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Abstract—Solving real-world optimization problems with
quantum computing requires choosing between a large number
of options concerning formulation, encoding, algorithm and
hardware. Finding good solution paths is challenging for end
users and researchers alike. We propose a framework designed
to identify and recommend the best-suited solution paths in
an automated way. This introduces a novel abstraction layer
that is required to make quantum-computing-assisted solution
techniques accessible to end users without requiring a deeper
knowledge of quantum technologies. State-of-the-art hybrid algo-
rithms, encoding and decomposition techniques can be integrated
in a modular manner and evaluated using problem-specific
performance metrics. Equally, tools for the graphical analysis
of variational quantum algorithms are developed. Classical,
fault tolerant quantum and quantum-inspired methods can be
included as well to ensure a fair comparison resulting in useful
solution paths. We demonstrate and validate our approach on
a selected set of options and illustrate its application on the
capacitated vehicle routing problem (CVRP). We also identify
crucial requirements and the major design challenges for the
proposed abstraction layer within a quantum-assisted solution
workflow for optimization problems.

Index Terms—quantum computing, applied optimization, hy-
brid quantum-classical algorithms, variational quantum algo-
rithms, design automation, abstraction layer

I. INTRODUCTION

Optimization problems are ubiquitous in many business
fields, from logistics over smart factories to energy network
maintenance. Transformed into mathematical models, answer-
ing all of these questions is notoriously difficult. Efficient
classical algorithms can only find approximations.

Since Grover’s algorithm [1], quantum computing (QC) is
discussed as an option to improve and outperform classical
methods in the field of mathematical optimization. However,
the presently available Noisy Intermediate-Scale Quantum
(NISQ) [2] devices are limited in size and affected by noise.
Only small quantum circuits can be executed before decoher-
ence destroys the result of the calculation [3]. Consequently,
algorithms such as Grover’s cannot be executed. For near-term
quantum advantage, interest has turned towards variational
quantum algorithms [4] whose smaller circuits are suited for
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NISQ devices. In particular, the variational quantum eigen-
solver (VQE) [5] and the quantum approximate optimization
algorithm (QAOA) [6] have been explored in many variations.

However, realizing the disruptive potential of QC in a
real-world setting has proven to be difficult. The pursuit of
quantum advantage with NISQ devices needs improvements
both on the hardware and software side: Manufacturers find
ways to simultaneously scale their qubit systems and reduce
noise, and quantum software engineers need to find out what
circuits should be executed on the devices to produce a tangi-
ble benefit. These questions are currently addressed manually
without any broader automated solution.

Optimizing the quantum-assisted solution process is a hard
task that goes beyond the algorithm selection. It starts with
the selection of appropriate business use cases and ends
with guaranteeing that the solution returned by the quantum
hardware actually results in an improvement. Every step along
the way needs to be fine-tuned to optimally use the available
devices. Naturally, considering all available methods requires
expertise from various fields. Economists help to identify
use cases where an incremental improvement will be most
impactful. Mathematicians cast the problem into a well-defined
model. Quantum and classical software engineers as well as
physicists design and select the best hybrid quantum-classical
algorithm. Physicists and engineers attempt to overcome the
challenges posed by noise and to improve connectivity.

Classical computing is not fundamentally different, but a
lot can be automated and masked from the end users. With
this work, we contribute to creating such an abstraction layer
for quantum computing by automating and optimizing the
decision steps sketched above. Ultimately, this significantly
lowers the barrier of entry and facilitates the application of
quantum-enhanced methods. The margin of error is small.
Even routines that only add polynomial overhead can quickly
negate all advantage. Similarly to quantum machine learning,
one should broaden the view from a purely scaling-oriented
perspective thinking in complexity classes such as P or NP and
strive for improvements in solution quality or generalization
capabilities as well [7].

We envision a modular, semi-automated framework that
aims to combine all relevant expertise into well-defined solu-



tion paths. Based on different metrics, solution paths are rec-
ommended. New methods can be integrated seamlessly. Their
performance can be evaluated with application-specific metrics
on a per-instance level with a focus on whether one can expect
an actual benefit. Even for methods that currently cannot beat
the best classical approaches, the framework identifies critical
points where an improvement is needed and, thus, allows
to estimate a prospective timeline when and under which
conditions a reevaluation may be beneficial. Furthermore, the
framework can be extended beyond NISQ methods to fault-
tolerant and quantum-inspired solution options.

