is set to |1⟩. This is described as1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

·

1/
√
2

0
1/

√
2

0


︸ ︷︷ ︸

|ψ⟩

=

1/
√
2

0
0

1/
√
2


︸ ︷︷ ︸

|ψ′⟩

.

Possible outcomes of measuring |ψ′⟩ are |00⟩ and |11⟩, each
with probability 1/2. Note that the measurement of one qubit
actually affects the other qubit as well—an essential concept
of quantum computing called entanglement.

B. Mixed states
The formalism presented above can be used to simulate the

execution of perfect quantum computers. Unfortunately, real
quantum computers are not perfect but prone to noise caused
by the fragility of quantum mechanical effects [30]. This leads
to gate errors (introduced by imperfect physical realizations
of quantum operations) or coherence errors (introduced by the
inability of qubits to hold information for an extended amount
of time) [38].

These errors can be viewed as (unwanted) operations on
the state. In contrast to ideal perfect quantum operations,
however, these error operations come with an additional degree
of randomness. Thus, the result of such an erroneous quantum
computation cannot be described by a single vector anymore.
Instead, the state is now characterized by a mixture (or en-
semble) of possible states {(pi, |ψi⟩)}, with |ψi⟩ representing
quantum states and pi representing the respective probability
that the system is in this state. This is usually called a mixed
state.

Example 3. Consider the two-qubit state from Example 2
|ψ′⟩ = 1/

√
2(|00⟩+ |11⟩) and assume that this state might

be affected by a gate error in the first qubit—depolarizing
it and setting it to a completely random state. Suppose
the error only occurs with a probability of 1 %. Then,
99 % of the time nothing happens and the state remains
unchanged. Otherwise (with probability 1 %), the first qubit
is depolarized, which is captured by either applying X,
Y, Z or leaving the state unchanged (each with probabil-
ity 0.25 %)—yielding the state mixture {(99 %, 1√

2
(|00⟩ +

|11⟩), (0.25 %, ( 1√
2
(|01⟩ + |10⟩), (0.25 %, ( i√

2
(− |01⟩ +

|10⟩), (0.25 %, 1√
2
(|00⟩ − |11⟩)(0.25 %, 1√

2
(|00⟩ + |11⟩), },

which cannot be represented by a single pure two-qubit state
anymore.

As illustrated by the example, state vectors are unsuited to
represent mixed states. Hence, so-called density matrices are
used instead, which offer a structure to incorporate all possible
states into a single description. Density matrices are generated
from a state ensemble {(p0, |ψ0⟩), (p1, |ψ1⟩), . . . , (pi, |ψi⟩)}
by

ρ =

n∑
i=0

pi |ψi⟩ ⟨ψi| , with ⟨ψi| := |ψi⟩† .

Example 4. Considering again the state |ψ′⟩ from above, the
corresponding density matrix ρ is given by1/

√
2

0
0

1/
√
2

 · [1/√2 0 0 1/
√
2] =

1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

 .
Here, the diagonal entries from the first element in the
upper-left to the last element in the lower-right represent
the probabilities for measuring |00⟩ , |01⟩ , |10⟩ , and |11⟩,
respectively. Overall, this allows one to represent a mixture
of possible states.

Having such an extended representation means the way in
which quantum operations are applied has to be adjusted. As
with pure states, quantum operations are still represented in the
form of unitary matrices U . But to accommodate the density
matrix representation of mixed states, now two matrix-matrix
multiplications are necessary to apply them (instead of a
matrix-vector multiplication as reviewed in Section II-A). That
is, applying U onto ρ is given by

ρ′ = Uρ U†,

where U† represents the complex conjugate transpose of U .

III. MOTIVATION AND GENERAL IDEA

In this section, we propose the general idea behind an
improved representation of density matrices. To this end,
we introduce the concept of recursively decomposing ma-
trices into smaller structures—the basis for current decision
diagram-based quantum state representations. Afterwards, we
illustrate the shortcomings when working with density ma-
trices and present the proposed decomposition scheme that
additionally takes their characteristics into account.

A. Current Representation of Density Matrices
A major challenge when working with quantum states is that

they grow exponentially in size with each tracked qubit. Thus,
handling states consisting of more than a few qubits becomes
very difficult. To address this problem, alternative data struc-
tures have been proposed for working with quantum states.