The remaining paper is organized as follows: Section II
describes the current status of QC-assisted optimization meth-
ods and introduces the capacitated vehicle routing problem
(CVRP). Section III treats connections to related work and
tools. Then, the core concept is presented in Section IV with
a special emphasis on how to compare solution paths in
Section V. Our instantiation is detailed in Section VI including
an in-depth treatment of the CVRP example. Section VII
summarizes our contribution and concludes with some general
remarks and future directions.

II. PRELIMINARIES

A. Solving Optimization Problems with Quantum Computing

Optimization problems are a well-established application of
classical computing and can broadly be stated as “From a set
of alternatives, find the option that optimizes a given objective
and at the same time fulfills a set of given constraints". For
NP-hard problems, the amount of available options typically
grows exponentially with the problem size. This renders prov-
ably optimal solution methods infeasible and introduces the
need for heuristic methods.

Fault-tolerant quantum computing is expected to yield a
quadratic speedup [1] for the unstructured search problem.
With NISQ devices, the hope is that variational algorithms
can already realize parts of this advantage. They encode the
solution to the problem as the ground state of a quantum
Hamiltonian and then aim to find this state via a variational
loop [4]. The standard example is the QAOA [6] that mimics
an adiabatic evolution using a parameterized circuit. Beyond
gate quantum computing, quantum annealing is a quantum-
inspired protocol specifically tailored to optimization prob-
lems [8], [9].

To date, there is no definite proposal on how to realize
this potential for real-world use cases, in part due to the
difficulty of optimizing the various choices one is required
to make throughout the process. A solution part starting with
a business application needs to cast it into a mathematical
model, then find an encoding into a quantum system and
choose an algorithm to find its ground state. Due to the highly
experimental status of the technology, the room for errors in
all of these decisions is small and how to realize a practical
quantum advantage applications is an open research question.

Figure 1. An example instance of the CVRP. The depot is marked with the
red square. The demand at the circular blue nodes needs to be satisfied with
a vehicle of capacity C' = 5. An optimal solution consists of three tours with
a shortest path within each tour.

B. An Example Use Case:
The Capacitated Vehicle Routing Problem

The CVRP (see Figure 1) is an extremely relevant gen-
eralization of the travelling salesperson problem (TSP). The
task is to collect goods at a number of sites with a vehicle of
finite capacity. The vehicle can be emptied again by visiting
a special site, the depot. A solution is a collection of multiple
routes that all start and end at the depot. Each single route then
corresponds to a TSP. However, the full CVRP is considerably
more difficult due to the capacity constraint and minimization
of the total path length. Formally, the problem is defined on a
n + 1-node complete graph where one node is marked as the
depot and all other nodes are equipped with a demand c;. The
edge weights between the nodes correspond to the distance
between the sites. A vehicle with total capacity C' should now
visit all non-depot nodes once on a set of routes each starting
and ending at the depot. The total path length of those routes
should be minimal.

Real-world examples are a postal service collecting pack-
ages at pickup points or a producer delivering goods to a num-
ber of supermarkets. A more thorough analysis of quantum-
assisted solution methods for the CVRP is given in [10].

III. RELATED WORK

The problem of encoding a domain-specific problem in a
quantum circuit is an active research area and several works
with different foci are already available. A prominent approach
aims to benchmark different QC solutions for the same initial
problem to be solved. In [11], a framework is proposed that
explores the search space of how to create and execute a
problem-specific quantum circuit. For two sample problems,
different paths from the initial problem formulation to an ac-
tual QC solution are evaluated. The decisions along those paths
are selected and compared based on a brute-force scheme.
Another tool named the quantum solver follows a similar
approach [12]. Here, a user can explore the search space from
a predefined problem set to different quantum solutions. This
approach is extended further to application-specific approaches
such as in Tangelo [13] for chemistry problems. For all these



tools, no informed recommendations are given how to solve a
specific problem without executing certain paths to a quantum
solution.