Fig. 1. Established matrix decomposition applied to density matrices

While the underlying problem still remains, those alternative
descriptions sometimes allow for a more efficient handling
of quantum states. One of those alternative approaches is
based on the observation that matrices of (mixed) quantum
states often contain redundant sub-structures (see [36], [37]).
By recursively decomposing objects, those redundancies can
be identified and removed—allowing for a more compact
representation.

Example 5. To illustrate the idea, the quantum register ρ from
Example 4 is extended by |ϕ⟩ = 1/

√
4 |0⟩+

√
3/4 |1⟩, using the

Kronecker Product, which results in the state ρ⋆ = ρ⊗|ϕ⟩ ⟨ϕ|.
In Fig. 1, the corresponding density matrix of ρ⋆ is provided,
with the values rounded to two decimal places for readabil-
ity. The decomposition process revolves around recursively
quartering the matrix and checking for redundancies within
the sub-matrices. That is, ρ⋆ is quartered (as indicated by
the dashed black lines) and the sub-matrices are checked
for redundancies. Since all sub-matrices are different, no
redundancies are determined and the decomposition process
is repeated on all sub-matrices (as indicated by the dashed
blue lines). In this step, redundant sub-matrices are identified,
which are framed in green and orange. The sub-matrix con-
taining only zeros is discarded and the decomposition process
is only repeated for the sub-matrix framed green. Quartering
this sub-matrix results in complex numbers only—terminating
the decomposition process.

After determining those redundancies, the matrix is repre-
sented using a graph-based data structure, namely decision
diagrams [22]–[27], where the redundant structures are only
stored once. In many cases, this yields descriptions that are
much more compact than straightforward representations—
often even allowing for linear size representations compared
to the exponential size of those matrices in general [39].
Accordingly, this makes this approach interesting for many
design tools such as quantum circuit simulation.

However, this decomposition scheme was originally devel-
oped for representing pure quantum state vectors and quantum
operations, i.e., representations that do not consider the noise
effects as reviewed above in Section II. As shown next, this
leaves potential which would allow for a more optimized
representation of density matrices and, hence, mixed quantum
states.

B. Proposed Idea
While density matrices are substantially larger than state

vectors, they also come with the nice characteristic that they
are hermitian. Because of that, all density matrices are equal
to the transpose of their complex conjugate, i.e., each density
matrix M satisfies M = M†. Therefore, each off-diagonal
element of a density matrix is mirrored (in a transposed and
complex conjugated fashion) to the element on the other side

Fig. 2. Extended decomposition scheme optimized for density matrices

of the diagonal. Thus, up to half the elements within the den-
sity matrix are redundant. Current (established) decomposition
schemes for quantum objects (such as reviewed above and
illustrated in Fig. 1) do not exploit this potential.

In order to exploit this characteristic, we propose to set
the “mirrored” parts of the matrix equal. More precisely,
we propose to extend the decomposition scheme described
above in such a way that the matrix elements below the
diagonal are discarded and only elements on and above the
matrix diagonal are stored. To illustrate the idea, consider the
following example:

Example 6. Consider again the density matrix representa-
tion of ρ⋆ from Example 5 and the current (established)
decomposition scheme sketched in Fig. 1. The newly proposed
scheme is illustrated in Fig. 2. First, the matrix is again
split into four sub-matrices (indicated by the black dashed
lines). Although all sub-matrices appear different, we know
that the upper right and lower left sub-matrices (framed in
red) are just the complex conjugate transpose of each other
(due to the hermitian characteristic). We therefore can discard
one of the two sub-matrices without losing any information
(without loss of generality, we always discard the lower left
sub-matrix in the following). Then, the decomposition step is
repeated on the remaining three sub-matrices (as indicated
by the blue dashed lines). Here, two identical sub-matrices
can be identified, which are framed in green and orange (the
same that could be identified redundant with the established
decomposition scheme reviewed in the previous section).

Obviously, exploiting the hermitian characteristic allows for
much more potential in exploiting redundancies and, by this,
determining much more compact representations. However, to
properly use such an optimized representation and to apply
quantum circuit operations on corresponding state represen-
tations, some care has to be taken when reconstructing the
original matrix elements. This leads to an extended type of
decision diagram which is introduced next.

IV. OPTIMIZED DECISION DIAGRAMS
FOR THE REPRESENTATION OF DENSITY MATRICES

In this section, we describe how, using the ideas sketched
above, optimized decision diagrams representing density ma-
trices can be constructed. Afterwards, we also present how
quantum operations are applied to the resulting decision dia-
grams and how this affects their structure.

A. Representation
As described above, the key strength of decision diagrams is

in determining and exploiting redundancies within structures.
They are constructed from matrices by following the decom-
position process presented above and reflecting this process
in a graph-based representation. More precisely, consider a
quantum register composed of n qubits (q0, q1, . . . , qn−1),



(a) Using established decomposition (b) Using proposed decomposition
Fig. 3. Decision diagrams representing density matrices

with qn−1 representing the most significant qubit. When the
density matrix representing this quantum register is quartered,
the upper left sub-matrix contains the probabilities for qn−1 to
be |0⟩ and the lower right sub-matrix contains the probabilities
for qn−1 to be |1⟩. The upper right and the lower left
sub-matrices contain information about the coherence of the
state. This is represented as a decision diagram node labeled
qn−1 with four successor nodes, where the first one represent-
ing the upper left sub-matrix, the second one and the third one
representing the upper right and the lower left sub-matrix, and
the fourth one representing the lower right sub-matrix. This
process is recursively repeated for qn−2, qn−3, . . . , q0, i.e.,
until matrices of size one (i.e., complex numbers) remain—
yielding a so-called terminal node. During this decomposition
process, redundant sub-matrices are represented by the same
node (called shared node) which eventually leads to a more
compact representation. Having that, values of the respective
matrix entries are obtained by multiplying the edge weights
along the corresponding path.

Example 7. Fig. 3a shows the decision diagram represen-
tation of ρ⋆ which results when following the established
decomposition scheme. To aid the readability of the decision
diagram and following established conventions, edge weights
of 1 are omitted and nodes with an incoming edge weight
of 0 are represented as 0-stubs—indicating that matrix values
of all possible states represented by this part of the decision
diagram are 0. As can be seen, the redundancies discussed
before in Example 5 and framed in green and orange in Fig. 1
are accordingly reflected in the decision diagram. To obtain a
value of a matrix entry from this decision diagram, the edge
weights of the corresponding path must be multiplied. For
example, to reconstruct the value 0.12 from the lower left part
of the matrix (highlighted gray), the edge weight of the root
edge (0.36) must be multiplied with the third edge of q2 (1),
the first edge of q1 (1), and the first edge of q0 (1/3)—resulting
in 0.36 · 1 · 1 · 1/3 = 0.12.

Considering the hermitian property of density matrices, this
representation can be optimized. Depending on the current
position in the decomposition process, the upper right and
the lower left sub-matrices must be the complex conjugate
transpose of each other. In those cases, the first successor still
represents the upper left sub-matrix, while the third successor
represents the lower right sub-matrix. Eventually, the second
successor represents both, the upper right and the lower left
sub-matrix in a shared fashion. More precisely, without loss of
generality, the upper right sub-matrix is directly represented
by the second successor, while the lower left sub-matrix is
discarded and replaced by a “pointer” to the second node (a
pointer additionally storing that the corresponding successor
node does represent the complex conjugate transpose). Of
course, the scheme is recursively repeated for all qubits again.

Values of the respective matrix entries are then obtained again
by multiplying the edge weights along the corresponding
path—but dynamically modifying values when a pointer is
taken which indicates a complex conjugate transpose.

Example 8. Fig. 3b shows the decision diagram representa-
tion of ρ⋆ which results when following the proposed decom-
position scheme. As can be seen, the additional redundancies
discussed before in Example 6 and framed in red in Fig. 2 can
be exploited (in addition to the redundancies framed in green
and orange that are detected with the currently established
scheme). To obtain a value of a matrix entry from this decision
diagram, again, the edge weights of the corresponding path
must be multiplied; but now taking a complex conjugate trans-
pose into account when indicated by the respective pointer,
i.e., by flipping the second and third edges and conjugating
the edge weights. For example, to reconstruct the values 0.12
from the lower left part of the matrix (highlighted gray), the
edge weight of the root edge (0.36) must be multiplied with
the right edge of q2 (1), the second edge of q1 (1), and the first
edge of q0 (1/3), resulting in 0.36 ·1 ·1 ·1/3 = 0.12. Notice, that
the path at q1 is flipped—corresponding to a transpose of q1
(so that the correct matrix element could be restored). Overall,
this yields a decision diagram which requires one node less
than the one discussed in Example 7 and shown in Fig. 3a—a
reduction by approx. 17 %1.