On the other hand, instruments have been proposed focusing
on automating these problem-to-solution flows without execut-
ing and benchmarking all options. In [14], conceptual ideas
on automating quantum workflows and shielding end users
from quantum computing are presented. Another example is
the MQT Predictor [15] which determines good options how
to compile a given quantum circuit on actual QC hardware
following a supervised machine learning approach.

IV. CONCEPT

In this work, we start from the actual quantum-independent
problem formulation and are concerned with the solution pro-
cess up to the point where a quantum circuit is created. There,
the circuits can be handed over to a dedicated compilation
(recommendation) software.

A. A Modular Decision Tree

In order to be useful to end users new to QC and to
represent the state-of-the-art at the same time, the proposed
framework aims to ultimately encapsulate all steps necessary
to improve real-world applications with a quantum-assisted
solution. Broken down into different levels, the decision points
are shown in Figure 2:

o Problem Formulation: The problem identified in a com-
pany needs to be formulated as a mathematical optimiza-
tion problem.

e Problem Decomposition: Appropriate decomposition
techniques should be applied in order to split the problem
in parts that can profit from currently available quantum
solutions.

o Encoding: The resulting subproblems need to be encoded
into a Hamiltonian or similar, e.g., a quadratic uncon-
strained binary optimization (QUBO) formulation.

o Algorithm Selection: In principle, classical, purely quan-
tum and hybrid quantum-classical (variational) algorithms
are options to be considered.

e Classical Optimizer: Since pure quantum solutions are
rather distant in the current NISQ era, classical optimizers
and algorithms applied in hybrid routines have a crucial
influence on the solution quality.

o Compiler and Hardware: A suitable combination of com-
piler and hardware needs to be found.

It is evident that choosing among the many solution paths
spanned by these decision points is no easy task. It requires
expertise from mathematics, physics, computer science and
even business knowledge. Furthermore, given the current ex-
perimental state of QC, there is little room for errors. E.g., a
bad optimizer in a variational quantum algorithm quickly fails
to find even a bad approximate solution.

To bring QC into the application, an abstraction layer is
needed that automatizes the decisions at every level. No
single person or group can be expected to cover the entire
process optimally though. Therefore, it is crucial that the

automated workflow is modular and expandable such that it
can constantly be reviewed and new state-of-the-art proposals
can be integrated easily. This requires transparent criteria
for the recommended choices as well as precisely defined
interfaces that connect the levels. In the end, finding optimal
solution paths is a community effort.

Furthermore, different end users will have various levels of
access to quantum hardware and proprietary software tools.
Thus, recommendations need to be adaptive to a given user
configuration and cannot be hardcoded. This promotes modu-
larity as well and facilitates the inclusion of new methods.

B. How To Find Recommendations

The criteria used to arrive at recommendations for a specific
decision point can be broadly categorized into four types:

e Analytic insights can provide theoretical performance
guarantees, usually under idealized conditions. They in-
clude restrictions (e.g., in size) that depend on the quality
of the available hardware as well.

e Heuristics argue by means of intuitive reasoning and
analogy, like estimating the effectiveness of a classical
optimizer from the structure of the loss landscape.

e Empirical methods often form the foundation for heuris-
tics, but are a source of knowledge in their own right.
In fact, proposals within the scientific community often
rely to a great deal on empirical data obtained through
numerical simulations.

e Machine learning (ML) is, in a sense, the automated
continuation of empirical findings. It requires foremost
a precisely defined value metric that can be used to train
a ML network.

Clearly, these distinctions are not clear-cut. To find optimal
solution paths, one should combine the available knowledge
to get the best result.

Given the complexity of the task and currently missing
recommendations or standards, the question remains how to
resolve disagreements regarding how to weight arguments
concerning the choice of one solution path over another. We
plan to tackle this problem in a two-fold way: First, a user
with sufficient knowledge should be able to customize all
parts of the solution process to their liking and thus deviate
from any automatized recommendation. Second, the constant
improvement of recommendations will naturally assume a peer
review in the form of propose—review—accept where the review
again is a community effort and the acceptance is based on
the acceptance in the expert community.

V. MONITORING

To address the question of how to compare solution paths
and monitor their performance, one needs to define appropriate
metrics and tools to support empirical and heuristic arguments.
Both should be integrated into the decision finding workflow
to efficiently evaluate and integrate new methods and ideas.
Furthermore, new evaluation methods and metrics can be
discussed and possibly accepted similarly to algorithms in a
peer-review manner.
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Figure 2. A sketch of the proposed decision tree with solution paths starting from the top. The left column follows Section IV. The right column shows
the specific options considered in this work with those underlined and marked in green representing a recommended solution path (see Section VI). The red
dotted arrow marks a clearly infeasible path at the moment. Most arrows between the hybrid algorithm and classical optimizer levels have been omitted to

avoid confusion.

Metrics suited for real-world use cases need to be specific to
the problem classes since, e.g., QUBO or Ising approximation
ratios do not translate directly into a solution quality such as
the TSP path length [10]. Assuming the algorithm produces
feasible states, the path length can even be used directly.

In terms of evaluation tools, variational quantum algorithms
need to be examined in both their quantum and classical
aspects. The classical optimization process can be visualized
by plotting the training trajectory in the parameter space
(or a 2-dimensional reduction of it) as well as by tracking
the Ising energy throughout the process (Figure 3 a) and
b)). The quantum ansatz on the other hand defines the loss
landscape the classical optimizer operates on (Figure 3c)).
Arguments can also be supported by circuit-centric metrics
such as entangling capacity or expressibility [17].

VI. IMPLEMENTATION

The envisioned workflow has been implemented on a selec-
tion of example problems by populating all levels with a subset
of options among which an initial recommendation is given.
Only hardware and compiler options are not included and can
be taken care of with a tool like the MQT Predictor [15].
The resulting instance includes all options shown in Figure 2
in a modular software setup. We demonstrate the workflow
throughout all levels from the problem formulation to the
circuit. The concrete decision points are described in detail
in the following sections and are illustrated by the CVRP
for clarity. Despite this division into layers, the difficulty lies
in the strong interdependence between these levels. Choosing

between the options even at the highest level requires some
thought about the target hardware, decomposition methods etc.

A. Problem Formulation & Decomposition

For each business use case, a number of different mathe-
matical formulations as well as equivalent formulations among
them will be possible. They typically differ in the type of and
connection between variables and constraints (assuming the
overall optimization goal, e.g., reducing path lengths driven
by a vehicle fleet, is fixed and defines the overall use case).
In addition, classical preprocessing steps that decompose the
problem on the highest level may be applied.

Relevant criteria are — even at this level — the number of
qubits and their connectivity on the target hardware as well
as shifting complexity between the objective function and
constraints. Their relationship is nontrivial: For example, even
binary variables do not necessarily map onto qubits in a 1-to-1
relation and the realization of their interactions may require a
larger or smaller overhead when mapped to the target hardware
system.

Example. For the CVRP, a solution needs to contain two
units of information the index of the path it is contained
in, and where it is located in said path. A direct encoding
is possible but cumbersome [18] and uses decision variables
Z;;, where the first index corresponds to the route it is
contained in, the second to the node and the third to the
(discretized) time the node is serviced. As a rough estimate,
this formulation requires O(n?) qubits where n is the total
number of nodes. Since this requirement is out of the reach of
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Figure 3. The plotting tools included to visualize the performance of a
variational algorithm. a) A 2-dimensional representation (here via t-SNE [16])
of the trajectory in the parameter space. The square and circle mark the
initial and final points respectively. b) The energy throughout the optimization
procedure. c¢) The loss landscape over an arbitrary plane in parameter space.

current hardware, one has to adopt the 2-phase solution for the
CVRP which first performs clustering and then solves a TSP
on each cluster [19]. The clustering is performed classically
with a bottom-up hierarchical approach [20]. This results in a
set of TSP problems for which the direct binary encoding is
O(n'?) [21] with a cluster size n' < n.