B. Applying Operations
Having an (optimized) quantum state representation of a

density matrix obviously is good, but only really helps in
design tools if the structure is also applicable for conducting
the required operations on it. In the application scenario
considered here, multiplication of a (density) matrix M with
a matrix representing quantum operation U is a core re-
quirement. This can be efficiently applied using the proposed
decision diagram scheme. This is because U ·M can be written
as

U ·M =
[
U00 U01
U10 U11

]
·
[
M00 M01
M10 M11

]
=[

U00 ·M00 U00 ·M01
U10 ·M00 U10 ·M01

]
+

[
U01 ·M10 U01 ·M11
U11 ·M10 U11 ·M11

]
,

with the subscripted elements representing sub-matrices cor-
responding to the decomposition scheme presented in Ex-
ample 8, i.e., the upper left sub-matrix corresponds to U00,
the upper right sub-matrix corresponds to U01, the lower
left sub-matrix corresponds to U10, and the lower right sub-
matrix corresponds to U11 for U (the same applies to M ).
The necessary sub-products are determined by recursively
continuing this process, until sub-matrices of size one, i.e.,
complex numbers, remain onto which those operations can
be applied directly. Hence, multiplication can be decomposed
in a similar fashion as the matrices yielding the (proposed)
decision diagrams.

Since the off-diagonal elements of the density matrix are en-
coded into the same decision diagram sub-structure (although
they are only the complex conjugate transpose of each other)
some care has to be taken during the traversal of the decision
diagram. Depending on the path taken in the decision diagram,
pointers have to be modified corresponding to a conjugate
complex transpose, i.e., the second and third edge has to be
flipped and the edge weight must be conjugated. Besides that,
however, operations can be applied in a similar fashion as
before.

1Note that 17 % might not seem much. But considering that the example
is rather small, it is significant. Discussions and evaluations respectively
summarized and confirmed below show that improvements of up to 50 %
are possible when exploiting the identified potential.



V. RESULTING POTENTIAL

As shown above, exploiting the hermitian characteristics as
proposed in this work may lead to the detection of redundan-
cies that were not caught before—yielding optimized, i.e. more
compact, representations for density matrices. However, the
magnitude of the resulting potential strongly depends on the
considered quantum states. This section briefly discusses the
resulting potential in a conceptual fashion (before the derived
conclusions are also confirmed empirically in the next section).
To this end, we can roughly distinguish two cases:

1) Cases where few redundancies are exploited by earlier
methods: If density matrices are considered where current
(established) decomposition schemes could not identify any
(or not many) redundancies, substantial improvements are
possible with the scheme proposed in this work. In fact,
even if nothing above the matrix diagonal is redundant (and,
hence, offers potential for a compact representation), at least
everything below the diagonal is definitely redundant and can
be discarded. For a density matrix representing n qubits, this
means that the representation of up to (2n−1)2n/2 entries of the
matrix are redundant and can be avoided—yielding a reduction
of up to 50 % (but never 50 % itself or more as the diagonal
entries themselves still need to be represented). That is, the
proposed scheme offers a particular improvement for instances
where not much redundancy could be exploited by earlier
methods.

2) Cases which already exploit many redundancies: In con-
trast, if current (established) decomposition schemes already
were able to detect lots of redundancies, the improvements
achieved with the scheme proposed in this work are less or
even non-existent. In fact, if, e.g., the entries below the matrix
diagonal are already available in a very compact fashion,
exploiting the hermitian characteristic hardly provides any
further room for compaction. After all, there is a limit on
how compact states can be represented. That is, the proposed
scheme offers substantially less or even no improvement for
instances where already a substantial amount of redundancy
could be exploited.

Example 9. The effects described above can even be seen in
the example considered above for the state ρ⋆ and its density
matrix representation in Fig. 2 as well as decision diagram
representations in Fig. 3. In the first decomposition step, more
redundancy can be exploited with the scheme proposed in
this work, since the sub-matrices framed red only need to be
represented once (leading to one node less in the decision
diagram). At the same time, in the remaining decomposition
steps, all redundancies identified by the proposed scheme can
also be identified by the currently established scheme. That
is, since they already allow for a compact representation, no
further optimizations are obtained here. Overall, this does not
lead to the best possible improvement of up to 50 %, but still a
significant one of approx. 17 % which could not be exploited
before.