B. Encoding

The encoding translates the problem into a form suitable for
quantum computing, typically a Hamiltonian and possibly a set
of constraints. The current standard path is a QUBO formula-
tion. There are other options, however, including higher-order
product terms (HOBO) [22] and alternative ways to handle
constraints like unbalanced penalization [23].

For the mapping of integer variables onto qubits, strategies
like one-hot, binary and domain-wall encoding [24] are avail-
able, each with their unique advantages and disadvantages.
For example, one-hot encoding usually leads to a moderate
connectivity and a simple interpretation of individual variables.

However, all feasible states lie in local minima since they are
separated by at least two bit flips.

When it comes to the cost function, the overall scale of
the Hamiltonian can influence the performance of QAOA-like
algorithms [25]. It should suit the concrete algorithm and the
hardware to ensure that the individual gates can be executed
as reliably as possible. Furthermore, both problem-inherent
and encoding-specific constraint terms need to be penalized.
Mathematics dictates a minimum penalty to ensure that the
lowest eigenstate corresponds to the solution of the problem,
but gives no upper bound. In order to achieve a well-behaved
spectrum and optimization landscape, the penalty should not
be too large, however.

Example. For the TSPs resulting from the CVRP clustering,
the standard binary encoding with (n — 1)? variables [21] is
used which corresponds to the one-hot encoding of the integer
TSP formulation. Our focus, then, lies on the automation of
the scaling and penalty factor selection. For toy problems, the
minimum penalty factor F,,;, can be found by a classical
search. It seems sensible to choose the penalty as P = AP,
with A ~ 1.2. Empirically, P,,;, does not scale with the
number of nodes. If P,,;, is not accessible, P can be selected
according to a characteristic length of the system, e.g., the side
length of the bounding box containing all nodes.

Second, the overall scaling factor, while mathematically
irrelevant, can lighten the load on the classical optimizer by
shifting the relevant parameters and parameter changes into
a reasonable dimension. Since the variational circuit usually
consists of basic gates such as Pauli rotations, a sensible
approach is to align the spectrum of the n-qubit Hamiltonian to
that of a Pauli operator. For example, [25] proposes to choose
the scaling factor such that the spectral width of a QAOA
mixer (2n for a standard X mixer) lines up with the spectral
width of the Hamiltonian. For toy problems, the Hamiltonian
is diagonalizable with the usual numerical methods and this
method can be applied directly. For real-world use cases, an
estimate for the spectral width is required. Two options are
possible. First, Gershgorin circles can be used to obtain an
upper bound to the spectral width [26]. This upper bound, then,
should be scaled with a factor that is yet to be determined to
get a realistic estimate. Second, good scaling factors for in-
stances of the same or a similar problem class (e.g., uniformly
distributed random nodes within the same bounding box) can
be used.

C. Algorithm Selection

The choice of the hybrid algorithm and its hyperparameters
is at the center of the decision tree. Proven approximation
ratios, e.g., for MaxCut with QAOA [6] do not translate di-
rectly into the solution quality for many constrained problems
such as the TSP. For this reason, the algorithms need to
be benchmarked respecting a problem-specific performance
metric. Efficient testing involves simulators as a first step, but
then also needs to connect to the specific hardware.

Furthermore, algorithm-specific hyperparameters need to be
selected. VQE for example needs an ansatz, QAOA a specific



number of layers. As a first recommendation, we choose the
QAOA depth such that all qubits can be entangled by the
problem Hamiltonian evolution according to a reverse causal
cone argument [6], [27].

Example. For the TSP, qubits are interacting if they are
associated the same or an adjacent time step, or the same
node. As a baseline, we use the standard QAOA algorithm.
Warm-start QAOA has the problem that the variable assign-
ment of any reasonable warm-start solution will typically be
very different from the best solution due to the separation
of feasible solutions. Recursive QAOA cannot provide any
scaling advantage since it still requires to encode the entire
problem and suffers from the weakly correlated QAOA output.

Concerning the number of layers, a 2-layer QAOA is in
principle enough to couple all interacting qubits in the 4-node
problem. Nonetheless, to make sure the resulting circuit does
not run into expressibility issues, a 5-layer circuit is employed
instead making sure that all qubits can be entangled.

D. Classical Optimizer

The classical optimizer is both important and universal
enough to merit its own level in the decision process. It has
a strong impact on the optimization process and influences
the likelihood of getting stuck in local minima or on barren
plateaus [28]. In addition, it requires its own hyperparameters
like the step size of a gradient routine.

Relevant criteria are the number of circuit executions needed
for one iteration as well as the typical number of iterations
needed to converge. Furthermore, noise resilience is clearly
important for all optimizers, but can still take a larger or
smaller role depending on the structure of the loss landscape
and noise characteristics of the target device.

Example. For the considered TSP, four selected optimizers
are implemented through Qiskit: ADAM [29], SLSQP [30],
UMDA [31] and Nelder-Mead [32]. These are chosen to
broadly cover various optimization strategies, namely gradient-
based, gradient-free and genetic algorithms.

By examining simulated training trajectories showing the
energy during the optimization process, it becomes clear that
UMDA does not achieve good energy values whereas the other
three find similar energies at the end of the process. However,
ADAM needs more executions of the quantum circuit by an
order of magnitude. Nelder-Mead shows a stable, but slow
improvement of the energy, but often fails to converge within a
reasonable number of maximum iterations. In the end, ADAM
will time out on real backends which is why SLSQP is the
optimizer of choice for the problem at hand.

VII. CONCLUSIONS

We present the concept of a recommendation framework
for the quantum-assisted solution of optimization problems. It
acts as an abstraction layer for users that are unfamiliar with
a part or all of the necessary decisions. Problem formulation
and decomposition, encoding, algorithm and hyperparameter
selection, and the compiler and hardware choice need to be

carefully interlinked. We describe the various foundations for
good recommendations as well as the basic requirements of
the framework: a modular, expandable layout, clearly defined
interfaces that do not stand in the way of innovations and
a setup that can be tailored towards specific end users. We
demonstrate our approach for selected example options. For
the CVRP use case, we illustrate the application of the
proposed framework in detail.

An integrated framework is a cornerstone in order to
realize a practical quantum advantage as early as possible.
Our application-driven performance metrics stay as close as
possible to the use case, but this is not without drawbacks:
Modifications of the solution path influence the result not as
directly as common circuit-centric measures. Thus, it is chal-
lenging to draw concrete conclusions at the specific decision
points, especially given the problem-specific character of the
performance metrics.

In the scientific community, there is no shortage of new
ideas. However, a lot of them target only specific points of the
optimization workflow, with end-to-end solutions still wanting.
A significant effort is required to ensure transparency and
comparability — crucial conditions for the success of QC.

Finally, working solution paths for applications in the near
future require a high degree of tuning at every one of the highly
interdependent levels (Figure 2). This makes it particularly
hard to design a highly modular decision tree. Creators of new
algorithms or techniques that improve steps of the optimization
process should not be hindered, but helped. Instead, they need
to have a clear path on where to insert their innovation,
what requirements it needs to provide, and what line of
argumentation is needed to convince the community of its
relevance. To this end, we plan to expand and improve the
framework into several directions:

First, the options need to be expanded to ultimately cover
all relevant approaches. They need to be integrated into the
decision tree, tested and compared against the existing meth-
ods. The application-driven performance measures will lead
to recommendations tailored not only to the problem class,
but even to the instance. The tremendous complexity of this
endeavor is justified by the improvement in solution quality
that is needed to render quantum-assisted methods useful.

Second, many of the current recommendations rely on
heuristics. We need to improve our understanding of the
underlying assumptions and explore the general connec-
tions between characteristics such as circuit depth and
application-centric performance measures. Once an impactful
and well-reasoned metric is found, techniques based on ma-
chine learning become available.

Various tools have been proposed to automatize parts of
the solution process (see Section III), but our approach differs
in that it includes the entire process and specifically aims to
optimize how different levels of the software stack need to
work together to produce meaningful results. This enormous
undertaking can only succeed as a community effort. For this
reason, we are happy to answer questions from interested
researchers and research groups and start collaborating.
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