VI. EMPIRICAL RESULTS

In order to also empirically evaluate the potential discussed
above, we implemented the proposed scheme in C++2 us-
ing the open-source decision diagram package from [40].
Afterwards, we compared the performances of the current
(established) decision diagrams with the ones proposed in this
work when applied to noise-aware quantum circuit simulation
(as a representative of a design task for which efficient
representations of density matrices are key). In particular, we
measured the runtime of simulating different quantum circuits,

2The implementation is available as open source at:
www.github.com/cda-tum/ddsim

as well as the size of the resulting decision diagrams (i.e., the
number of nodes).

As benchmarks we used the Quantum Fourier Trans-
form (QFT, [1]) with an increasing number of qubits. The QFT
is a common use case and an essential part of several important
quantum algorithms (e.g., Shor’s factorization algorithm [2]
or quantum phase estimation [1]). Besides that, we also
considered a selection of further quantum circuits taken from
the benchmark set of [41]. All circuits have been considered
with and without the application of noise effects. In the noisy
case, we assumed gate errors (mimicked by depolarization of
1 %) as well as two types of coherence errors, namely, T1
errors with 2 % and T2 errors with 1 % [38].

In Table I, the results of the evaluation are summarized.
For each considered quantum circuit, we list the node count
of the final state and the runtime of the quantum circuit
simulation—for the established scheme (Est.) as well as the
proposed scheme (Prop.). Finally, we also provide the obtained
improvements (Improv.).

The results clearly confirm the discussions from Section V.
If the current (established) decomposition scheme already
identifies a large number of redundancies, the scheme pro-
posed in this work does not provide any further optimization.
This is particularity the case when no noise is considered—
here the involved decision diagrams mostly stay compact, so
that no improvement can be reported. In contrast, if current
(established) schemes were not able to detect many redundan-
cies substantial improvements of up to 50 % can be achieved.
This is particularly the case when noise effects are considered
(and for which density matrices are required for).

The benefits yielded by the proposed scheme for quantum
circuit simulation increase with the absolute size of the in-
volved decision diagrams. So, while no runtime improvement
can be reported when the simulation is already very fast,
considerable improvements of up to 66 % are achieved for
larger simulations.

VII. CONCLUSIONS

In this work, we proposed an optimized representation of
density matrices which provide the main basis to describe
quantum states including noise effects. To this end, we ex-
ploited the hermitian characteristic that allows for the utiliza-
tion of redundancies that have not been caught before. We
illustrated the proposed idea by reviewing the shortcomings of
the current (established) decomposition approach and outlining
the missed potential. This potential was eventually discussed
and confirmed by empirical evaluations (using noise-aware
quantum circuit simulation as a representative design tool).
Overall, the results showed that substantial further improve-
ments can be gained with the proposed scheme—providing
promising prospects also for other noise-aware quantum circuit
design tools for which efficient representations of density
matrices are key.
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TABLE I
EMPIRICAL RESULTS

Without Noise With Noise
Nodes Runtime Nodes Runtime

Circuit #Q #G Est. Prop. Improv. Est. Prop. Imp. Est. Prop. Improv. Est. Prop. Improv.
qft 6 86 6 6 0 % <1 s <1 s 0 % 683 528 23 % <1 s <1 s 0 %
qft 7 116 7 7 0 % <1 s <1 s 0 % 2731 2080 24 % <1 s <1 s 0 %
qft 8 153 8 8 0 % <1 s <1 s 0 % 10923 8256 24 % 1 s 1 s 16 %
qft 9 192 9 9 0 % <1 s <1 s 0 % 43691 32896 25 % 8 s 6 s 24 %
qft 10 241 10 10 0 % <1 s <1 s 0 % 174763 131328 25 % 186 s 123 s 34 %

qaoa 6 270 741 420 43 % <1 s <1 s 0 % 1365 714 48 % 2 s 1 s 13 %
vqe 6 2282 345 190 45 % 2 s 2 s 0 % 1365 714 48 % 12 s 9 s 23 %
qpe 9 150 1368 717 48 % <1 s <1 s 0 % 43701 22106 49 % 28 s 15 s 45 %

adder 10 142 10 10 0 % <1 s <1 s 0 % 211901 106469 49 % 2637 s 934 s 65 %
multiply 14 124 13 13 0 % <1 s <1 s 0 % 161361 90980 44 % 871 s 300 s 66 %
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